

Aims

- Introduce the distinctive features of pane^l data.
- Review some panel data methods commonly used in finance, economics, and accounting.
- Present the advantages (and limitations) of panel data, and
consider what sort of questions panel data can(not) address consider what sort of questions pane^l data can(not) address.
-
- Show how to handle and describe panel data.
• Introduce the basic estimation techniques for panel data (linear and non-linear).
• Discuss how to choose (and test for) the right technique for the question being addressed.
	-

Structure

Basics

- What type of data one might encounter (Data DNA)
- \bullet Stata ice-breaker

Panel Data

- \bullet What and whys?
- Handling pane^l data in Stata – some basic commands.
- Within and between variation
- \bullet Understanding Fixed and Random Effects

Dynamic linear models (continuous variables)

 \bullet Arellano & Bond and Blundell & Bond estimators

Discrete variables

- binary response variables
- \bullet Ordered response models

What and Why?

What:

Panel data are ^a form of longitudinal data, involving regularly repeated observations on the same individuals

- **Individuals** may be people, households, firms, countries, etc
- **Repeat observations** are typically different time periods **Why**:
- Repeated observations on individuals allow for possibility of isolating effects of unobserved differences between individuals
- We can study dynamics
- \bullet The ability to make causal inference is enhanced by tempora^l ordering

BUT don't expect too much…

- Variation between firms (or people) usually far exceeds variation over time for ^a firm
	- ⇒ ^a pane^l with *T* waves doesn't ^give *T* times the information of ^a cross-section
- Variation over time may not exist for some important variables or may be inflated by measurement error
- We still need very strong assumptions to draw clear inferences from
papels: sequencing in time does not pecessarily reflect causation panels: sequencing in time does *not* necessarily reflect causation

Some terminology

- A **balanced panel** has the same number of time observations (*T*) on each of the *n* individuals the*n* individuals
- An **unbalanced** panel has different numbers of time observations (T_i) on each individual each individual
- A **compact panel** covers only consecutive time periods for each individual there are no "gans" there are no "gaps"
- **Attrition** is the process of drop-out of individuals from the panel, leading to an unbalanced and possibly non-compac^t pane^l
- \bullet A **short pane^l** has ^a large number of individuals but few time observations on each
- \bullet A **long pane^l** has ^a long run of time observations on each individual, permitting separate time-series analysis for each
- \bullet We consider only short panels in this seminar

Panel and time variables

- Use t sset to tell Stata which are panel and time variables:
teach id veer
- . tsset id year

Note that tsset automatically sorts the data accordingly.

Our dataset

Sample size: 79,558 (bank-year) obs

Sample dimensions:

To get more info use xtdescribe

. xtdescribe

1 ² ⁶ ⁹ ⁹ ⁹ ⁹ Distribution of T_i: min 5% 25% 50% 75% 95% max

Variation of the dependent variable and the regressors

- See word file
- Main concepts:
- overall variation
- \bullet Between variation
- Within variation \bullet

Between- and within-group variation

Define the individual-specific or group mean for any variable, $e.g. y_{it}$ as:

$$
\overline{y}_i = \frac{1}{T} \sum_{i}^{T_i} y_{it}
$$
ogonal *icot*~~n~~pone

 $=$ within $+$ between

n

i

 ${{y}_{it}}$ can be decomposed into 2 orthogona**l com**ponents: =)nai coh

$$
y_{it} - \overline{y} = (y_{it} - \overline{y}_{i}) + (\overline{y}_{i} - \overline{y})
$$

i

 $\overline{y} = \sum_{i=1}^{n} \sum_{j=1}^{T_i} y_{it} / \sum_{i=1}^{n} T_i$

where

Corresponding decomposition of[†]s̄dɪn̊ī-^lof squai[:]ēls: $\sum_{i \equiv 1 \text{ prime}} y_{it} / \sum_{i \equiv 1 \text{ prime}}$ $\frac{1}{2}$ $\frac{1}{2}$

