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ΒΕΒΑΙΩΣΗ ΕΚΠΟΝΗΣΗΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ 

 

«Δηλώνω υπεύθυνα ότι η συγκεκριμένη πτυχιακή εργασία για τη λήψη του 

Μεταπτυχιακού Διπλώματος Ειδίκευσης στη Λογιστική και Χρηματοοικονομική έχει 

συγγραφεί από εμένα προσωπικά και δεν έχει υποβληθεί ούτε έχει εγκριθεί στο πλαίσιο 

κάποιου άλλου μεταπτυχιακού ή προπτυχιακού τίτλου σπουδών, στην Ελλάδα ή στο 

εξωτερικό. Η εργασία αυτή έχοντας εκπονηθεί από εμένα, αντιπροσωπεύει τις 

προσωπικές μου απόψεις επί του θέματος. Οι πηγές στις οποίες ανέτρεξα για την 

εκπόνηση της συγκεκριμένης διπλωματικής αναφέρονται στο σύνολό τους, δίνοντας 

πλήρεις αναφορές στους συγγραφείς, συμπεριλαμβανομένων και των πηγών που 

ενδεχομένως χρησιμοποιήθηκαν από το διαδίκτυο». 

 

 

 

ΤΖΑΤΖΙΜΑΚΗ A. ΑΛΕΞΑΝΔΡΑ 

  



[6] 
  

  



[7] 
  

CONTENTS 

 

 

1. ABSTRACT ........................................................................................................... 9 

2. INTRODUCTION ................................................................................................ 11 

3. LITERATURE REVIEW ..................................................................................... 17 

4. METHODOLOGY ............................................................................................... 27 

4.1 Notation ......................................................................................................... 27 

4.2 Stochastic processes ...................................................................................... 28 

4.3 Polynomial Families ...................................................................................... 31 

4.4 Risk neutral valuation.................................................................................... 33 

4.5 Random numbers........................................................................................... 33 

4.6 Variance reduction techniques ...................................................................... 34 

4.7 The Least Squares Monte Carlo Algorithm of Longstaff & Schwartz ......... 36 

4.8 MatLab Implementation of LSM Algorithm ................................................. 38 

5. RESULTS ............................................................................................................. 47 

6. CONCLUSION .................................................................................................... 55 

7. WEAKNESSES .................................................................................................... 57 

8. FUTURE EXTENSIONS ..................................................................................... 59 

APPENDIX .................................................................................................................. 61 

REFERENCES ............................................................................................................ 67 

 

  



[8] 
  

  



[9] 
  

1. ABSTRACT 
 

The aim of this dissertation is the modeling of the algorithm that Longstaff & Schwartz 

proposed in 2001 as an alternative method for pricing American-style options. The 

algorithm, known as the Least-Squares Monte Carlo method, is named after the 

innovative techniques its instigators combined as the tool of their valuation. The key of 

their innovation is the usage of a simple Least-Squares regression in order to 

approximate the continuation value, while the path/s of the stochastic variable/s is/are 

simulated under the desired stochastic process using the Monte Carlo simulation 

method. The application of the method here expands in two different models; one 

containing one stochastic variable, the underlying asset’s price, and a second one 

containing two stochastic variables, the underlying asset’s price and the interest rate. 

Due to the nature of the algorithm, it is easy applicable under various conditions and, 

furthermore, under various types of options. In cases that traditional methods cannot 

produce a valid, regarding computational time and accuracy, result or even cannot 

produce a result at all , such as path-dependent options with multiple stochastic 

factors, the algorithm of Longstaff & Schwartz (2001) makes the pricing possible. 

Reaching a conclusion, it was quite impressive to end up having exactly the same price 

for different type and number of basis functions, proving that the algorithm is pretty 

robust yielding fully consistent results in all possible cases. In addition, in general 

context and in most cases, when the underlying asset’s price follows a Geometric 

Brownian Motion, the option found out worthing more than that under any other 

stochastic process. MatLab was the tool used in this application of the LSM algorithm 

in a programming environment. 
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2. INTRODUCTION 
 

Options are the main products of financial engineering. Traded either on exchanges or 

in over-the-counter markets, they are divided into two types: calls and puts. The former 

give their owner the right to buy a prespecified quantity of the underlying asset at a 

prespecified price at the expiration date of the option or over some prespecified time 

period, while the latter give their owner the right to sell a prespecified quantity of the 

underlying asset at a prespecified price at the expiration date of the option or over some 

prespecified time period.  

 

Options, nowadays, are the key instrument for hedging and speculation. Concerning 

their hedging potential, the market players, individuals or institutionals, use them as an 

insurance policy or/and as a limitation of their losses, meaning that the payoff from the 

derivative can counterpoise the loss of an investment from an adverse movement of the 

market. Concerning their speculation potential, they can be used as a kind of betting in 

order to make profit “out of nowhere”, requiring forecasting the direction towards 

which the market will move, the magnitude and the timing of anticipated changes. Their 

main advantage is as much the fact that the profit can derive even from a down-

movement of the market as that the owner can avoid the great loss from a down-

movement of the market by not exercising it, as long as he/she has only the right, not 

the obligation, to exercise it. 

 

There are, generally, two kinds of options: European and American. European are the 

options that are to be executed only at their expiration date. On the other hand, 

American options are executable at different and multiple times, prespecified or not, 

during their lifetime. Compared to their European counterparts, they are much more 

popular, as they are traded in a wide range of markets, such us equity, commodity, 

foreign exchange and credit, and much more flexible. Indicatively, such financial 

products are call and put options on dividend-paying stocks, put options on 

nondividend-paying stocks, foreign exchange options, commodity options, commodity 

future options and index options. 

 

American options, as the markets develop and evolve, are becoming more complex and 

sophisticated, making their valuation more and more difficult, insomuch no analytic 
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formula, like that of Black & Scholes (1973)1 for the European ones, exists. Their 

valuation is much more complicated than that of the European options, because the 

potential of early exercise has to be measured as well. That’s the need that a lot of 

papers, authors and students, theoreticians and practitioners, have been called to satisfy 

by producing models of pricing that kind of options either via numerical or analytical 

approximations2.  

 

The existing numerical procedures for pricing American options are the following: 

 

 Binomial Tree by Cox, Ross & Rubinstein (1979)3 

This is the ideal and most efficient way of pricing American-style options.  

The general scheme, which basically describes the different paths that the stock 

price might follow during the life of the option, under which Cox, Ross and 

Rubinstein worked is as follows: the time until the expiration date of the option 

is divided into a large numbers of time intervals (the smallest the time interval 

the more accurate the price calculation.)4. At each time interval, there is a 

possibility of an up movement for the stock price by a certain percentage amount 

at the next time interval and that of a down movement, by a certain percentage 

amount as well. The value of the option at each node depends on the type of the 

option, with the payoff of a call to be max(St-K,0) and that of a put max (K-

St,0)5. The price is then derived through backward induction, working from the 

end to the beginning. At each node, the value of the option is the maximum 

value between the continuation value, meaning the value that the option would 

have if exercised immediately, and the discounted expected value that it would 

have if it was held another timer period.  

                                                           
1 See Black F. & M. Scholes, 1973, “The Pricing of Options and Corporate Liabilities”, The Journal of 

Political Economy, Volume 81, Issue 3, 637-654 

2 See Literature Review in page 17. 

3 See Cox J. C., S. Ross, M. Rubinstein, 1979, “Option Pricing: A Simplified Approach”, Journal of 

Financial Economics, 7, 229-263 

4 For European calls and puts, the result of the binomial tree method converges with that of the Black 

& Scholes valuation for very small time intervals. 

5 Where K: strike price and St: the price of the underlying asset at time t 
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Another type of tree regards the trinomial tree. The only difference, compared 

to the binomial tree, is the fact that at each node, the stock price can either go 

up, stay stable or go down. The rest methodology is as described before. 

 

 Finite Differences Methods by Brennan & Schwartz (1977)6 

That’s a method that works by solving the differential equation the option 

satisfies. By converting the equation into a set of difference equations and by 

solving them iteratively, the price of the option then arises. The computation is 

conducted backwards, just like the tree approach. There are two kinds of finite 

differences methods: the explicit finite difference method, which is functionally 

the same as using the trinomial tree that was described above, and the implicit 

finite difference method, which, leaving aside the fact that is much more 

complicated, has the advantage that convergence comes off without taking any 

special precautions. The explicit finite difference method solves the partial 

differential equation describing option value evolution.  

This method is suggested for pricing American-style options, like the binomial 

tree method, but has the disadvantage of a very large increase in the 

computational time when applied for more than one state variables. 

 

Neither the binomial tree method nor the finite differences method are 

applicable for cases of options with path-dependent payoff. 

 

 Monte Carlo Simulation 

That’s the method that solves the problem of pricing path-dependent titles. The 

methodology underlying this method is the following: 

1.  Sample a random path (such as Arithmetic Brownian Motion, 

Geometric Brownian Motion or Ornstein Uhlenberg) for the underlying 

asset price S using risk-neutral probabilities.  

2. Calculate the payoff from the derivative. 

3. Repeat step 1 and 2 to get many sample values of the payoff from the 

derivative. 

                                                           
6 See Brennan M. J. & E. S. Schwartz, May 1977, “The Valuation of American Put Options”, The 

Journal of Finance, Volume 32, Issue 2, p. 449-462.  
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4. Calculate the mean of the sample payoffs.  

5. Discount this expected payoff at the risk-free rate to get an estimate of 

the value of the derivative. 

 

As implied, the application of Monte Carlo simulation only narrows down to 

the production of random numbers ~ N (0,1)7, the quantity of which depends on 

the accuracy of the result one needs and the computational power that is 

available, and then just considers the price of the option as the expected present 

value of its future payoff. One of the pros of this procedure is that it’s the only 

one, of those described, that can handle many stochastic variables, while one of 

the cons is that is very time-consuming and cannot easily handle cases with 

early exercise opportunities. It works forwards, from the beginning till the end 

of the life of the option and is the most flexible of all the methods described. 

