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Terminology and basic concepts

• A time series is a collection of observations made 

sequentially in time. 

• Usually, these observations are taken at equally spaced 

intervals over time. 

• An intrinsic feature of a time series is that, typically, 
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• An intrinsic feature of a time series is that, typically, 

adjacent observations are dependent.

• The nature of this dependence among observations of a 

time series is of considerable practical interest. 

• Time Series Analysis is concerned with techniques for 

the analysis of this dependence
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• since successive observations are not 

independent the analysis must take this into 

account.

•When successive observations are dependent, 

future values may be ‘predicted’ from past 

observations. 

• most time series are stochastic in that future 
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• most time series are stochastic in that future 

is only partly determined by past values, so 

that exact predictions are impossible

• future values have a probability distribution, 

which is conditioned by knowledge of past 

values



� A statistical phenomenon that evolves in time according

to probabilistic laws is called a stochastic process.

� The time series to be analysed may then be thought

as a particular realisation, produced by the underlying

probability mechanism

� So when analysing a time series we regard it as a
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� So when analysing a time series we regard it as a

realisation of a stochastic process.

� A stochastic process is a family of random variables,

defined in a probability space: {X
t
} , t = …-1, 0, +1, … and

a TS is a sample path or realisation of a stochastic process,

whose parameter (index) denotes time.



� A special class of stochastic processes, called stationary
processes, is based on the assumption that the process is in
a particular state of statistical equilibrium.

� A stochastic process is said to be strictly stationary if its
properties are unaffected by a change of time origin,

� i.e if the joint probability distribution associated with m
observations zt, zt+1, zt+2, …made at any set of times t, t+1,
t+2,..., is the same as that associated with m observations
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t+2,..., is the same as that associated with m observations
zt+k, zt+1+k, zt+2+k, …made at times t+k, t+1+k, t+2+k,...



• However, the notion of strict stationarity is very strong
and rarely satisfied by TS encountered in social sciences.

• A rather weaker notion related is the so-called weak or
second order stationarity or wide sense stationarity. A
time series is called weakly stationary if:

• E(Xt) = µ for every t (meaning independent of time)

• Cov(Xt, Xt+k) = E[(Xt - µ) (Xt+k - µ)] = γk for every t
(meaning independent of time and only a function of the
time lag. (depends only on k, the length of time separating
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time lag. (depends only on k, the length of time separating
the observations, and not t, the date of observation)



• No assumptions are made about higher order moments

than those of second order. By letting k = 0, we note that

the above assumption about the covariance function

implies that the variance, as well as the mean, is constant.

• A strictly stationary process is weakly stationary

• If the process is Gaussian, then weak stationarity implies

strict stationarity
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• By symmetry γk = γ-k

• So, the graph of a stationary series will vary randomly

around a constant (stable) mean value and also its variance

will be constant through time.



• For a time series {Xt} we define as autocovariance

(ACV) of k-order the quantity:

• Cov(Xt, Xt+k) = E[(Xt - µ) (Xt+k - µ)] = γk , k = ±1, ±2

• The term "auto" is prefixed because the members of the

series are generated from the same stochastic process. The

ACV function is an even function of k. that is because:

• Cov(Xt, Xt+k) = Cov(Xt+k, Xt) = Cov(Xt, Xt-k) = γ-k
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t t+k t+k t t t-k k

• Obviously, γ0 = Cov(Xt, Xt) = Var(Xt)



• Positive first-order autocovariance means that there is a

tendency for the next observation to be towards the same

side (sign) as the previous one with respect to the mean.

• For a time series {Xt} we define as autocorrelation

(ACR) of k-order the quantity: ρk

• The graph of ρk is called correlogram.

• Because γk = γ-k it can be shown that ρk = ρ-k
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• Because γk = γ-k it can be shown that ρk = ρ-k

• Obviously the ACR function has the same properties with

the ACV function, and furthermore satisfies the condition

ρ0 =1



� Note that the autocorrelation function is dimensionless,
that is, independent of the scale of measurement of the
time series.

� The correlogram of a stationary series will die out very
fast, after the first k-lags, whereas in the case of a non-
stationary series it will be very persistent, and die out
very slowly.