=

$$
\sum_{i=1}^{n} \sum_{t=1}^{T_i} (y_{it} - \overline{y})^2 = \sum_{i=1}^{n} \sum_{t=1}^{T_i} (y_{it} - \overline{y}_i)^2 + \sum_{i=1}^{n} \sum_{t=1}^{T_i} (\overline{y}_i - \overline{y})^2
$$

or:

Between- and within-group variation xtsum

- Stata contains a 'canned' routine, xtsum, that summarises
within and between variation within and between variation.
- But it does not give an exact decomposition:
	- Converts sums of squares to variance using different 'degrees of
freedom' so they are not comparable freedom' so they are not comparable
	- Reports square root (i.e. standard deviation) of these variances
	- Documentation is not very clear!
- But useful as ^a goo^d approximation.

Treatment of individual effects Then two options for treatment of individual effects:

• Fixed effects – assume λ_i are constants

• Random effects – assume λ_i are drawn independently from some probability distribution

Constructing the fixed-effects model - eliminating unobserved heterogeneity by taking first differences $y_{it} - y_{it-1} = p_0 + \lambda_i + p_1 x_{1it} + p_2 x_{2it} + ... + p_k x_{kit} + u_{it}$ $y_{it} = \beta_0 + \lambda_i + \beta_1 x_{1it} + \beta_2 x_{2it} + ... + \beta_k x_{kit} + u_{it}$ *xxx* $\boldsymbol{\mathcal{U}}$ =+ $\, +$ \pm $\, +$ $\, +$ $\, +$ β_0 λ_{\cdot} $\beta_{\scriptscriptstyle 1}$ β_i $\beta_{\scriptscriptstyle k}$ $1 - \mathcal{P}_0$ \cdots \mathcal{V}_i \cdots $\mathcal{P}_1 \mathcal{V}_{1}$ if \cdots 01122Original equationLag one period and subtract20 $y_{it} - y_{it-1} = \beta_1 (x_{1it-1} - x_{1it-1}) + \beta_2 (x_{2it} - x_{2it-1}) + ...$ $+\beta_k (x_{kit} - x_{kit-1}) + (u_{it} - u_{it-1})$ $\Delta y_{it} = \beta_1 \Delta x_{1it} + \beta_2 \Delta x_{2it} + ... + \beta_k \Delta x_{kit} + \Delta u_{it}$ $\mu_i - \mu_i x_{1it-1} - \mu_2 x_{2it-1} - ... - \mu_k x_{kit-1} - u_{it}$ $\boldsymbol{\mathcal{X}}$ *x* $- D_0 − \lambda_1 − D_1 X_1$ ₁₁ - D₂X₂ + 1 - ... - D₁X₁ + 1 $\beta_k(x_{ki} - x_{ki-1}) + ($ $\beta_0^{\vphantom{0}}-\lambda_{\vphantom{i}}^{\vphantom{0}}-\beta_{1}^{\vphantom{0}}x_{\vphantom{i}}^{\vphantom{0}}-\beta_{2}^{\vphantom{0}}x_{\vphantom{i}}^{\vphantom{0}}-\lambda_{i}^{\vphantom{0}}-\beta_{i}^{\vphantom{0}}x_{\vphantom{i}}^{\vphantom{0}}$ 1 1 \vee i i \vee i i i -1 Transformed equationConstant and individual effects eliminated An Alternative to First-Differences:

Deviations from Individual Means

$$
\Delta y_{it} = \beta_1 \Delta x_{1it} + \beta_2 \Delta x_{2it} + \dots + \beta_k \Delta x_{kit} + \Delta u_{it}
$$

Applying least squares gives the first-difference estimator – it works when there are two time periods.

More general way of "sweeping out" fixed effects when there are more than two time periods - take deviations from individual means.