 

Concerning all the above characteristics of each method, it is logical to conclude that 

the final choice of the method used to price an American-style option depends on the 

special characteristics that the specific call or put has and the accuracy required. That 

is, it depends on the path the underlying asset follows, whether it incorporates all the 

history of the asset or not, on the number of underlying variables, on the number of the 

variables that are not deterministic, but stochastic. Such factors are the stock price, the 

interest rates, the volatility and the dividend yield. 

In practice, a call or a put may feature one or more contradicting characteristics. For 

example, which is the most suitable method for valuating an American-style put, the 

payoff of which depends on the value of it in the previous time step, in a market with 

stochastic interest rates? American-style options are best priced via trees and finite 

differences methods, while path-dependent options via Monte Carlo Simulation. 

The solution to the problem described above is the Least-Squares Monte Carlo 

Simulation. The algorithm was introduced in 2001 by Longstaff & Schwartz and is used 

to price American-style options via Monte Carlo Simulation. More specific, a least-

squares analysis is used to determine the best-fit relationship between the value of 

continuing and the values of relevant variables at each time the holder of the option has 

                                                           
7 Supported by the Law of Large Numbers. 
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to decide whether to execute his/her right to buy/sell or not. Because of it dimensional 

flexibility it can be widely applied to a large number of complex and general options. 

 

This dissertation is an effort to apply the method that Longstaff & Schwartz proposed 

in 2001 for valuing American-style options using MatLab programming. Two 

algorithms, containing one stochastic factor and two stochastic factors respectively, will 

be developed in MatLab, modeling this very popular issue. 

  

Starting with a historical flashback, the evolution, from general Monte Carlo 

approaches to the most modern theories based on the model of Longstaff & Schwartz, 

will be shown. 
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3. LITERATURE REVIEW 

 

In 1987 G. Barone-Adesi & R. Whaley were dealing with the valuation of exchange-

traded American-style derivatives, calls and puts, written on commodities and 

commodity future contracts. So far, little research had been done on pricing options 

with early exercise features embedded in their price. Notwithstanding that methods 

such as binomial trees, finite differences and compound-option approximations were 

yielding accurate results, the fact that they were very time consuming and expensive to 

use, led to the need for an alternative. 

Using the same assumptions as the ones of Black, Scholes and Merton (1973) and 

taking in consideration the cost of carry8, they developed the “quadratic” 

approximation, which is applicable and useful in pricing futures options and stock 

options as well as options on foreign currencies, on stock indexes with continuous 

dividend yields, on precious metals and on long-term debt instruments with continuous 

coupon yields. After examining previous models, numerical, analytical or heuristic, 

they conclude that their algorithm avoids all the problems charged on its ancestors. For 

example, the approximation method of Geske and Johnson (1984) requires the 

evaluation of cumulative bivariate, trivariate and even higher order multivariate normal 

density functions, which needs quite an equipment to be applied and sometimes is, 

inevitably, infeasible. In addition, Johnson’s (1983) technique is not applicable in 

general commodity pricing approximations. 

The next part of their work is the comparison of their technique to the ones mentioned 

earlier separately for each kind of instrument being valued. The results are being 

consisted with the results of accurate methods, such as finite differences.  

The main conclusion of their project refers to the categorization of the best method for 

option pricing depending on the time till expiration. For commodity options with less 

than one year to expiration, quadratic approximation best fits, while times to expiration 

beyond one year, concerning pricing accuracy, binomial trees or finite differences 

should be used. 

                                                           
8 Cost of insurance, storage, deterioration. 
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J. Tilley in 1993 was the first researcher to publish a solution to the problem of valuing 

an American-style option taking advantage of Monte Carlo simulation. As the first 

broadly accepted serious attempt to price American options via simulation, he 

demonstrates the use of his algorithm by using an American option on an underlying 

instrument or asset for which the arbitrage-free probability distribution of paths through 

time can be simulated. 

 Having in mind, firstly, that people or organizations in the field, like institutions, 

financial intermediaries, brokers or dealers, need a single tool for valuation and 

breakdown and, secondly, the fact that technological evolution of his time had made 

powerful computers, servers and processors available for retail use, he demonstrated 

the use of an algorithm based on simulation. 

The procedure followed requires the simulation of a finite number of paths and the 

computation of the option price from that sample. There is an “exercise-or-hold” 

indicator variable that takes the value “0” if the owner keeps the option for another time 

period and the value “1” if the owner exercises it at period t. The first step of the 

calculation is to compute the present value of the asset’s cash flow along each path and 

then average across all of them. The cash flows on nodes where the option was not 

exercised are 0, while at all the other nodes its equal to its intrinsic value. 

The whole discussion regards the estimation of the indicator mentioned above. Its 

computation mimics the backward induction of the familiar and widely used, now and 

then, binomial tree method. At each time step, a decision has to be made: whether to 

exercise or hold the option. The comparison that drives this decision chooses the 

maximum between the “holding value”, which is just the intrinsic value, and the 

“exercise value” which is the present value of the expected one period ahead value of 

the option. 

The source of the bias arising from the method of Tilley is the fact that the finite number 

of samples that he has taken into consideration cannot reach “perfect optimization”, 

providing no proof of convergence. In addition, the paper does not deal with all the 

difficulties, at the optimal exercise-or-not decision, that would arise in a 

multidimensional problem, but just indicates that a minor transformation of the 

algorithm could give a solution to them. 
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Another group of scientists that realized the need for a method to price securities with 

early exercise opportunities is that of M. Broadie & P. Glasserman (1997). They 

designed a valuation algorithm, which can be applied to models with more than one 

state variables with, sometimes, path-dependencies. In realistic world, besides, models 

require at least three state variables. 

Their algorithm reaches a specific price for the security being valued via the mean of 

an upper and a lower bound. It creates, in other words, a confidence interval for the 

option price under question, by combining the two biased estimators of the highest and 

the lowest value of the option. Both biased estimators are asymptotically unbiased as 

the size of the sample increases.  

The application of the algorithm in a call option on a single asset with one state variable 

has shown that because of the bias of the estimators the intervals end up being 

conservative. The true value of the option was contained in the interval more times than 

the interval suggested. 

On the other hand, tests on higher dimension problems brought conclusions regarding 

another field. They clearly demonstrate the need for variance reduction techniques, 

although the method is very promising for pricing American-style securities with 

multiple state variables. 

The main problem of their technique is the limitation regarding the exercise 

opportunities. As the algorithm was designed, it is able to provide results only for a 

finite number of exercise dates, while continuous exercise is a feature available in a 

pretty large number of options. Even worse, the computational cost increases 

exponentially as the number of exercise opportunities increases. 

The case they basically proved with their work is that there can’t be an unbiased 

estimator for the value of the right to early exercise or not, but a lot of extensions are to 

be done. 

2001 was the year that Longstaff and Schwartz introduced their algorithm to the public, 

giving a solution to the problem, easy to apply and with real results. Supporting 

simulation as the ideal method for dealing with problems of that kind, they cite its 

advantages early in their paper. Simulation is applicable for problems of higher 
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dimensions, with multiple factors, path-dependent and/or American-style options with 

state variables that follow general stochastic processes and allow parallel computing. 

Their algorithm is based on the least-squares regression framework using cross-

sectional information and operates as follows:  

The path the stock price follows is presented just like that of a binomial tree and is used 

to construct the tree for the payoff of the option. At each node, a decision has to be 

made: whether to execute the option or not. At this point the innovative technique of 

the authors takes place. The continuation value should be compared with the payoff of 

the option at the specific moment. The conditional expectation function is approached 

by regressing the ex post realized payoffs from continuation on functions of the values 

of the state variables only for the in-the-money- paths of the price of the underlying 

asset. Given the payoff, the continuation value is computed via the conditional 

expectation function and the last step is just to compare these two and eventually 

estimate the optimal stopping rule. The procedure is repeated recursively from the end 

to the beginning of the tree, going practically back in time, and finally the price is 

obtained by discounting the obtained cash flows to time zero. 

Longstaff & Schwartz use a lot of examples to illustrate their approach. Firstly, they 

calculate the price of a simple American put option, just in order to prove that the 

algorithm is easily implemented and only needs a simple regression. Their second 

example refers to an exotic-American-Bermudan option and they show that the results 

they obtain are very similar to those of the finite differences method, with differences 

typically less than two or three cents per 100$ notional value, both positive and 

negative. Thirdly, they price a cancelable index amortizing swap and their conclusion 

fully coincides with the previous one. Then they use an American option on an asset 

that follows a jump-diffusion process and, lastly, a deferred American swaption in a 

20-factor string model where each point on the interest rate curve is a separate factor. 

The numerical and implementation issues they discuss at the end of their paper were 

the food for thought for the generations that followed. Their algorithm could be 

extended for higher dimensional problems or for various least squares methods of 

regression depending on the special features of the instrument being valued. In addition, 

the choice of the basis function for the state variables is very important and is open to 
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a lot of experimentations. They, lastly, propose that the computational speed is a sector 

that could be further examined, mostly by combining different CPUs for extra speed.  

Alongside with Longstaff & Schwartz, in July of 2001, J. Tsitsiklis and B. Van Roy 

published another paper dealing with pricing complex American-style options.  

The “curse of dimensionality” is being touched on in this paper, that is the fact that the 

size of the state space grows exponentially in the number of variables involved. 

Multiple sources of uncertainty contradict with the parsimonious schemes that are 

needed in order to solve a problem such as the pricing of an American-style derivative. 

As a result, the computational requirements of such a problem may become prohibitive.     

Concerning about real world financial contracts, they work on finite horizon problems. 