10

Quantitative Methods, K. Drakos10



2

2*
t t t

L X L LX X −= =

11

1t tL X X −=

X X X∆ = −

Quantitative Methods, K. Drakos11

1t t tX X X −∆ = −

( )2

1

1 22

t t t t

t t t

X X X

X X

−

− −

∆ =∆∆ =∆ Χ−

=Χ− −



Time Series Regression 

y = β + β x + . . .+ β x + u
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yt = β0 + β1xt1 + . . .+ βkxtk + ut

1. Basic Analysis



Time Series vs. Cross Sectional
� Time series data has a temporal ordering, unlike cross-

section data

� Will need to alter some of our assumptions to take into 

account that we no longer have a random sample of 

individuals
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individuals

� Instead, we have one realization of a stochastic (i.e. 

random) process



Examples of Time Series Models
� A static model relates contemporaneous variables:  yt

= b0 + b1zt + ut

� A finite distributed lag (FDL) model allows one or 

more variables to affect y with a lag: yt = a0 + d0zt + 

d1zt-1 + d2zt-2 + ut
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d1zt-1 + d2zt-2 + ut

� More generally, a finite distributed lag model of order 

q will include q lags of z



Finite Distributed Lag Models

� We can call d0 the impact propensity – it reflects the 

immediate change in y

� For a temporary, 1-period change, y returns to its 

original level in period q+1

� We can call d + d +…+ d the long-run propensity 
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� We can call d0 + d1 +…+ dq the long-run propensity 

(LRP) – it reflects the long-run change in y after a 

permanent change



Trending Time Series
� Economic time series often have a trend

� Just because 2 series are trending together, we can’t 
assume that the relation is causal

� Often, both will be trending because of other 
unobserved factors
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� Even if those factors are unobserved, we can control 
for them by directly controlling for the trend



Trends (continued)
� One possibility is a linear trend, which can be 

modeled as yt = a0 + a1t + et, t = 1, 2, …

� Another possibility is an exponential trend, which can 

be modeled as log(yt) = a0 + a1t + et, t = 1, 2, …

� Another possibility is a quadratic trend, which can be 
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� Another possibility is a quadratic trend, which can be 

modeled as yt = a0 + a1t + a2t
2 + et, t = 1, 2, …



Detrending
� Adding a linear trend term to a regression is the same 

thing as using “detrended” series in a regression

� Detrending a series involves regressing each variable 

in the model on t

� The residuals form the detrended series

Quantitative Methods, K. Drakos18

� The residuals form the detrended series

� Basically, the trend has been partialled out



Detrending (continued)
� An advantage to actually detrending the data (vs. 

adding a trend) involves the calculation of goodness of 

fit

� Time-series regressions tend to have very high R2, as 

the trend is well explained
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the trend is well explained

� The R2 from a regression on detrended data better 

reflects how well the xt’s explain yt



                                                       R-squared     =  0.1735
                                                       Prob > F      =  0.0000
                                                       F(  2,  1120) =   70.77
Linear regression                                      Number of obs =    1123

. reg highlow trend trendsq, r

. gen trendsq=trend*trend

                                                                              
       _cons     1.372859   .0994282    13.81   0.000     1.177773    1.567946
       trend    -.0003805   .0000895    -4.25   0.000    -.0005561   -.0002049
                                                                              
     highlow        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                             Robust
                                                                              

                                                       Root MSE      =  1.4727
                                                       R-squared     =  0.0240
                                                       Prob > F      =  0.0000
                                                       F(  1,  1121) =   18.07
Linear regression                                      Number of obs =    1123

. reg highlow trend, r
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       _cons     2.417339   .1603895    15.07   0.000     2.102641    2.732036
     trendsq     1.94e-06   1.64e-07    11.87   0.000     1.62e-06    2.26e-06
       trend    -.0040856   .0003481   -11.74   0.000    -.0047686   -.0034025
                                                                              
     highlow        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                             Robust
                                                                              

                                                       Root MSE      =  1.3558
                                                       R-squared     =  0.1735
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Seasonality
� Often time-series data exhibits some periodicity, 

referred to seasonality

� Example:  Quarterly data on retail sales will tend to 
jump up in the 4th quarter

� Seasonality can be dealt with by adding a set of 
seasonal dummies

Quantitative Methods, K. Drakos22

seasonal dummies

� As with trends, the series can be seasonally adjusted 
before running the regression