Let x_{1i} be the mean for variable x_1 for individual i, averaged across all time periods. Calculate means for each variable (including y) and then subtract the means gives:

()()*it* $y_i = \mu_0$ μ_0 μ_0 μ_1 μ_1 μ_2 μ_3 μ_4 μ_5 μ_6 μ_7 μ_8 μ_7 μ_8 μ_9 μ_9 μ_8 $y_{it} - y_i = \beta_0 - \beta_0 + \lambda_i - \lambda_i + \beta_1 (x_{1it} - x_{1i}) + ... + \beta_k (x_{kit} - x_{ki}) + u$ P_0 P_0 P_1 Q_i Q_i P_1 Q_1 Q_2 Q_1 Q_2 Q_1 Q_2 Q_2 $\beta_0 - \beta_0 + \lambda_i - \lambda_{i.} + \beta_1 (x_{1it} - \overline{x}_{1i.}) + ... + \beta_k (x_{kit} - \overline{x}_{ki.})$ $P_1 \cup i$ it \cdots $\beta_{\scriptscriptstyle k}$ The constant and individual effects are also eliminated by this transformation

Estimating the Fixed Effects Model

Take deviations from individual means and apply least squares – fixed effects, LSDV or "within" estimator

 $\bigg($) $\bigg($)*it* $y_i = \mu_1 \mathbf{w}_{1i}$ \mathbf{w}_{1i} , \mathbf{w}_{1i} $\mathbf{w}_{k} \mathbf{w}_{kii}$ \mathbf{w}_{ki} , \mathbf{w}_{it} $y_{it} - y_i = \beta_1 (x_{1it} - x_{1i}) + ... + \beta_k (x_{kit} - x_{ki}) + u$ $\mathcal{M}_1\left(\mathcal{M}_{1it} \quad \mathcal{M}_{1i}\right)$... $\mathcal{M}_k\left(\mathcal{M}_{kit} \quad \mathcal{M}_{ki}\right)$ $\beta_1(x_{1it} - \bar{x}_{1i.}) + ... + \beta_k(x_{kit} - \bar{x}_{ki.})$ $\beta_{\scriptscriptstyle k}$

It is called the "within" estimator because it relies onindividuals. variations within individuals rather than between Not surprisingly, there is another estimator that uses only information on individual means. This is known as the "between"estimator. The Random Effects model is ^a combination of theFixed Effects ("within") estimator and the "between" estimator.

Three ways to estimate
$$
\beta
$$

\n $y_{it} = \beta' x_{it} + \varepsilon_{it}$ overall
\n $y_{it} - \overline{y}_{i.} = \beta' (x_{it} - \overline{x}_{i.}) + \varepsilon_{it} - \overline{\varepsilon}_{i.}$ within
\n $\overline{y}_{i.} = \beta' \overline{x}_{i.} + \overline{\varepsilon}_{i.}$ between

The overall estimator is a weighted average of the "within" and "between" estimators. It will onlybe *efficient* if these weights are correct.

The random effects estimator uses the **correct weights**.

Stata output: within-group regression

. xtreg noi size1 risk1 cap, feFixed-effects (within) regression Number of obs = 68125 Group variable: id Number of groups = 10131 $R-sq$: within = 0.0798 Obs per group: min = 1 $between = 0.0008$ avg = 6.7 $max = 8$ $overall = 0.0181$ $F(3, 57991) = 1675.46$ $corr(u_i, Xb) = -0.1275$ Prob > F = 0.0000 noi Coef. Std. Err. t P>t [95% Conf. Interval] $size1 - .2288585 .0195904 -11.68 0.000 - .2672557 - .1904613$ risk1 .0111155 .0006681 16.64 0.000 .0098061 .0124249 cap 1.800679 .027743 64.91 0.000 1.746302 1.855055 -3.919598 $cons$ -4.448611 .2699042 -16.48 0.000 -4.977625 sigma_u 1.9432036 sigma_e 1.3609366 rho .67091573 (fraction of variance due to u_i)F test that all u i=0: F(10130, 57991) = 10.37 Prob > F = 0.0000