Value functions are estimated for each time period and states are mapped based on those 

functions giving the future payoffs. These payoffs are then compared with the payoffs 

of instant exercising. The maximum of those two is being chosen and via the popular 

method of backward induction, the value of the option is being computed. 

More specific, the function of approximation is produced based on hand-crafted 

features and, most of the times, on whatever human experience or intelligence is 

available. The features are linearly, which is used in the paper discussed, or not 

combined. Basis functions are generalized over both state space and time. Such method 

can have a large approximation error, but that’s a problem that could be solved by 

simulating the state process by using the underlying risk-neutral probability 

distribution, where the approximation error remains within some specific boundaries. 

They conclude that their paper provides the theoretical support for the effectiveness of 

this particular support of state sampling. 

The year that followed, E. Clement, D. Lamberton and P. Protter worked on the two 

aforementioned papers that were introduced in 2001. Their approach distinguishes two 

types of approximation based on the method of Least Squares Monte Carlo simulation. 

Firstly, they project on a finite set of basis functions and replace analogously the 

conditional expectations in the dynamic programming and, secondly, the compute the 

value function of the first approximation using Monte Carlo simulation and least 

squares regression. What they do, basically, is choose the basis function and run the 

Monte Carlo procedure.  
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Through an extremely large number of mathematical proofs, they prove that as the 

number of functions goes to infinity, the value function of approximation converges 

with the value function of the initial stopping problem. On the other hand, for a finite 

set of basis functions, the value function of the first approximation converges to the 

value function of the second approximation. Their work is completed by a type of 

central limit theorem they develop for the rate of convergence of the Monte Carlo 

procedure, that is the second approximation, proving that the error is asymptotically 

normalized.  

In order to connect their method with those of Longstaff & Schwartz and Tsitsiklis & 

Van Roy, they argue that their base was, of course, the algorithm of the first two authors, 

but it is applicable to that of the other two authors in order to analyze the rate of 

convergence of their algorithm.  

In the same year, 2002, L. C. G. Rogers, from university of Cambridge, examined 

another side of the optimal exercise strategy in pricing American-style options based 

on a dual characterization of the problem.  The papers introduced so far compute an 

approximate value for the price of the option, that converges as the number of estimated 

paths increases and which operates as the lower bound for the actual value of it. This 

paper, on the other hand, without trying to estimate an optimal exercise strategy, comes 

up with an estimation for the upper bound of the price of the option and thus provides 

a method that is very useful and profitable as a hedging instrument.  

The two methods, the one that produces the lower bound and the one that produces the 

upper bound, are to be used by different parties of the option transaction. The writer 

needs to know the upper bound of the price, while the buyer the lower bound of the it.  

The upper bound is then used for the optimal choice of the Langrangian martingale. 

The price that is obtained by the method is expressed as the infimum of a family of 

expectations, the infimum being taken over the class of Langrangian martingales.  

The authors take advantage of four examples, an American put on a single asset, 

American min puts on n assets, Bermudan max calls on n assets and an American-

Bermudan-Asian option, in order to take this one step further. The results of the 

examples are in fact in 1-2% divergence from the other numerical methods. Errors of 

this order are to be expected, regarding the estimates of volatilities or the assumption 

of constant interest rates, and are the main sector for improvement for the method. 
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Another sector to be improved is the large MAD figures that result from this hedging 

policy, making it a bit of misnomer. 

Concerning a different field of studying the Monte Carlo approaches in American-style 

options valuation, M. Moreno & J. Navias (2003) examine the robustness of the Least 

Squares Monte Carlo algorithm of Longstaff & Schwartz relatively to the type and 

number of basis functions chosen.  

The authors apply the LSM algorithm to price and compare the results obtained for an 

American put option, a Bermuda call option on the maximum of five assets and an 

American-Bermudan-Asian option, just like Longstaff and Schwartz did in 2001. They, 

also, compute in- and out-of-sample option prices as well as the standard errors for 

different number and types of the basis functions.  

Among the basis functions they, in the first place, refer to are Power, Legendre, 

Laguerre, Hermite A & B, Chebyshev 1st kind A, B & C and 2nd kind A & B 

Polynomials. Linear regression is the projection of the dependent variable on the 

function produced by the independent ones. Thus, overlapping functions are excluded. 

In addition, they prove that the coefficients of each of the polynomial family chosen 

form a non-singular matrix with respect to the power function. Consequently, the result 

obtained from any of the basis functions should be identical to the others, since they 

produce the same span. 

Practically, for a fixed number of terms, the results they obtain have small differences 

due to numerical errors mostly in the least-squares routine, not the LSM method. In 

general, the LSM algorithm slightly underprices the option. For reasonable degree of 

the polynomial the outcomes of the algorithm are quite robust, increasing though the 

degree more than 20, can cause problems to the regression. Regarding the type of the 

basis function it’s clear for an American put option but the choice becomes more 

complex as the option becomes more complex and the authors find that the final result 

for a complex option may have small differences among different basis functions 

chosen. 

The importance of the LSM method that Longstaff & Schwartz proposed in 2001 is 

established once again by the research of L. Stentoft in 2004. He makes a thorough 

examination of the study and suggests a numerically simpler specification for the cross-

sectional regression than the one used in the paper of Longstaff & Schwartz. In addition, 
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he emphasizes in the trade-off between computational time and precision and gives 

details on how to handle multiple stochastic factors, by introducing simulation as the 

solution to the ‘curse of dimensionality’. 

The purpose of this paper is mainly to give answer to three questions arising from the 

paper of 2001: examine the results of using different numbers of regressors and paths, 

try alternative specifications for the cross-sectional analysis and put attention in the 

trade-off between computational time and precision.  

Regarding the first goal, he finds that the conditional expectation function can be well 

approximated as the number of regressors and paths tend to infinity. More specific, he 

finds that, for out-of-the-money options, the effect of increasing the number of 

regressors is much more important than that of the paths. Though, the convergence is 

not guaranteed when the number of regressors is increased irrespectively of the number 

of paths used.  

Subsequently, he criticizes the choice of the Laguerre polynomial family, that Longstaff 

& Schwartz chose, taking position in favor of the general Chebyshev family and the 

shifted Legendre family. 

He, also, emphasizes on the computational time, which is a real-world problem and as 

that it should be dealed with. He uses the RSME as a measure for precision and states 

that when choosing the specification of the cross-sectional analysis, one should balance 

the precision obtained with the time it took to be calculated, in order to specify not only 

the most accurate way of solving the problem, but also the most efficient. 

The author closes his examination by analyzing how the algorithm treats multiple 

stochastic factors and concludes that it should be preferred to the Binomial Model for 

high dimensional problems. He demonstrates his analysis through an example 

generalizing it to as many stochastic factors as one wants.  

One of the most modern papers, the one of N. Areal, A. Rodigues & M. Armada in 

2008, proposes improvements in the Least Squares Monte Carlo approach. They state 

that simulation is the most flexible of all the pricing American-style options methods, 

because it is adaptable to different stochastic processes, multiple underlying assets, path 

dependence, exotic options, when discrete dividends are considered or with multi-state 

variable options. One of the main drawbacks of the method is the advanced 
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computational requirement it takes, the low speed and the difficulty in dealing with 

free-boundary problems, all problems, of course, that are manageable with the high-

tech computers that were, by then, and are, now, being developed.  

In their paper, different regression algorithms are being tested, such as varying 

polynomial families as the basis function, in order to suggest a way for the reduction of 

the execution time of the algorithm to work. A couple of variance reduction techniques 

are being used and an extended algorithm regarding compound and mutually exclusive 

option is being proposed9.  

Two of the regression methods that are mentioned in the paper is the LFIT and the SVD. 

Regarding the first one, an alternative form of it is being suggested here, 

designated as the Continuation value by Conditional Estimation. The comparison that 

has to be done at each step contains the continuation value given by the least-squares 

regression and the present value of continuation estimated using the previous time step 

regression coefficients. All the results derived from that method are being evaluated by 

a benchmark, which is usually the price given by the binomial model. The SVD, on the 

other hand, is a singular value decomposition algorithm. 

The algorithm then is open to some improvements, the variance reduction being the 

most useful. Various techniques exist, such as, antithetic variable, control variate, 

quasi-random numbers and the method of moments. The authors describe the control 

variate technique and the method of moments. In this way, the algorithm allows a faster 

regression with no significant loss of accuracy. 

The tests they conduct refer to vanilla options and portfolios of options, and show that 

when time is of importance the simple Powers polynomial family should be chosen. 

When accuracy is of importance, the basis function should be chosen based on the 

specific characteristics of the option valued and the number of paths should be 

increased. 

The final paper that is of relevance to comment here is that of M. Cerrato in 2009. 

Accepting the fact that simulation is a pretty active research area in recent years, he, in 

                                                           
9 The original algorithm was first proposed in Andrea Gamba, December 2003, “Real Options: A 

Monte Carlo Approach” and a more extensive analysis regarding this one ore the one presented in the 

paper of N. Areal, A. Rodigues & M. Armada is out of the scope of this dissertation. 
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turn, proves that least squares estimators underestimates the price of the option and 

explores varying variance reduction techniques. He also introduces extensions to two 

older algorithms; that of pricing American options of Longstaff & Schwartz now covers 

the case of stochastic volatility, while that of Glasserman and Yu10 embodies innovative 

techniques in pricing Asian and basket options. 

The implementation of variance reduction techniques in the paper is extensive and 

proves that one can reduce the probability of choosing sub-optimal exercise decisions 

and, therefore, reduce the option price bias. Their method consists of a martingale 

approach and provides just a guidance to the traders, not the optimal methodology to 

be used, as long as it generates standard errors and root mean squared errors that are of 

the same order of magnitude. 