. test  weekday1 weekday2 weekday3 weekday4 weekday5

                                                                              
       _cons     .9880832   .1590537     6.21   0.000     .6760025    1.300164
     month12    (dropped)
     month11      .125072   .1851028     0.68   0.499    -.2381201     .488264
     month10     .0462309   .1808604     0.26   0.798     -.308637    .4010987
      month9     .4577313   .1910928     2.40   0.017     .0827863    .8326763
      month8     .2445662   .1944154     1.26   0.209    -.1368981    .6260305
      month7     .1796492   .1737114     1.03   0.301    -.1611915      .52049
      month6     .3494071   .2175148     1.61   0.108    -.0773807    .7761948
      month5    -.0921886    .159728    -0.58   0.564    -.4055924    .2212152
      month4     .3554762   .2066008     1.72   0.086    -.0498971    .7608494
      month3     .8295044   .3558196     2.33   0.020     .1313476    1.527661
      month2    -.1406504   .1718424    -0.82   0.413     -.477824    .1965233
      month1    -.1215709   .1640026    -0.74   0.459    -.4433618    .2002201
    weekday5    (dropped)
    weekday4    -.1127254   .1409432    -0.80   0.424    -.3892713    .1638205
    weekday3    -.2158775   .1406349    -1.54   0.125    -.4918185    .0600634
    weekday2    -.0826748   .1490791    -0.55   0.579    -.3751842    .2098346
    weekday1    -.2671144   .1277177    -2.09   0.037    -.5177106   -.0165183
                                                                              
     highlow        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                             Robust
                                                                              

                                                       Root MSE      =  1.4725
                                                       R-squared     =  0.0364
                                                       Prob > F      =  0.0008
                                                       F( 15,  1107) =    2.59
Linear regression                                      Number of obs =    1123

. reg highlow  weekday1- weekday5  month1- month12, r

Quantitative Methods, K. Drakos23

            Prob > F =    0.0005
       F( 11,  1107) =    3.07

       Constraint 12 dropped
 (12)  month12 = 0
 (11)  month11 = 0
 (10)  month10 = 0
 ( 9)  month9 = 0
 ( 8)  month8 = 0
 ( 7)  month7 = 0
 ( 6)  month6 = 0
 ( 5)  month5 = 0
 ( 4)  month4 = 0
 ( 3)  month3 = 0
 ( 2)  month2 = 0
 ( 1)  month1 = 0

. test  month1 month2 month3 month4 month5 month6 month7 month8 month9 month10 month11 month12

            Prob > F =    0.2479
       F(  4,  1107) =    1.35

       Constraint 5 dropped
 ( 5)  weekday5 = 0
 ( 4)  weekday4 = 0
 ( 3)  weekday3 = 0
 ( 2)  weekday2 = 0
 ( 1)  weekday1 = 0

. test  weekday1 weekday2 weekday3 weekday4 weekday5



Classical linear regression model 

assumptions and diagnostics
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Violation of the Assumptions of the CLRM

� Recall that we assumed of the CLRM disturbance terms:

1. E(ut) = 0

2. Var(u ) = σ2 < ∞2. Var(ut) = σ2 < ∞

3. Cov (ui,uj) = 0

4. The X matrix is non-stochastic or fixed in repeated samples

5. ut ∼ N(0,σ2)
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Investigating Violations of the 

Assumptions of the CLRM 

• We will now study these assumptions further, and in particular look at:

- How we test for violations

- Causes 

- Consequences

in general we could encounter any combination of 3 problems:

- the coefficient estimates are wrong

- the associated standard errors are wrong

- the distribution that we assumed for the

test statistics will be inappropriate

- Solutions 

- the assumptions are no longer violated

- we work around the problem so that we

use alternative techniques which are still valid
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Statistical Distributions for Diagnostic Tests

� Often, an F- and a χ2- version of the test are available.

� The F-test version involves estimating a restricted and an unrestricted 
version of a test regression and comparing the RSS.

� The χ2- version is sometimes called an “LM” test, and only has one degree 
of freedom parameter: the number of restrictions being tested, m. 

� Asymptotically, the 2 tests are equivalent since the χ2 is a special case of the 
F-distribution:

� For small samples, the F-version is preferable.
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Assumption 1: E(u
t
) = 0 

• Assumption that the mean of the disturbances is zero.

• For all diagnostic tests, we cannot observe the disturbances and 

28

• For all diagnostic tests, we cannot observe the disturbances and 
so perform the tests of the residuals.

• The mean of the residuals will always be zero provided that 
there is a constant term in the regression.
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Assumption 2: Var(u
t
) = σ2 < ∞

• We have so far assumed that the variance of the errors is constant, σ2 - this

is known as homoscedasticity.

• If the errors do not have a

constant variance, we say

that they are heteroscedastic

       tû +

that they are heteroscedastic

e.g. say we estimate a regression

and calculate the residuals, .
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Detection of Heteroscedasticity: The GQ Test

� Graphical methods

� Formal tests: There are many of them: we will discuss Goldfeld-Quandt

test and White’s test

The Goldfeld-Quandt (GQ) test is carried out as follows.The Goldfeld-Quandt (GQ) test is carried out as follows.