Stata output: between-group regression

```
. xtreg noi size1 risk1 cap, beBetween regression (regression on group means) Number of obs = 68125Group variable: idNumber of groups = 10131
R-sq: within = 0.0623 Obs per group: min = 1
between = 0.0438avg = 6.7overall = 0.0372max = 8F(3, 10127) = 154.64sd(u i + avg(e i.)) = 1.851404 Prob > F = 0.0000
noi Coef. Std. Err. t P>t [95% Conf. Interval]
size1 .1613118 .0137935 11.69 0.000 .1342738 .1883498
risk1 -.0093633 .0011373 -8.23  0.000 -.0115926 -.007134<br>cap 2.404782 .1536881  15.65  0.000  2.103523  2.706041
      2.404782 .1536881 15.65 0.000 2.103523
_{\text{cons}} -10.12686 .6474204 -15.64 0.000 -11.39593 -8.857783
------------------------------------------------------------------------------
```


This approach might be appropriate if observations are representative of a sample rather than the wholepopulation. This seems appealing.

The Variance Structure in Random Effects

In random effects, we assume the λ_i are part of the
composite error term α Te construct an efficient estimator composite error term ε_{it} . To construct an efficient estimator we have to evaluate the structure of the error and then apply an appropriate generalised least squares estimator to find an efficient estimator. The assumptions must hold if theestimator is to be efficient. These are:

 $E(u_{it}) = E(\lambda_i) = 0;$ $E(u_{it}^2) = \sigma_u^2;$ $E(u_{it}^2) = E(\lambda_i) = 0;$ $E(u_{it}^2) = \sigma_u^2$ *and* $E(\mathcal{E}_{it}^2) = \sigma_u^2 + \sigma_{\lambda}^2$ $t = s$; $E(\mathcal{E}_{it}\mathcal{E}_{is}) = \sigma_{\lambda}^2$, $t \neq s$; $E(\lambda_i^2) = \sigma_{\lambda}^2;$ $E(u_{it}\lambda_i) = 0$ for all *i*, *t* σ *joi au* σ , ε_{it}^2) = $\sigma_u^2 + \sigma_{\lambda}^2$ t = s; $E(\varepsilon_{it}\varepsilon_{is}) = \sigma_{\lambda}^2$, t \neq λ_i^2) = σ_λ^2 ; $E(u_{ii}\lambda_i)$ =

 $E(x_{\text{kit}}\lambda_i) = 0$ for all k, t, i λ_i) = 0 for all k, t,

This is a crucial assumption for the RE model. It is necessary for the consistency of the RE model,but not for FE. It can be tested with the Hausman test.

27

The Variance Structure in Random Effects

Derive the T by T matrix that describes the variance structure of the $\varepsilon_{_{\textit{it}}}$ for individual *i*. Because the randomly drawn λ_i is present each period, there is ^a correlation between each pair of periods for this individual.

$$
\varepsilon_{i} = (\varepsilon_{i1}, \varepsilon_{i2}, ... \varepsilon_{iT}); \text{ then } E(\varepsilon_{i}\varepsilon_{i}) =
$$
\n
$$
\begin{bmatrix}\n\sigma_{u}^{2} + \sigma_{\lambda}^{2} & \sigma_{\lambda}^{2} & \sigma_{\lambda}^{2} & \sigma_{\lambda}^{2} \\
\sigma_{\lambda}^{2} & \sigma_{u}^{2} + \sigma_{\lambda}^{2} & \sigma_{\lambda}^{2} \\
\sigma_{i}^{2} & \sigma_{\lambda}^{2} & \cdots & \sigma_{u}^{2} + \sigma_{\lambda}^{2}\n\end{bmatrix} = \sigma_{u}^{2}I + \sigma_{\lambda}^{2}ee' = \Omega
$$
\nwhere $e' = (111,...1)$ is a unit vector of size T

Random Effects (GLS Estimation)
The Random Effects estimator has the standard

all generalised least squares form summed over individuals in the dataset i.e.