The novel approach they introduce for pricing American-style options is quite precise 

and efficient compared to existing methods, while, regarding general applications, he 

concludes that a desirable level of accuracy could be obtained using three basis 

functions, 100,000 replications and the control variate technique. 

  

                                                           
10 See Glasserman P. & B. Yu, 2004b, “Simulation for American Options: Regression Now or 

Regression Later? » 
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4. METHODOLOGY 

 

4.1  Notation 
 

t: time period 

T: horizon of the option 

K: strike price 

S0: the initial price of the underlying asset 

St: the price of the underlying asset at time t 

rf: the risk-free interest rate 

r0: the initial price of the interest rate 

rt: the interest rate at time t 

sigma1: the volatility of the underlying asset 

sigma2: the volatility of the interest rate 

d: the dividend yield of the underlying asset 

m: the max-exponent of the basis function 

n: the number of periods  

M: number of paths11 

a1: speed of reversion of the underlying asset’s price 

b1: mean reversion coefficient of the underlying asset’s price 

a2: speed of reversion of the interest rate 

b2: mean reversion coefficient of the interest rate 

c: the value of the call 

                                                           
 
11 Concerning the trade-off between accuracy and execution time, M should be chosen carefully. The 

faster one gets the results, the faster he/she trades, competes and achieves goals, thus a part of accuracy 

could be sacrificed for the state of speed. 
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p: the value of the put 

aBm: Arithmetic Brownian Motion 

gBm: Geometric Brownian Motion 

ou: Ornstein Uhlenberg 

sp: Simple Powers 

le: Legendre polynomial family 

la: Laguerre polynomial family 

he: Hermite polynomial family 

 

4.2  Stochastic processes 
 

Stochastic process is the process that any variable with a value changing over time 

follows. Generally in financial engineering and more specific in option pricing, 

stochastic processes are the key to simulate the path that the underlying asset follows.  

They are classified, firstly, into continuous time and discrete time and, secondly, into 

continuous variable and discrete variable. A continuous time stochastic process is one 

where the value of the variable can change at any time throughout the time interval, 

while at a discrete time stochastic process the value of the variable can change only at 

specific and certain points of time. On the other hand, a continuous variable stochastic 

process is one where the variable can take any value within a certain range, while at a 

discrete variable stochastic process the variable only takes specific and predetermined 

values. 

In practice, continuous time and continuous variable stochastic processes are not 

observable. Trading is available only when exchanges are open and the stock prices are 

restricted to fixed values. That’s why, in literature, the processes are considered 

continuous time and discrete variable, but, in practice, it is sometimes convenient to 

consider the discrete time version too along with the discrete variable. 

To be more specific and precise, regarding the topic of this thesis, when one has to deal 

with an optimal stopping problem, an allowance should and is done. The option is 
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treated as a Bermudan one. That is, it is supposed to be executable at specific moments 

during its lifetime. The effect of this modification is that the value of the option is often 

diminished. Though, the difference between theoretical and practical value is small and 

vanishes as the number of allowable exercise times tends to infinity  

i. (Arithmetic) Brownian Motion 

 

A standard one-dimensional Brownian motion on [0,T] is a stochastic process 

{Wt, 0≤t≤T} that is a particular type of Markov stochastic process and has the 

following properties: 

- W0=0 

- the mapping tT is, with probability 1, a continuous function on [0,T] 

- the increments {W0-W1, W1-W2, …, WT-1-WT} are independent 

- Wt ~ N (0,1) 

 

For constants μ, σ>0, a process Xt is called a Brownian Motion with drift μ and 

diffusion coefficient σ2 (Xt ~ BM(μ, σ2)) if 

𝑋𝑡 − 𝜇𝑡

𝜎
 

is a standard Brownian Motion. 

  

Thus, X may be constructed from a standard Brownian Motion W by setting:  

𝑋𝑡 = 𝜇𝑡 + 𝜎𝑊𝑡 

So, Xt ~ N (μt, σ2t). 

 

In addition, X solves the stochastic differential equation: 

𝑑𝑋𝑡 = 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡 

 

For deterministic but time-varying μt and σt the following Brownian Motion is 

defined through the SDE: 

𝑑𝑋𝑡 = 𝜇𝑡𝑑𝑡 +  𝜎𝑡𝑑𝑊𝑡 
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Now, for a standard Brownian Motion set t0=0 and W0=0 and let Z1, …, Zn be 

independent, standard normal random variables. Subsequent values are 

generated as follows: 

𝑊𝑡𝑖+1
=  𝑊𝑡𝑖

+ √𝑡𝑖+1 − 𝑡𝑖𝑍𝑖+1 

 

For X ~ BM (μ, σ2) with constant μ, σ and given X0 set: 

𝑋𝑡𝑖+1
=  𝑋𝑡𝑖

+ 𝜇(𝑡𝑖+1 − 𝑡𝑖) + 𝜎√𝑡𝑖+1 − 𝑡𝑖𝑍𝑖+1 

(1) 

 

 

ii. Geometric Brownian Motion 

 

 

A stochastic process Xt is a Geometric Brownian Motion if logXt is a Brownian 

Motion with initial value logX0. Thus, all methods for simulating Brownian 

motion are applied to Geometric Brownian Motion via exponentiation. It’s the 

most fundamental model for the value of a financial asset because of its 

centrality. One of its basic features is that it cannot take negative values due to 

the exponential function that is always positive. That’s very important when 

simulating stock prices or any other limited liability asset that are by definition 

positive. 

 

Suppose W is a standard Brownian Motion and X satisfies:  

𝑑𝑋𝑡 = 𝜇𝑡𝑑𝑡 +  𝜎𝑡𝑑𝑊𝑡, 

so that X ~ BM (μ, σ2).  

 

If S ~ GBM(μ, σ2) and if S has initial value S0, taking as granted that the 

increments of W are independent and normally distributed, this provides a 

recursive procedure for simulating values of S at 0=t0<t1<t2<…<T: 

𝑆𝑡𝑖+1
= 𝑆𝑡𝑖

𝑒(𝜇−
𝜎2

2
)(𝑡𝑖+1−𝑡𝑖)+𝜎√𝑡𝑖+1−𝑡𝑖𝑍𝑖+1 , i=0, 1, 2, …, n 

(2) 

 

With Z1, Z2, …, Zn independent standard normal. 
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iii. Ornstein Uhlenberg  

 

The classical model of Vasicek12 gives the following equation 

 

𝑑𝑟𝑡 = 𝑎(𝑏 − 𝑟𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡 

 

where W is a standard Brownian Motion and a, b, σ are positive constants. One      

may notice that the sign of the drift b-rt depends on the relation between b and 

rt. If b>rt, it is positive and vice versa. Thus, rt is pulled toward level b, which is 

generally stated as mean reversion, that is the long-run interest rate level, while 

a is the speed at which rt is pulled toward b. 

 

To simulate r at times 0=t1<t2<…<T and in the special case that bt≡b the 

following analytic approximation is used: 

𝑟𝑡𝑖+1
= 𝑒−𝑎(𝑡𝑖+1−𝑡𝑖)𝑟𝑡𝑖

+ 𝑏(1 − 𝑒−𝑎(𝑡𝑖+1−𝑡𝑖)) + 𝜎√
1

2𝑎
(1 − 𝑒−2𝑎(𝑡𝑖+1−𝑡𝑖))𝑍𝑖+1   

(3) 

Where Z1, …, Zn are independent draws from N(0, 1). 

 

4.3  Polynomial Families 

 

A polynomial family, in mathematics, is an orthogonal polynomial sequence, such that 

any two different polynomials in the sequence are orthogonal to each other under some 

inner product. 

Among the most common and widely used polynomial families that are used not only 

in mathematics, but in other scientific fields as well, are the (weighted or generalized) 

Laguerre, the Hermite, the Legendre, the Chebyshev, the Gegenbauer and the Jacobi 

polynomial families. 

In this dissertation, the following sequences are used: 

                                                           
12 See O. A. Vasicek, 1977, “An equilibrium characterization of the term structure”, Journal of 

Financial Economics, 5:177-188 



[32] 
  

i. Legendre polynomial family 

 

Considering P(m,x) as the mth degree Legendre polynomial of x, the following 

recursion formula gives the analytical solution of the Legendre sequence: 

 

𝑃(𝑚, 𝑥) =
2𝑚 − 1

𝑚
𝑥𝑃(𝑚 − 1, 𝑥) −

𝑚 − 1

𝑚
𝑃(𝑚 − 2, 𝑥) 

 

while P(0,x)=1 and P(1,x)=x. 

 

They are orthogonal on the interval [-1,1]. 

 

ii. Laguerre polynomial family 

 

Considering L(m,x) as the mth degree Laguerre polynomial of x, the following 

recursion formula gives the analytical solution of the Laguerre sequence: 

 

𝐿(𝑚, 𝑥) =
(2𝑚 − 1 − 𝑥)𝐿(𝑚 − 1, 𝑥) − (𝑚 − 1)𝐿(𝑚 − 2, 𝑥)

𝑚
 

 

while L(0,x)=1 and L(1,x)=1-x. 

 

iii. Hermite polynomial family 

 

Considering H(m,x) as the mth degree Hermite polynomial of x, the following 

recursion formula gives the analytical solution of the Hermite sequence: 

 

𝐻(𝑚, 𝑥) = 2𝑥𝐻(𝑚 − 1, 𝑥) − 2(𝑚 − 1)𝐻(𝑚 − 2, 𝑥) 

 

while H(0,x)=1 and P(1,x)=2x. 

 

They are orthogonal on the real line. 
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Symbolizing as F(ω;tk) the value of the continuation and A(m,x) the mth degree 

polynomial of the A selected polynomial family at x the equation specified from the 

liner regression should be of the following form: 

 

𝐹(𝜔; 𝑡𝑘) = ∑ 𝑎𝑗

𝑚

𝑗=0

𝐿(𝑗, 𝑥) 

where αj coefficients are constants. 