1. Split the total sample of length T into two sub-samples of length T1 and T2.

The regression model is estimated on each sub-sample and the two

residual variances are calculated.

2. The null hypothesis is that the variances of the disturbances are equal,

H0:
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The GQ Test (Cont’d)

3. The test statistic, denoted GQ, is simply the ratio of the two residual
variances where the larger of the two variances must be placed in
the numerator.

 

2

2

1

s

s
GQ =

4. The test statistic is distributed as an F(T1-k, T2-k) under the null of
homoscedasticity.

5. A problem with the test is that the choice of where to split the
sample is that usually arbitrary and may crucially affect the
outcome of the test.
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Detection of Heteroscedasticity using White’s Test

� White’s general test for heteroscedasticity is one of the best

approaches because it makes few assumptions about the form of the

heteroscedasticity.

� The test is carried out as follows:

1. Assume that the regression we carried out is as follows1. Assume that the regression we carried out is as follows

yt = β1 + β2x2t + β3x3t + ut

And we want to test Var(ut) = σ2. We estimate the model, obtaining

the residuals,

2. Then run the auxiliary regression

32
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Performing White’s Test for Heteroscedasticity

3. Obtain R2 from the auxiliary regression and multiply it by the 

number of observations, T. It can be shown that 

T R2 ∼ χ2 (m)

where m is the number of regressors in the auxiliary regression 

excluding the constant term.excluding the constant term.

4. If the χ2 test statistic from step 3 is greater than the corresponding 

value from the statistical table then reject the null hypothesis that the 

disturbances are homoscedastic.
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Consequences of Using OLS in the Presence of 

Heteroscedasticity

� OLS estimation still gives unbiased coefficient estimates, but they are

no longer BLUE.

� This implies that if we still use OLS in the presence of

heteroscedasticity, our standard errors could be inappropriate and hence

any inferences we make could be misleading.any inferences we make could be misleading.

� Whether the standard errors calculated using the usual formulae are too

big or too small will depend upon the form of the heteroscedasticity.
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How Do we Deal with Heteroscedasticity?

� If the form (i.e. the cause) of the heteroscedasticity is known, then we can

use an estimation method which takes this into account (called generalised

least squares, GLS).

� A simple illustration of GLS is as follows: Suppose that the error variance is

related to another variable zt by

( ) 22var zu σ=
t

� To remove the heteroscedasticity, divide the regression equation by zt

where is an error term.

� Now for known zt.
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Other Approaches to Dealing 

with Heteroscedasticity

� So the disturbances from the new regression equation will be homoscedastic.

� Other solutions include:

1. Transforming the variables into logs or reducing by some other measure of

“size”.“size”.

2. Use White’s heteroscedasticity consistent standard error estimates.

The effect of using White’s correction is that in general the standard errors

for the slope coefficients are increased relative to the usual OLS standard

errors.

This makes us more “conservative” in hypothesis testing, so that we would

need more evidence against the null hypothesis before we would reject it.
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Background –

The Concept of a Lagged Value

t yt yt-1 ∆yt

1989M09 0.8 - -

1989M10 1.3 0.8 1.3-0.8=0.5

1989M11 -0.9 1.3 -0.9-1.3=-2.21989M11 -0.9 1.3 -0.9-1.3=-2.2

1989M12 0.2 -0.9 0.2--0.9=1.1

1990M01 -1.7 0.2 -1.7-0.2=-1.9

1990M02 2.3 -1.7 2.3--1.7=4.0

1990M03 0.1 2.3 0.1-2.3=-2.2

1990M04 0.0 0.1 0.0-0.1=-0.1

. . . .

. . . .

. . . .
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Autocorrelation

� We assumed of the CLRM’s errors that Cov (ui , uj) = 0 for i≠j, i.e.

This is essentially the same as saying there is no pattern in the errors.

� Obviously we never have the actual u’s, so we use their sample
counterpart, the residuals (the ’s).

� If there are patterns in the residuals from a model, we say that they are
autocorrelated.