$$
\hat{\beta}_{RE} = \left[\sum_{i=1}^{N} (X_i \mathbf{\Omega}^{-1} X_i) \right]^{-1} \sum_{i=1}^{N} X_i \mathbf{\Omega}^{-1} y_i
$$

Where, given Ω from the previous slide, it can be shown that:
\n
$$
\Omega^{-1/2} = \frac{1}{\sigma_u} \left(I_T - \frac{\theta}{T} ee^i \right)
$$
\nwhere $\theta = 1 - \frac{\sigma_u}{\sqrt{T \sigma^2_{\lambda} + \sigma^2_u}}$

29

Relationship between Random and Fixed Effects

The random effects estimator is ^a weighted combination of the "within" and"between" estimators. The "between" estimator is formed from:

ˆ $\hat{\beta}_{_{RF}}^{} = \Psi \hat{\beta}_{_{Between}}^{} + (I_{_{K}}^{} - \Psi) \hat{\beta}_{_{RF}}^{}$ $\hat{\pmb{\beta}}_{\sf RE}^{} = \Psi \hat{\pmb{\beta}}_{\sf RE}^{}$ Ψ depends on θ in such a way that if $\theta \rightarrow 1$ then the $\beta_{Between}^{}+(I_{K}-\Psi)\beta_{K}$ μ *W i*thin *I*relative to the random error). $\theta \rightarrow 0$ corresponds to OLS (because the individual effects are small the individual effects is large relative to the random errors. RE and FE estimators coincide. This occurs when the variabili ty of

Random or Fixed Effects?

For random effects:

•Random effects are efficient

•Why should we assume one set of unobservables fixedand the other random?

•Sample information more common than that from the entire population?

•Can deal with regressors that are fixed across individuals

Against random effects:

Likely to be correlation between the unobserved effects andin. the explanatory variables. These are assumed to be zero the random effects model, but in many cases we might ex the random effects model, but in many cases we might expect them to be non-zero. This **inconsistency** due to omitted-variables in the RE model. In this situation, fixedeffects is inefficient, but still consistent.

The Hausman Test

A test for the independence of the $\lambda_{\sf i}$ and the $\mathsf{x}_{\sf kit}.$

The covariance of an efficient estimator with its difference fromnull an inefficient estimator should be zero. Thus, under the hypothesis we test:

 $(\beta_{_{\rm{RF}}} - \beta_{_{FF}})$ ~ $\left(k\right)$ ˆ $\mathsf{W}=(\beta_{{}_{\mathrm{RF}}}-\beta_{{}_{FF}})^{\prime}$ $(\beta_{\text{\tiny RE}} - \beta_{\text{\tiny FE}})' \hat{\Sigma}^{-1} (\beta_{\text{\tiny RE}} - \beta_{\text{\tiny FE}}) \sim \chi^2$ RE PE Λ 1 RE PE E $\beta_{\textrm{\tiny{RE}}} - \beta_{\textrm{\tiny{FE}}})^{\prime} \Sigma^{-1} (\beta_{\textrm{\tiny{RE}}} - \beta_{\textrm{\tiny{FE}}}) \thicksim \chi^2(k)$ − $\boldsymbol{\beta}_i$ *FE* $\Sigma^{-1}(\beta_{_{\rm I}} % {\mathcal O}_\omega\cap\beta_{_{\rm I}} % {\mathcal O}_\omega\$ − $\boldsymbol{\beta}_i$ *FE* $\Gamma^{\text{-1}}(\boldsymbol{\beta}_{\text{RF}}-\boldsymbol{\beta}_{\text{FE}})\thicksim \boldsymbol{\chi}$

If *W* is significant, we should not use the random effects
estimator estimator.