 

4.4  Risk neutral valuation 
 

In a world of risk-neutral investors, the choice between two similar investments 

yielding the same expected rate of return and only differ in the risk of action taken is 

uniform, insomuch everybody would pick the least risky one. That is, no investor would 

ask for a higher rate of return for holding risky assets. Although pretty logical, this 

principle creates obstacles regarding the fact that expectations of the rate of return are 

unobservable. As a result, there is no proper discounting factor that will accurately 

depict the risk profile both the investor and the investment. 

The solution to the aforementioned problem is called risk-neutral valuation and operates 

as follows: 

a. Consider the risk-free interest rate as the expected return for all assets. 

b. Value each payoff by discounting each expected value at the risk-free interest 

rate. 

The only condition is no arbitrage in the market.  

With these data in mind, the drift term μ equals the risk-free interest rate. 

 

4.5  Random numbers 
 

The kernel of all Monte Carlo simulation procedures is the generation of one or more 

series of random numbers. Modern random number generators, though, produce 

numbers that only mimic the randomness and are not genuinely random. That’s 
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explained by the fact that all those random number generator algorithms are 

deterministic and as a result the numbers they produce are deterministic as well. For 

the shake of each procedure one follows and because the imitation is very efficient, the 

produced numbers are treated as genuinely random, allowing he/she to apply tools from 

probability and statistics to analyze them.  

A generator of random numbers produces a sequence of random numbers Z1, Z2, …, Zn 

with the properties: 

- each Z1, Z2, …, Zn is uniformly distributed between 0 and 1 

- the Zi are mutually independent 

The first property can be extended, as any sample randomly produced from the unit 

interval can be transformed into sample from any other distributions using the 

appropriate techniques and subsequently conduct stochastic simulations. Uniformity is 

the case that the fraction of the values falling in any subinterval of the unit interval 

should be approximately the length of the interval. The second property implies that all 

pairs of numbers are uncorrelated with each other and unpredictable given previous 

values, meaning there is no distinguishable pattern among the values.  

For the construction of a random number generator, well, the following must be 

considered: the period length, the reproducibility, the speed, the portability and the 

randomness. Generally, generators that produce as many as possible distinct values 

before repeating, that are easy to produce twice or more times the same series of random 

numbers, that are fast, that work properly on any computing platform and that are tested 

theoretically and statistically for their randomness, are the ones preferred. 

 

4.6  Variance reduction techniques 
 

Supposing the simulation is carried out as described so far, that is via random numbers, 

a significant large amount of trials should be done to estimate a quite accurate price for 

the option being priced. The random outputs create a variance that is of great 

importance. This is, of course, very expensive in terms of computational time, due to 

the square root convergence of the algorithm, so that’s why several variance reduction 

techniques exist, which operate without disturbing the expectation. 
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i. Antithetic Variable 

 

In this technique, two values for the derivative is being calculated. The first one is 

calculated in the usual way, while the second one is calculated using the opposite 

sign of all the samples from standard normal distributions. The final price of the 

option is the average of those two. The success of this method relies on the fact that 

if the value from the first computation is, say, above the true price, the 

corresponding value from the second computation will be below the true price and 

vice versa. The final result, consequently, will balance around the true price. 

  

ii. Control Variate 

 

This method premises the existence and use of a similar derivative to the one being 

valued, for which an analytic solution is available. By computing the difference 

between the price obtained from the analytical solution and the price obtained by 

the Monte Carlo simulation, one knows the difference between the value for the 

derivative being priced obtained from the simulation and the real one. For the 

correct execution of the method, one should use the same random number stream 

for the pricing of both derivatives. 

 

iii. Importance Sampling 

 

In order to avoid computational mistakes or misleads because of, for example deep-

out-of-the-money options, this method estimates the value based only on the paths 

that are in-the-money, excluding the out-of-the-money or at-the-money ones. 

 

iv. Stratified Sampling 

 

This technique functions as follows: all the samples taken from the appropriate 

probability distribution are then divided into a quite large number, for example 
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1,000, of equal smaller intervals and a representative value of each interval is being 

chosen13. The option is, subsequently, valued under these representative values. 

 

v. Moment Matching 

 

The method of “Moment Matching” involves adjusting the samples taken from the 

appropriate distribution so that the first, second and, possibly, higher moments are 

matched. As a method, it has the disadvantage of redundant memory usage. That’s 

why, it is quite often to be used combined with the “Antithetic Variable” technique, 

which by definition matches all odd moments. What “Moment Matching” technique 

further needs to do, is just calculate the second and, possible, the fourth moment.  

 

vi. Using Quasi-Random Sequences 

 

It is quite similar to the “Stratified Sampling” except to the fact that the samples are 

taken in such a way in order to always fill in gaps between existing samples and not 

randomly. Thus, at each stage of the simulation, the sampled intervals are almost 

evenly divided throughout the probability space. 

 

The method used here is the first one, the “Antithetic Variable”, and further explanation 

will be given later in the dissertation. 

 

4.7  The Least Squares Monte Carlo Algorithm of Longstaff & 

Schwartz 

 

The Least Squares Monte Carlo method for pricing American-style options that 

Longstaff & Schwartz proposed in 2001 is the objective of the present dissertation. It 

is an algorithm that uses backward induction for the estimation of the option price, 

while the optimal exercise strategy is obtained via the combination of the Monte Carlo 

simulation with the least squares regression. Its main purpose is to provide a pathwise 

                                                           
13 Typically, the mean or the median. 
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approximation of the optimal stopping rule that maximizes the value of the American 

option. 

More specific, the desired number of sample paths is simulated in the beginning. Every 

option is considered as a Bermudan-style one in this approach. In other words, the time 

steps are assumed to be discrete allowing early exercise. In practice, however, there are 

a lot of options that are continuously exercisable, but that’s a case that can be covered 

by the LSM algorithm taking the number of exercise dates to be sufficiently large. 

At each time step, a least squares regression takes place according to the no-arbitrage 

valuation theory. That is, the discounted optimal payoffs from continuation of the next 

time step are regressed on the desired set of the basis functions chosen towards 

underlying asset prices. The key here is that Longstaff and Schwartz allow in the 

regression only the paths of the underlying asset price that are in-the-money and that 

the values obtained are used only for comparison. In other words, paths that do not 

generate any cash flows are neglected from the regression. 

At the final date, the holder of the option exercises it if it’s in-the-money or allows it to 

expire if it’s out-of-the-money. At every other time step, a comparison is done between 

the fitted value from the regression and the expected payoff from immediate exercise. 

If the fitted value from the regression is larger than the payoff from immediate exercise, 

then the optimal strategy is to hold the option alive from at least one more time step. In 

the opposite case, even if the two values are equal, the holder of the option should 

immediately exercise it in order to benefit from the instant payoff. 

After completing all the steps described above, the lattice of the optimal exercise 

strategy and that of the optimal cash flows at each time step will have been constructed. 

Each optimal payoff is, then, discounted back to time zero and, finally, the average of 

all payoffs produces the value of the option. 

The algorithm is easily transformed and adjusted to different data and cases, such as 

exotic options, multidimensional American options or American options with jump 

diffusions. 
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4.8  MatLab Implementation of LSM Algorithm 

 

MatLab, which stands for MATrix LABoratory, is a multi-paradigm numerical 

computing environment and a fourth-generation programming language. As a high-

performance language, it integrates computation, visualization and programming 

environment for technical computing. It covers a wide variety of scientific fields, such 

as engineering, science, economics, statistics, econometrics, finance, through special 

packages called toolboxes. MatLab allows matrix manipulations, plotting of functions 

and data, implementation of algorithms and creation of user interfaces in combination 

with other programming languages. 

Throughout this dissertation MatLab version R2015b has been used. No package in 

MatLab exists for the application of the Least Squares Monte Carlo algorithm. One can 

find the complete MatLab code for the implementation, that will be described from here 

on, in the Appendix14. 

 

i. Model with one stochastic variable 

The first case of the implementation of the Least Squares Monte Carlo algorithm in 

MatLab environment developed, contains the creation of an algorithm that prices an 

American-style option, either a call or a put, under the assumption that the underlying 

asset’s price follows a stochastic process, while all the other variables remain stable.  

The development took place in two stages: firstly, a MatLab function that simulates the 

underlying stock’s price path was developed and, secondly, a MatLab function that 

prices the option completed the valuation. 

More specific, the function that simulates the path that the underlying asset price 

follows is called path. The inputs of this function are S0, rf, d, sigma1, T, n, M, a1, b1 

and the flag. Depending on the stated flag, the function demonstrates the simulation of 

the requested path either as an Arithmetic Brownian Motion, a Geometric Brownian 

Motion or an Ornstein Uhlenberg process. Consequently, the output of the function is 

a M*n matrix St, with the features the user set as inputs. 

                                                           
14 See page 61.  
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Equation (1) is the analytical form of an Arithmetic Brownian Motion in a discrete time 

environment. Though, one of the toolboxes of MatLab Software is the Financial 

Toolbox, which supports plenty of SDE models and the Monte Carlo Simulation of 

them. Thus, the Arithmetic Brownian Motion path was constructed automatically by 

the bm constructor of MatLab. Using, rf-d as the drift parameter and sigma1 as the scale 

parameter under the risk-neutral valuation framework, a vector-valued Arithmetic 

Brownian motion object was constructed, with start state S0. The MatLab simulate 

function was then used in order to simulate the M sample paths requested from the user. 

At this point, it was found useful to induce negative dependence between paired input 

samples, meaning use one of the, previous discussed, control variance techniques. The 

most common of them, and the one used here, is the Antithetic Variable one. Lastly, by 

using a for loop, the complete path St was constructed, that is, all the M*n cells of it 

were filled with the simulated values of the underlying stock price. 