� Some stereotypical patterns we may find in the residuals are given on
the next 3 slides.
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Positive Autocorrelation

              +

tû
+

tû

Positive Autocorrelation is indicated by a cyclical residual plot over time.
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Negative Autocorrelation

              +

tû
+

tû

Negative autocorrelation is indicated by an alternating pattern where the residuals

cross the time axis more frequently than if they were distributed randomly
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No pattern in residuals –

No autocorrelation

      +

tû
+

tû

No pattern in residuals at all: this is what we would like to see
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Detecting Autocorrelation:

The Durbin-Watson Test

The Durbin-Watson (DW) is a test for first order autocorrelation - i.e. it

assumes that the relationship is between an error and the previous one

ut = ρut-1 + vt (1)

where vt ∼ N(0, σv
2).

� The DW test statistic actually tests� The DW test statistic actually tests

H0 : ρ=0 and H1 : ρ≠0

� The test statistic is calculated by
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The Durbin-Watson Test: 

Critical Values

� We can also write

(2)

where is the estimated correlation coefficient. Since is a correlation,
it implies that .

� Rearranging for DW from (2) would give 0≤DW≤4.

DW ≈ −2 1( $ )ρ

$ρ
1ˆ1 ≤≤− p

$ρ

� Rearranging for DW from (2) would give 0≤DW≤4.

� If = 0, DW = 2. So roughly speaking, do not reject the null hypothesis
if DW is near 2 → i.e. there is little evidence of autocorrelation

� Unfortunately, DW has 2 critical values, an upper critical value (du) and
a lower critical value (dL), and there is also an intermediate region
where we can neither reject nor not reject H0.

43
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The Durbin-Watson Test: Interpreting the Results

Conditions which Must be Fulfilled for DW to be a Valid Test

1. Constant term in regression

2. Regressors are non-stochastic

3. No lags of dependent variable44 Quantitative Methods, K. Drakos



Another Test for Autocorrelation: 

The Breusch-Godfrey Test

� It is a more general test for rth order autocorrelation:

∼N(0, )

� The null and alternative hypotheses are:

H0 : ρ1 = 0 and ρ2 = 0 and ... and ρr = 0

H : ρ ≠ 0 or ρ ≠ 0 or ... or ρ ≠ 0

u u u u u v vt t t t r t r t t= + + + + +− − − −ρ ρ ρ ρ1 1 2 2 3 3 ... , 2

v
σ

H1 : ρ1 ≠ 0 or ρ2 ≠ 0 or ... or ρr ≠ 0

� The test is carried out as follows:

1. Estimate the linear regression using OLS and obtain the residuals, .

2. Regress on all of the regressors from stage 1 (the x’s) plus

Obtain R2 from this regression.

3. It can be shown that (T-r)R2 ∼ χ2(r)

� If the test statistic exceeds the critical value from the statistical tables, reject

the null hypothesis of no autocorrelation.
45
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Consequences of Ignoring Autocorrelation

if it is Present

� The coefficient estimates derived using OLS are still unbiased, but they

are inefficient, i.e. they are not BLUE, even in large sample sizes.

� Thus, if the standard error estimates are inappropriate, there exists the

possibility that we could make the wrong inferences.possibility that we could make the wrong inferences.

� R2 is likely to be inflated relative to its “correct” value for positively

correlated residuals.
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“Remedies” for Autocorrelation

� If the form of the autocorrelation is known, we could use a GLS
procedure – i.e. an approach that allows for autocorrelated residuals
e.g., Cochrane-Orcutt.

� But such procedures that “correct” for autocorrelation require
assumptions about the form of the autocorrelation.assumptions about the form of the autocorrelation.

� If these assumptions are invalid, the cure would be more dangerous
than the disease! - see Hendry and Mizon (1978).

� However, it is unlikely to be the case that the form of the
autocorrelation is known, and a more “modern” view is that residual
autocorrelation presents an opportunity to modify the regression.
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Dynamic Models

� All of the models we have considered so far have been static, e.g.

yt = β1 + β2x2t + ... + βkxkt + ut

� But we can easily extend this analysis to the case where the current

value of yt depends on previous values of y or one of the x’s, e.g.

y = β + β x + ... + β x + γ y + γ x + … + γ x + uyt = β1 + β2x2t + ... + βkxkt + γ1yt-1 + γ2x2t-1 + … + γkxkt-1+ ut

� We could extend the model even further by adding extra lags, e.g.

x2t-2 , yt-3 .
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Why Might we Want/Need To Include Lags 

in a Regression?

• Inertia of the dependent variable

• Over-reactions

• Measuring time series as overlapping moving averages

• However, other problems with the regression could cause the null hypothesis of
no autocorrelation to be rejected:no autocorrelation to be rejected:

– Omission of relevant variables, which are themselves
autocorrelated.