Can also test for the significance of the individual effects

feasible GLS estimates

. xtreg noi size1 risk1 cap, re theta

Random-effects GLS regression Mumber of obs = 68125 Group variable: id Number of groups = ¹⁰¹³¹ $R-sq:$ within = 0.0767 Obs per group: min = 1 between = 0.0139 avg = 6.7 $overall = 0.0403$ max = 8 $Wald chi2(3) = 4981.38$ $corr(u_i, X) = 0$ (assumed) Prob > chi2 = 0.0000 **theta ------------------ min 5% median 95% max 0.3857 0.5178 0.7346 0.7346 0.7346**

noi Coef. Std. Err. z P>z [95% Conf. Interval] size1 .0034773 .0112073 0.31 0.756 -.0184885 .0254432 risk1 .0066515 .000574 11.59 0.000 .0055265 .0077764

cap 1.873067 .0272287 68.79 0.000 1.8197 1.926435 cons -7.277254 .1789141 -40.67 0.000 -7.627919 -6.926589

sigma_u 1.7481621sigma_e 1.3609366

rho .62264352 (fraction of variance due to u_i)

within-group estimates

. xtreg noi size1 risk1 cap, fe $Fixed-effects$ (within) regression $Number of obs = 68125$ Group variable: id Number of groups = 10131 $R-sq:$ within = 0.0798 Obs per group: min = 1 $between = 0.0008$ $a \vee q = 6.7$ $max = 8$ $overall = 0.0181$ $F(3, 57991) = 1675.46$ corr(u i, Xb) = -0.1275 Prob > F = 0.0000 noi Coef. Std. Err. t P>t [95% Conf. Interval] $size1 - .2288585 .0195904 -11.68 0.000 - .2672557 - .1904613$ risk1 .0111155 .0006681 16.64 0.000 .0098061 .0124249cap 1.800679 .027743 64.91 0.000 1.746302 1.855055 _cons -4.448611 .2699042 -16.48 0.000 -4.977625 -3.919598sigma_u 1.9432036 sigma_e 1.3609366 rho .67091573 (fraction of variance due to u_i)F test that all $u_i=0$: F(10130, 57991) = 10.37 Prob > F = 0.0000

Hausman test

xtreg

```
xtreg noi size1 risk1 cap, feestimates store fixed
xtreg noi size1 risk1 cap, reestimates store randomhausman fixed random
---- Coefficients ----
             (b) (B) (B) (b-B) sqrt(diag(V_b-V_B))
             fixed random Difference S.E.
      size1 -.2288585 .0034773 -.2323359 .0160679
       risk1 .0111155 .0066515 .004464 .0003419
      cap 1.800679 1.873067 -.0723887 .0053173
```
b = consistent under Ho and Ha; obtained from xtregB = inconsistent under Ha, efficient under Ho; obtained from

Test: Ho: difference in coefficients not systematic

chi2(3) = $(b-B)'$ $[(V_b-V_B)^(-1)](b-B)$ $= 453.94$ Prob>chi2 = 0.0000

Conclusion: we reject $H_{\!0}^{}$ – so the random-effects regression is biased

Random effects ordered probit (2)

Finally:

$$
\Pr(y_{it} \equiv J \mid \mathbf{z}_{i}, \mathbf{x}_{it}, u_{i}) = \Pr(\boldsymbol{\mu}_{j} < y_{it}^{*} \mid \mathbf{z}_{i}, \mathbf{x}_{it}, u_{i})
$$
\n
$$
= 1 - \Pr(y_{it}^{*} \leq \boldsymbol{\mu}_{j} \mid \mathbf{z}_{i}, \mathbf{x}_{it}, u_{i})
$$
\n
$$
= 1 - \Phi(\boldsymbol{\mu}_{j} - \mathbf{z}_{i} \mathbf{\alpha} - \mathbf{x}_{it} \mathbf{\beta} - u_{i})
$$

- Check that these probabilities sum to one! \bullet
- Predicting probabilities and calculating marginal effects is done analogously to the binary RE probit.

Random effects ordered probit estimation example (xtoprobit)

LR test vs. oprobit regression: <u>chibar2(01) =</u> 620.84 Prob>=chibar2 = 0.0000

Obtain predicted probabilities: predict prob*, pu0

. sum prob1 prob2 prob3 prob4 prob5