 

The method described above is exactly the same with the one used in order to simulate 

the Geometric Brownian Motion path. As stated before, the Geometric Brownian 

Motion is an exponentiated Arithmetic Brownian Motion. Thus, the Financial Toolbox 

of MatLab contains a predetermined function to simulate this motion as well. 

Regardless the fact that equation (2) gives the analytical form of a Geometric Brownian 

Motion in a discrete time environment, it was found preferable to take advantage of the 

automatic way, that the MatLab Software offers to carry out the desired simulation. The 

gbm constructor was used in the first place and, subsequently, the simulation was 

developed again by the simulate function, using the same inputs and the same control 

variance technique. 

 

The simulation of the Ornstein Uhlenberg process differs a little. There is no built-in 

function in MatLab to demonstrate it. So, equation (3) was used in the implementation 

here. The start state S0 is the same input as the one used in the previous simulations, 

while now there is need for the specification of two more variables, a1 and b1, which are 

the constants that particularize each Ornstein-Uhlenberg process. a1 symbolizes the 

speed at which the value being simulated is reverting around the mean b1. So, by the 
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use of a for loop and after producing the needed normally distributed random numbers, 

the simulated path St is ready for further use by the next function developed here. 

 

Next, theoretically, a function that uses as an input the path St, that was previously 

produced, would be needed in order to approximate the value of the given option. The 

function developed here is named price and uses as input, apart from the path St, K, T, 

n, rf, M, m, the basis and the flag. Regarding the basis, the user needs to choose between 

the simple powers, the Legendre polynomial family, as well as the Laguerre and the 

Hermite polynomial families, as the basis function for the least squares regression that 

will take place. Regarding the flag, the type of the option being priced is specified here, 

that is, whether it is a call or a put.  

The necessary matrixes OptExe and OptCF are firstly defined, determining the optimal 

exercise strategy and the cash flows that the holder will receive following the optimal 

exercise strategy, respectively, by the completion of the algorithm. In the optimal 

exercise strategy matrix ‘1’ means that the option is optimal to be exercised and ‘0’that 

the holder should wait at least one more period before exercising.  

The next part of the code contains a for loop, as it is useful to work on each time period 

separately and successively, starting from the end. So, all the work done from here on 

refers to the specific column of the time period, that the step of the loop defines. 

Though, that means, that, since the algorithm is recursive, several intermediate matrices 

will be constructed during the execution of the loop. 

The optimal cash flow matrix is, in the beginning, constructed by each cell taking the 

value of the maximum cash flow between K-St or St-K, depending on the type of the 

option, and 0. For all the cells that their cash flow is different from ‘0’, the 

corresponding cells of the optimal exercise strategy matrix take the value ‘1’. In fact, 

the exercise strategy and the cash flows of the last time period are identical to the ones 

that the holder would have if the option was European-style rather than American-style. 

Another matrix called DisCF is then constructed containing the discounted cash flows 

of the corresponding cells of the optimal cash flow matrix. 
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Next step is the least squares regression. Firstly, all the in-the-money paths of the 

optimal cash flow matrix are determined, because only in the case that the option is in-

the-money at a time period, the holder needs to decide whether to execute it or not. As 

well, the choice of, only, the in-the-money paths limits the region over which the 

conditional expectation function should be computed, resulting in much fewer basis 

functions needed to obtain an accurate price. The basis the user has chosen defines the 

procedure that is then followed. Of a programming point of view, the simplest case is 

that of the simple powers as the basis of the regression. The MatLab polyfit function 

automatically produces the coefficients, in descending powers, of the polynomial of 

degree m along with a constant that is the best fit, in a least squares sense, of the in-the-

money paths of time T on the discounted corresponding paths of time T+1.  

 

Apart from the simple powers as the basis of the regression, the user may also choose 

among the Legendre, the Laguerre or the Hermite polynomial family as basis. The 

implementation is common between all three families. The built-in functions of 

MatLab, LegendreP, LaguerreL and HermiteH, are used to estimate the mth degree 

Legendre, Laguerre and Hermite polynomial, respectively, for each stock price value 

in matrix St for the in-the-money paths, of course. Though, for the regression, it is 

necessary to estimate all the previous degrees of each polynomial family, meaning from 

degree 1 until degree m. All the estimated polynomials of each family are then used as 

the independent variables of the regression along with a constant. The dependent 

variable is, once again, the corresponding discounted cash flows of the next time period. 

For the implementation of this procedure the MatLab regress function was used, which 

returns a m*1 matrix of the coefficient estimates for a multilinear regression of the 

discounted responses on the polynomial predictors.  

 

Through some numerical and algorithmical manipulations, which are out of the scope 

of this dissertation, the value of continuation is, then, computed substituting each value 

of the stock price into the, estimated from the regression, conditional expectation 

function. That value is stored in the Cont matrix and should be compared with the 

corresponding intrinsic value K-St or St-K, that is the immediate exercise value, 

depending on the type of the option, in order to determine whether the option should be 
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exercised or not. If the immediate exercise value is larger than the continuation value 

then the respective cell of the optimal cash flow matrix takes that value and the one of 

the optimal exercise strategy takes the value ‘1’. On the other hand, if the continuation 

value is larger than the immediate exercise value, both cells take the value ‘0’. That’s 

the end of the for loop. 

 

Another numerical manipulation takes place now, consisting of a for loop, once again. 

It satisfies the premise that the option can only be exercised once in its lifetime. As a 

result, the loop turns into ‘0’ the value of all the cells, in the optimal cash flow and 

optimal exercise strategy matrix, after the first determined execution of the option, 

starting from time zero this time. 

 

The OptCash matrix is then discounted cell by cell, resulting in the OptCashDis matrix, 

which is summed and averaged in order to calculate the final value of the either call or 

put. 

 

ii. Model with two stochastic variables 

 

The second case of the implementation of the Least Squares Monte Carlo algorithm 

developed, contains the creation of an algorithm that prices an American-style option, 

either a call or a put, under the assumption that both the underlying asset’s price and 

the interest rate follow a stochastic process, while all the other variables remain stable.  

The development took place in two stages: firstly, a MatLab function that simulates the 

underlying stock’s price path along with that of the interest rate was developed and, 

secondly, a MatLab function that prices the option completed the valuation. 

 

The general context of the second implementation is the same as that of the first. Thus, 

the points that remain the same will not be decomposed thoroughly. Only the shift 

points will be discussed analytically. 
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The first function that was developed at this point is fully consistent with that of the 

first implementation. It is called path2 and takes as input S0, r0, d, sigma1, sigma2, T, n, 

M, a1, b1, a2, b2 and the flag. Though, the outputs that it gives are, apart from the path 

of the stock price St, the path of the interest rate as well. The stock price is allowed, 

once again, to follow either an Arithmetic Brownian Motion, a Geometric Brownian 

Motion or an Ornstein Uhlenberg process, which is defined by the flag, while the 

interest rate follows an Ornstein Uhlenberg process.  

 

The first point at which this application of the algorithm differentiates from the first 

one is the way the stochastic processes are simulated. The built-in functions of MatLab, 

such as bm and gbm, that were used before are now useless, because of the fact that 

having to deal with two stochastic variables means that one has to deal with their 

correlation as well. Their correlation is reflected at the random numbers used to 

simulate each path.  

 

More specific, let’s denote the following random numbers: 

 

εt ~ N(0,1) 

ŵt ~ N(0,1) 

 

The size of the matrices with the random numbers produced is (M+1)*n. 

 

After calculating the correlation ρ between those two families of random numbers, one 

more family wt is produced following the equation: 

 

𝑤𝑡 = 𝜌2𝜀𝑡 + (1 − 𝜌2)ŵ𝑡 

 

The εt and the wt random numbers are used to simulate the path of the stock price and 

the interest rate respectively. Depending on the flag that the user has set as an input, the 
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stock price may follow either an Arithmetic Brownian Motion with the following 

analytic approximation: 

 

𝑆𝑡𝑖+1
=  𝑆𝑡𝑖

+ (𝑟𝑡𝑖+1
− 𝑑)(𝑡𝑖+1 − 𝑡𝑖) + 𝑠𝑖𝑔𝑚𝑎1√𝑡𝑖+1 − 𝑡𝑖𝜀𝑖+1 

 

or a Geometric Brownian Motion with the following analytic approximation: 

 

𝑆𝑡𝑖+1
= 𝑆𝑡𝑖

𝑒(𝑟𝑡𝑖+1
−𝑑−

𝑠𝑖𝑔𝑚𝑎1
2

2
)(𝑡𝑖+1−𝑡𝑖)+𝑠𝑖𝑔𝑚𝑎1√𝑡𝑖+1−𝑡𝑖𝜀𝑖+1 

 

 

or an Ornstein Uhlenberg process with the following approximation: 

𝑆𝑡𝑖+1
= 𝑒−𝑎1(𝑡𝑖+1−𝑡𝑖)𝑆𝑡𝑖

+ 𝑏1(1 − 𝑒−𝑎1(𝑡𝑖+1−𝑡𝑖)) + 𝑠𝑖𝑔𝑚𝑎1√
1

2𝑎1
(1 − 𝑒−2𝑎1(𝑡𝑖+1−𝑡𝑖))𝜀𝑖+1 

 

While the interest rate follows an Ornstein Uhlenberg process with the following 

analytic approximation: 

𝑟𝑡𝑖+1
= 𝑒−𝑎2(𝑡𝑖+1−𝑡𝑖)𝑟𝑡𝑖+1

+ 𝑏2(1 − 𝑒−𝑎2(𝑡𝑖+1−𝑡𝑖)) + 𝑠𝑖𝑔𝑚𝑎2√
1

2𝑎2
(1 − 𝑒−2𝑎2(𝑡𝑖+1−𝑡𝑖))𝑤𝑖+1 

 

Both approximations are based on a start state S0 and r0 which determines the whole 

first column of each of the tables St and rt, that are finally exported from the function. 