– If we have committed a “misspecification” error by using an
inappropriate functional form.

– Autocorrelation resulting from unparameterised seasonality.
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Models in First Difference Form

• Another way to sometimes deal with the problem of autocorrelation is 
to switch to a model in first differences. 

• Denote the first difference of yt, i.e. yt - yt-1 as ∆yt; similarly for the x-
variables, ∆x2t = x2t - x2t-1 etc.variables, ∆x2t = x2t - x2t-1 etc.

• The model would now be

∆yt = β1 + β2 ∆x2t + ... + βk∆xkt + ut

• Sometimes the change in y is purported to depend on previous values of 
y or xt as well as changes in x:

∆yt = β1 + β2 ∆x2t + β3x2t-1 +β4yt-1 + ut
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The Long Run Static Equilibrium Solution

� One interesting property of a dynamic model is its long run or static

equilibrium solution.

� “Equilibrium” implies that the variables have reached some steady state and

are no longer changing, i.e. if y and x are in equilibrium, we can say

yt = yt+1 = ... =y and xt = xt+1 = ... =xyt = yt+1 = ... =y and xt = xt+1 = ... =x

Consequently, ∆yt = yt - yt-1 = y - y = 0 etc.

� So the way to obtain a long run static solution is:

1. Remove all time subscripts from variables

2. Set error terms equal to their expected values, E(ut)=0

3. Remove first difference terms altogether

4. Gather terms in x together and gather terms in y together.

� These steps can be undertaken in any order
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The Long Run Static Equilibrium Solution:

An Example

If our model is 

∆yt = β1 + β2 ∆x2t + β3x2t-1 +β4yt-1 + ut

then the static solution would be given by

0 = β + β x +β y0 = β1 + β3x2t-1 +β4yt-1

β4yt-1 = - β1 - β3x2t-1
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Problems with Adding Lagged Regressors 

to “Cure” Autocorrelation

� Inclusion of lagged values of the dependent variable violates the

assumption that the RHS variables are non-stochastic.

� What does an equation with a large number of lags actually mean?

� Note that if there is still autocorrelation in the residuals of a model� Note that if there is still autocorrelation in the residuals of a model

including lags, then the OLS estimators will not even be consistent.
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Multicollinearity

� This problem occurs when the explanatory variables are very highly correlated
with each other.

� Perfect multicollinearity

Cannot estimate all the coefficients

- e.g. suppose x3 = 2x2

and the model is yt = β1 + β2x2t + β3x3t + β4x4t + ut

� Problems if Near Multicollinearity is Present but Ignored

- R2 will be high but the individual coefficients will have high standard errors.

- The regression becomes very sensitive to small changes in the specification.

- Thus confidence intervals for the parameters will be very wide, and
significance tests might therefore give inappropriate conclusions.
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Measuring Multicollinearity

� The easiest way to measure the extent of multicollinearity is simply to
look at the matrix of correlations between the individual variables. e.g.

Corr x2 x3 x4

x2 - 0.2 0.8

x 0.2 - 0.3

� But another problem: if 3 or more variables are linear

- e.g. x2t + x3t = x4t

� Note that high correlation between y and one of the x’s is not
muticollinearity.
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Solutions to the Problem of Multicollinearity

� “Traditional” approaches, such as ridge regression or principal
components. But these usually bring more problems than they solve.

� Some econometricians argue that if the model is otherwise OK, just
ignore itignore it

� The easiest ways to “cure” the problems are

- drop one of the collinear variables

- transform the highly correlated variables into a ratio

- go out and collect more data e.g.

- a longer run of data

- switch to a higher frequency
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Adopting the Wrong Functional Form

• We have previously assumed that the appropriate functional form is linear.

• This may not always be true.

• We can formally test this using Ramsey’s RESET test, which is a general test
for mis-specification of functional form.

• Essentially the method works by adding higher order terms of the fitted values• Essentially the method works by adding higher order terms of the fitted values
(e.g. etc.) into an auxiliary regression:

Regress on powers of the fitted values:

Obtain R2 from this regression. The test statistic is given by TR2 and is
distributed as a .

• So if the value of the test statistic is greater than a then reject the null
hypothesis that the functional form was correct.
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But what do we do if this is the case?

� The RESET test gives us no guide as to what a better specification

might be.

� One possible cause of rejection of the test is if the true model is

In this case the remedy is obvious. uxxxy ++++= 32 ββββIn this case the remedy is obvious.

� Another possibility is to transform the data into logarithms. This will

linearise many previously multiplicative models into additive ones:
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Testing the Normality Assumption

� Why did we need to assume normality for hypothesis testing?

Testing for Departures from Normality

� The Bera Jarque normality test

A normal distribution is not skewed and is defined to have a coefficient� A normal distribution is not skewed and is defined to have a coefficient

of kurtosis of 3.

� The kurtosis of the normal distribution is 3 so its excess kurtosis (b2-3)

is zero.

� Skewness and kurtosis are the (standardised) third and fourth moments

of a distribution.
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Normal versus Skewed Distributions

f(x) f(x)

A normal distribution                          A skewed distribution

60

x x

Quantitative Methods, K. Drakos



Leptokurtic versus Normal Distribution

0.4

0.5
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Testing for Normality

� Bera and Jarque formalise this by testing the residuals for normality by testing

whether the coefficient of skewness and the coefficient of excess kurtosis are

jointly zero.

� It can be proved that the coefficients of skewness and kurtosis can be

expressed respectively as:
E u

3
[ ] E u

4
[ ]

and

� The Bera Jarque test statistic is given by

� We estimate b1 and b2 using the residuals from the OLS regression, .
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What do we do if we find evidence of Non-Normality?

� It is not obvious what we should do!

� Could use a method which does not assume normality, but difficult and

what are its properties?

� Often the case that one or two very extreme residuals causes us to reject the

normality assumption.

� An alternative is to use dummy variables.

e.g. say we estimate a monthly model of asset returns from 1980-1990, and

we plot the residuals, and find a particularly large outlier for October 1987:
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What do we do if we find evidence 

of Non-Normality? (cont’d)

+

tû

• Create a new variable:

D87M10t = 1 during October 1987 and zero otherwise.

This effectively knocks out that observation. But we need a theoretical reason
for adding dummy variables.
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Omission of an Important Variable or 

Inclusion of an Irrelevant Variable

Omission of an Important Variable

� Consequence: The estimated coefficients on all the other variables will be

biased and inconsistent unless the excluded variable is uncorrelated with all

the included variables.

Even if this condition is satisfied, the estimate of the coefficient on the� Even if this condition is satisfied, the estimate of the coefficient on the

constant term will be biased.

� The standard errors will also be biased.

Inclusion of an Irrelevant Variable

� Coefficient estimates will still be consistent and unbiased, but the

estimators will be inefficient.
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Parameter Stability Tests

� So far, we have estimated regressions such as

� We have implicitly assumed that the parameters (β1, β2 and β3) are constant
for the entire sample period.

yt = β1 + β2x2t + β3x3t + ut 

� We can test this implicit assumption using parameter stability tests. The
idea is essentially to split the data into sub-periods and then to estimate up
to three models, for each of the sub-parts and for all the data and then to
“compare” the RSS of the models.

� There are two types of test we can look at:

- Chow test (analysis of variance test)

- Predictive failure tests
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The Chow Test

� The steps involved are:

1. Split the data into two sub-periods. Estimate the regression over the

whole period and then for the two sub-periods separately (3 regressions).

Obtain the RSS for each regression.

2. The restricted regression is now the regression for the whole period while2. The restricted regression is now the regression for the whole period while

the “unrestricted regression” comes in two parts: for each of the sub-

samples.

We can thus form an F-test which is the difference between the RSS’s.

The statistic is
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The Chow Test (cont’d)

where:

RSS = RSS for whole sample

RSS1 = RSS for sub-sample 1

RSS2 = RSS for sub-sample 2

T = number of observationsT = number of observations

2k = number of regressors in the “unrestricted” regression (since it comes 
in two parts)

k = number of regressors in (each part of the) “unrestricted” regression

3. Perform the test. If the value of the test statistic is greater than the 
critical value from the F-distribution, which is an F(k, T-2k), then reject the 
null hypothesis that the parameters are stable over time.
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A Chow Test Example

• Consider the following regression for the CAPM β (again) for the
returns on Glaxo.

• Say that we are interested in estimating Beta for monthly data from
1981-1992. The model for each sub-period is

• 1981M1 - 1987M10

0.24 + 1.2RMt T = 82 RSS1 = 0.03555

• 1987M11 - 1992M12

0.68 + 1.53RMt T = 62 RSS2 = 0.00336

• 1981M1 - 1992M12

0.39 + 1.37RMt T = 144 RSS = 0.0434
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A Chow Test  Example - Results

� The null hypothesis is 

� The unrestricted model is the model where this restriction is not imposed

H and0 1 2 1 2: α α β β= =

( )− + −00434 00355 000336 144 4. . .