 

Having produced the simulated path for both the stock price and the interest rate, the 

second stage of the implementation includes, once again, the valuation of the option via 

a function called price2, that uses as input the following data: St, K, T, rf, rt, M, n, m, 

flag. The flag feature determines whether the option being valued is a call or a put.  
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The general logic and the specific steps followed are identical to those of the price 

function that was developed in the first implementation. Differentiation derives from 

the regression. First of all, as basis function, only the simple powers one has been 

developed at this point. The way, though, that the coefficients are produced, cannot be 

the same as previous, as with two state variables the set of basis function should also 

include cross-products of the univariate terms.  

 

General principles say that the bases for m-variate functions are formed by the m-fold 

tensor product of univariate orthogonal polynomials. Though, that way, the number of 

the tensor products grows exponentially with the dimensionality of the problem. As 

Judd (1998) indicates the approximation given by the complete set of polynomials is as 

good as the one given by the m-fold tensor product with much fewer elements. Thus, 

following the work of A. Tsekrekos, M. Shackleton and R. Wojakowski (2012), instead 

of using the complete set of polynomials as regressors in the approximation of the 

continuation value function, consuming very large computing power, the tensor 

products were used. The condition set here in the choice of the specific tensor products 

is the sum of the exponents of the univariate terms to be smaller or equal to the max 

exponent of the basis function, m, inputted by the user. With that in mind, the regression 

was implemented for the cases of m being equal to 1, 2, 3 or 4.  

 

The application from here on is exactly the same with the univariate model explained 

before. 
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5. RESULTS 
 

i. Model with one stochastic variable 

 

For an at-the-money option with S0=100, K=100, rf=0.06, d=0.05, sigma1=0.02,T=10, 

M=10.000, n=12015, a1=0.5, b1=100, the following results are obtained:  

 sp le la he 

call     

aBm 

m=1 0.0387 0.0387 0.0387 0.0387 

m=2 0.0387 0.0387 0.0387 0.0387 

m=3 0.0387 0.0387 0.0387 0.0387 

m=4 0.0387 0.0387 0.0387 0.0387 

m=5 0.0387 0.0387 0.0387 0.0387 

m=10 0.0387 0.0387 0.0387 0.0387 

m=15 0.0387 0.0387 0.0387 0.0387 

call     

gBm 

m=1 3.7302 3.7302 3.7302 3.7302 

m=2 3.7302 3.7302 3.7302 3.7302 

m=3 3.7302 3.7302 3.7302 3.7302 

m=4 3.7302 3.7302 3.7302 3.7302 

m=5 3.7302 3.7302 3.7302 3.7302 

m=10 3.7302 3.7302 3.7302 3.7302 

m=15 3.7302 3.7302 3.7302 3.7302 

call     

ou 

m=1 0.1138 0.1138 0.1138 0.1138 

m=2 0.1138 0.1138 0.1138 0.1138 

m=3 0.1138 0.1138 0.1138 0.1138 

m=4 0.1138 0.1138 0.1138 0.1138 

m=5 0.1138 0.1138 0.1138 0.1138 

m=10 0.1138 0.1138 0.1138 0.1138 

m=15 0.1138 0.1138 0.1138 0.1138 

put     

aBm 

m=1 0.0376 0.0376 0.0376 0.0376 

m=2 0.0376 0.0376 0.0376 0.0376 

m=3 0.0376 0.0376 0.0376 0.0376 

m=4 0.0376 0.0376 0.0376 0.0376 

m=5 0.0376 0.0376 0.0376 0.0376 

m=10 0.0376 0.0376 0.0376 0.0376 

m=15 0.0376 0.0376 0.0376 0.0376 

                                                           
15 Meaning that dt=1/12, that is one month. 



[48] 
  

put     

gBm 

m=1 3.8259 3.8259 3.8259 3.8259 

m=2 3.8259 3.8259 3.8259 3.8259 

m=3 3.8259 3.8259 3.8259 3.8259 

m=4 3.8259 3.8259 3.8259 3.8259 

m=5 3.8259 3.8259 3.8259 3.8259 

m=10 3.8259 3.8259 3.8259 3.8259 

m=15 3.8259 3.8259 3.8259 3.8259 

put     

ou 

m=1 0.1235 0.1235 0.1235 0.1235 

m=2 0.1235 0.1235 0.1235 0.1235 

m=3 0.1235 0.1235 0.1235 0.1235 

m=4 0.1235 0.1235 0.1235 0.1235 

m=5 0.1235 0.1235 0.1235 0.1235 

m=10 0.1235 0.1235 0.1235 0.1235 

m=15 0.1235 0.1235 0.1235 0.1235 
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For an out-of-the-money call option with S0=60, K=100, rf=0.06, d=0.05, sigma1=0.02, 

T=10, M=10.000, n=120, a1=0.5, b1=100, the following results are obtained:  

 sp le la he 

call     

aBm 

m=1 0 0 0 0 

m=2 0 0 0 0 

m=3 0 0 0 0 

m=4 0 0 0 0 

m=5 0 0 0 0 

m=10 0 0 0 0 

m=15 0 0 0 0 

call     

gBm 

m=1 0.8393 0.8393 0.8393 0.8393 

m=2 0.8393 0.8393 0.8393 0.8393 

m=3 0.8393 0.8393 0.8393 0.8393 

m=4 0.8393 0.8393 0.8393 0.8393 

m=5 0.8393 0.8393 0.8393 0.8393 

m=10 0.8393 0.8393 0.8393 0.8393 

m=15 0.8393 0.8393 0.8393 0.8393 

call     

ou 

m=1 0.0941 0.0941 0.0941 0.0941 

m=2 0.0941 0.0941 0.0941 0.0941 

m=3 0.0941 0.0941 0.0941 0.0941 

m=4 0.0941 0.0941 0.0941 0.0941 

m=5 0.0941 0.0941 0.0941 0.0941 

m=10 0.0941 0.0941 0.0941 0.0941 

m=15 0.0941 0.0941 0.0941 0.0941 
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For an in-the-money put option with S0=60, K=100, rf=0.06, d=0.05, sigma1=0.02, 

T=10, M=10.000, n=120, a1=0.5, b1=100, the following results are obtained:  

 

 sp le la he 

put     

aBm 

m=1 39.7997 39.7997 39.7997 39.7997 

m=2 39.7997 39.7997 39.7997 39.7997 

m=3 39.7997 39.7997 39.7997 39.7997 

m=4 39.7997 39.7997 39.7997 39.7997 

m=5 39.7997 39.7997 39.7997 39.7997 

m=10 39.7997 39.7997 39.7997 39.7997 

m=15 39.7997 39.7997 39.7997 39.7997 

put     

gBm 

m=1 39.7507 39.7507 39.7507 39.7507 

m=2 39.7507 39.7507 39.7507 39.7507 

m=3 39.7507 39.7507 39.7507 39.7507 

m=4 39.7507 39.7507 39.7507 39.7507 

m=5 39.7507 39.7507 39.7507 39.7507 

m=10 39.7507 39.7507 39.7507 39.7507 

m=15 39.7507 39.7507 39.7507 39.7507 

put     

ou 

m=1 24.1471 24.1471 24.1471 24.1471 

m=2 24.1471 24.1471 24.1471 24.1471 

m=3 24.1471 24.1471 24.1471 24.1471 

m=4 24.1471 24.1471 24.1471 24.1471 

m=5 24.1471 24.1471 24.1471 24.1471 

m=10 24.1471 24.1471 24.1471 24.1471 

m=15 24.1471 24.1471 24.1471 24.1471 
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For an in-the-money call option with S0=150, K=100, rf=0.06, d=0.05, sigma1=0.02, 

T=10, M=10.000, n=120, a1=0.5, b1=100, the following results are obtained:  

 sp le La he 

call     

aBm 

m=1 49.7515 49.7515 49.7515 49.7515 

m=2 49.7515 49.7515 49.7515 49.7515 

m=3 49.7515 49.7515 49.7515 49.7515 

m=4 49.7515 49.7515 49.7515 49.7515 

m=5 49.7515 49.7515 49.7515 49.7515 

m=10 49.7515 49.7515 49.7515 49.7515 

m=15 49.7515 49.7515 49.7515 49.7515 

call     

gBm 

m=1 49.8750 49.8750 49.8750 49.8750 

m=2 49.8750 49.8750 49.8750 49.8750 

m=3 49.8750 49.8750 49.8750 49.8750 

m=4 49.8750 49.8750 49.8750 49.8750 

m=5 49.8750 49.8750 49.8750 49.8750 

m=10 49.8750 49.8750 49.8750 49.8750 

m=15 49.8750 49.8750 49.8750 49.8750 

call     

ou 

m=1 30.1731 30.1731 30.1731 30.1731 

m=2 30.1731 30.1731 30.1731 30.1731 

m=3 30.1731 30.1731 30.1731 30.1731 

m=4 30.1731 30.1731 30.1731 30.1731 

m=5 30.1731 30.1731 30.1731 30.1731 

m=10 30.1731 30.1731 30.1731 30.1731 

m=15 30.1731 30.1731 30.1731 30.1731 
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For an out-of-the-money put option with S0=150, K=100, rf=0.06, d=0.05, 

sigma1=0.02, T=10, M=10.000, n=120, a1=0.5, b1=100, the following results are 

obtained:  

 sp le La he 

put     

aBm 

m=1 0 0 0 0 

m=2 0 0 0 0 

m=3 0 0 0 0 

m=4 0 0 0 0 

m=5 0 0 0 0 

m=10 0 0 0 0 

m=15 0 0 0 0 

put     

gBm 

m=1 1.5113 1.5113 1.5113 1.5113 

m=2 1.5113 1.5113 1.5113 1.5113 

m=3 1.5113 1.5113 1.5113 1.5113 

m=4 1.5113 1.5113 1.5113 1.5113 

m=5 1.5113 1.5113 1.5113 1.5113 

m=10 1.5113 1.5113 1.5113 1.5113 

m=15 1.5113 1.5113 1.5113 1.5113 

put     

ou 

m=1 0.1026 0.1026 0.1026 0.1026 

m=2 0.1026 0.1026 0.1026 0.1026 

m=3 0.1026 0.1026 0.1026 0.1026 

m=4 0.1026 0.1026 0.1026 0.1026 

m=5 0.1026 0.1026 0.1026 0.1026 

m=10 0.1026 0.1026 0.1026 0.1026 

m=15 0.1026 0.1026 0.1026 0.1026 
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ii. Model with two stochastic variables 