= 7.698

Compare with 5% F(2,140) = 3.06

� We reject H0 at the 5% level and say that we reject the restriction that the 
coefficients are the same in the two periods.

70

( )
Test statistic=

− +
+

×
−00434 00355 000336

00355 000336

144 4

2

. . .

. .

Quantitative Methods, K. Drakos



The Predictive Failure Test

• Problem with the Chow test is that we need to have enough data to do the

regression on both sub-samples, i.e. T1>>k, T2>>k.

• An alternative formulation is the predictive failure test.

• What we do with the predictive failure test is estimate the regression over a “long”
sub-period (i.e. most of the data) and then we predict values for the other period and
compare the two.compare the two.

To calculate the test:

- Run the regression for the whole period (the restricted regression) and obtain the RSS

- Run the regression for the “large” sub-period and obtain the RSS (called RSS1). Note

we call the number of observations T1 (even though it may come second).

where T2 = number of observations we are attempting to “predict”. The test statistic

will follow an F(T2, T1-k).
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Backwards versus Forwards Predictive Failure Tests

� There are 2 types of predictive failure tests:

- Forward predictive failure tests, where we keep the last few

observations back for forecast testing, e.g. we have observations for

1970Q1-1994Q4. So estimate the model over 1970Q1-1993Q4 and

forecast 1994Q1-1994Q4.forecast 1994Q1-1994Q4.

- Backward predictive failure tests, where we attempt to “back-cast” the

first few observations, e.g. if we have data for 1970Q1-1994Q4, and we

estimate the model over 1971Q1-1994Q4 and backcast 1970Q1-

1970Q4.
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Predictive Failure Tests – An Example

• We have the following models estimated:

For the CAPM β on Glaxo.

• 1980M1-1991M12

0.39 + 1.37RMt T = 144 RSS = 0.0434

• 1980M1-1989M12

0.32 + 1.31RMt T1 = 120 RSS1 = 0.04200.32 + 1.31RMt T1 = 120 RSS1 = 0.0420

Can this regression adequately “forecast” the values for the last two years?

= 0.164

• Compare with F(24,118) = 1.66.

So we do not reject the null hypothesis that the model can adequately
predict the last few observations.
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How do we decide the sub-parts to use?

• As a rule of thumb, we could use all or some of the following:

- Plot the dependent variable over time and split the data accordingly to any

obvious structural changes in the series, e.g.
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- Split the data according to any known important

historical events (e.g. stock market crash, new government elected)

- Use all but the last few observations and do a predictive failure test on those.
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A Strategy for Building Econometric Models

Our Objective:

� To build a statistically adequate empirical model which

- satisfies the assumptions of the CLRM

- is parsimonious

- has the appropriate theoretical interpretation- has the appropriate theoretical interpretation

- has the right “shape” - i.e.

- all signs on coefficients are “correct”

- all sizes of coefficients are “correct”

- is capable of explaining the results of all competing models
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2 Approaches to Building Econometric Models

• There are 2 popular philosophies of building econometric models: the
“specific-to-general” and “general-to-specific” approaches.

• “Specific-to-general” was used almost universally until the mid 1980’s, and
involved starting with the simplest model and gradually adding to it.

• Little, if any, diagnostic testing was undertaken. But this meant that all
inferences were potentially invalid.

• An alternative and more modern approach to model building is the “LSE”
or Hendry “general-to-specific” methodology.

• The advantages of this approach are that it is statistically sensible and also
the theory on which the models are based usually has nothing to say about
the lag structure of a model.
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The General-to-Specific Approach

• First step is to form a “large” model with lots of variables on the right hand 
side

• This is known as a GUM (generalised unrestricted model)

• At this stage, we want to make sure that the model satisfies all of the 
assumptions of the CLRM

• If the assumptions are violated, we need to take appropriate actions to remedy • If the assumptions are violated, we need to take appropriate actions to remedy 
this, e.g.

- taking logs

- adding lags

- dummy variables

• We need to do this before testing hypotheses

• Once we have a model which satisfies the assumptions, it could be very big 
with lots of lags & independent variables
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The General-to-Specific Approach:

Reparameterising the Model

• The next stage is to reparameterise the model by

- knocking out very insignificant regressors

- some coefficients may be insignificantly different from each other,

so we can combine them.

• At each stage, we need to check the assumptions are still OK.

• Hopefully at this stage, we have a statistically adequate empirical model 
which we can use for

- testing underlying financial theories

- forecasting future values of the dependent variable

- formulating policies, etc.
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