 

For an at-the-money option with S0=100, K=100, r0=0.1, rf=0.06, d=0.05, sigma1=0.02, 

sigma2=0.15, T=10, M=10.000, n=120, a1=0.1, b1=100, a2=0.001, b2=0.1 the following 

results are obtained:  

 aBm gBm ou 

call    

m=1 0.0122 1.2298 0.0137 

m=2 0.0122 1.2298 0.0137 

m=3 0.0122 1.2298 0.0137 

m=4 0.0122 1.2298 0.0137 

put    

m=1 0.0209 1.0804 0.0235 

m=2 0.0209 1.0804 0.0235 

m=3 0.0209 1.0804 0.0235 

m=4 0.0209 1.0804 0.0235 

 

For an out-of-the-money call option with S0=60, K=100, S0=60, r0=0.1, rf=0.06, 

d=0.05, sigma1=0.02, sigma2=0.15, T=10, M=10.000, n=120, a1=0.1, b1=100, 

a2=0.001, b2=0.1, the following results are obtained:  

call aBm gBm Ou 

m=1 0 2.0468 0.0112 

m=2 0 2.0468 0.0112 

m=3 0 2.0468 - 

m=4 0 2.0468 - 

 

For an in-the-money put option with S0=60, K=100, S0=60, r0=0.1, rf=0.06, d=0.05, 

sigma1=0.02, sigma2=0.15, T=10, M=10.000, n=120, a1=0.1, b1=100, a2=0.001, b2=0.1, 

the following results are obtained:  

put aBm gBm Ou 

m=1 39.8024 39.5458 36.0193 

m=2 39.8024 39.5458 36.0193 

m=3 39.8024 39.5458 36.0193 

m=4 39.8024 39.5458 36.0193 

 

For an in-the-money call option with S0=150, K=100, S0=150, r0=0.1, rf=0.06, d=0.05, 

sigma1=0.02, sigma2=0.15, T=10, M=10.000, n=120, a1=0.1, b1=100, a2=0.001, b2=0.1, 

the following results are obtained:  
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call aBm gBm ou 

m=1 49.7497 50.3912 45.0118 

m=2 49.7497 50.3912 45.0118 

m=3 49.7497 50.3912 45.0118 

m=4 49.7497 50.3912 45.0118 

 

For an out-of-the-money put option with S0=150, K=100, S0=150, r0=0.1, rf=0.06, 

d=0.05, sigma1=0.02, sigma2=0.15, T=10, M=10.000, n=120, a1=0.1, b1=100, 

a2=0.001, b2=0.1, the following results are obtained:  

put aBm gBm ou 

m=1 0.0100 1.7856 0.0210 

m=2 - - - 

m=3 - - - 

m=4 - - - 
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6. CONCLUSION 

 

The Least-Squares Monte Carlo algorithm of Longstaff & Schwartz provides a 

straightforward approximation of the price of a complex American-style option. This 

dissertation is the proof that the algorithm’s results are robust, uniform and united. 

Moreover, it provides the potential to examine the differentiation and escalation of the 

price of the option being valued, based on the different stochastic process the stochastic 

variables may follow and on the different intrinsic values the option may has at time 

zero. 

More specific, the results of the previous section indicate that the value of the option is 

identical regardless the type or the number of basis functions being used. For the same 

group of simulated paths regarding the stochastic variable/s, the price of the title is the 

same, with precision of four decimal places, for m being equal to 1, 2, 3, 4, 5, 10 or 15 

and for the basis being either Simple Powers or Legendre, Laguerre or Hermite 

polynomial family. The theoretical background in favor of these results indicates that 

for a given degree any polynomial can be expressed as a linear combination of the 

others and, thus, the consistency of the prices arising is expected. 

Another observation, based on the previous indicative results, that can be conducted, is 

the escalation of the price of options that differ only at the stochastic process the 

stochastic variable/s follow. The results regarding at-the-money and out-of-the-money 

options are consistent and show that always the option with an underlying asset’s price 

following a Geometric Brownian Motion is more expensive than an option with an 

underlying asset’s price following an Ornstein Uhlenberg process, which is more 

expensive than an option with an underlying asset’s price following an Arithmetic 

Brownian Motion. On the other hand, for in-the-money calls, those with an underlying 

asset’s price following a Geometric Brownian Motion are more expensive than those 

with an underlying asset’s price following an Arithmetic Brownian Motion, which are 

more expensive than those with an underlying asset’s price following an Ornstein 

Uhlenberg process. The in-the-money puts differ from the corresponding calls, with 

those with an underlying asset’s price following an Arithmetic Brownian Motion being 

more expensive than those with an underlying asset’s price following an Geometric 

Brownian Motion, which are more expensive than those with an underlying asset’s 

price following an Ornstein Uhlenberg process. 
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Closing, the results provided here are in full accordance with the general principle 

stating that moving from deep-out-of-the-money towards deep-in-the-money areas of 

the underlying asset’s price, the value of the option increases.    
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7. WEAKNESSES 
 

 

The only, among so many, variance reduction technique used in the implementation in 

this dissertation is the antithetic variable one. Though, depending on the specific area 

or subject covered, another or plenty of other variance reduction techniques may be 

either more beneficial individually or add some benefit to the antithetic variable that 

was used here. So, it cannot be said that everything possible was done regarding 

variance reduction. 

 

The main problem, though, is the fact that, concerning the second implementation under 

the two stochastic variables, no general solution is available. More specific, a code was 

developed to price an American-style option in the case that the max-exponent of the 

basis function is either 1, 2, 3 or 4. Further application, for degrees larger than 4 was 

not produced due to lack of time. 
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8. FUTURE EXTENSIONS 
 

 

The implementation of the Least Squares Monte Carlo algorithm in this dissertation 

was narrow in terms of stochastic variables. Lack of time, prevented the expansion of 

the application in stochastic volatility or even in stochastic dividend yield rate. Both are 

extensions that are applicable to the written code and that would benefit the 

implementation of the Least Squares Monte Carlo algorithm of Longstaff & Schwartz. 

Moreover, regarding the polynomial families used as basis function for the regression 

in order to estimate the conditional expectation function of the continuation value, there 

are plenty of them that were not used, but that would be of benefit to the results to be 

used in the future. 

Having in mind, the automated world we live in, as well as the need of people with no 

university degrees to be able to value an investment that has been proposed to them or 

even an option they are likely to buy or sell, the algorithm presented here in a MatLab 

environment would be very useful and widely accepted in a user-friendly environment. 

That is, developing a user interface for the algorithm could result in an application used 

by a wide variety of people and in a wide variety of situations.  
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function [St] = path(S0,rf,d,sigma1,T,n,M,a1,b1,flag) 

 
if strcmp(flag,'gBm') 

     
    for j=1:M 
        GBM=gbm(rf-d,sigma1,'StartState',S0); 
    end 

  
    [S]=GBM.simulate(n,'DeltaTime',T/n,'nTrials',M,'Antithetic',true); 

  
    for i=1:n 
            St(:,i)=(S(i,:,:)); 
    end 

  
elseif strcmp(flag,'aBm') 

     
    for j=1:M 
        ABM=bm(rf-d,sigma1,'StartState',S0); 
    end 

     
    [S]=ABM.simulate(n,'DeltaTime',T/n,'nTrials',M,'Antithetic',true); 

  
    for i=1:n 
        St(:,i)=(S(i,:,:)); 
    end 

  
elseif strcmp(flag,'ou') 
    St=zeros(M,n); 
    St(:,1)=S0; 

     
        for a=1:n-1 
            z=randn(M+1,n); 
            for j=1:M-1 
                St(j,a+1)=exp(-a1)*St(j,a)+b1*(1-exp(-a1))+... 
                    sigma1*sqrt((1/(2*a1))*(1-exp((-2)*a1)))*z(j,a+1); 
            end 
        end 

  
else 
    msg = 'Error occurred.Please select between gBm,aBm and ou.'; 
    error(msg) 
end 

  

  
end 

 

  

 

 

APPENDIX 
 

i. path 
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function [c,p] = price(St,K,T,n,rf,M,m,basis,flag) 
     

    OptCF=zeros(M,n); 
    OptExe=zeros(M,n); 

  
    for a=n:-1:2 
        OptCF(:,a)=max(St(:,a)-K,0); 
        f1=find(OptCF(:,a)~=0); 
        OptExe(f1,a)=1; 
        DisCF(:,a)=OptCF(:,a)*exp(-rf*(T/n)); 

  
        f2=find(St(:,a-1)>=K); 

             
            if strcmp(basis,'sp') 
                coeff=polyfit(St(f2,a-1),DisCF(f2,a),m); 

                 
                for b=1:m 
                    s1(:,b)=St(:,a-1)*(coeff(:,b)^(m-b+1)); 
                end 

     
                s1(:,m+1)=coeff(:,m+1); 

  
                Cont=sum(s1,2); 

  
            else 
                x=[]; 
                for b=1:m+1 
                    if strcmp(basis,'le')     
                        x(:,b)=legendreP(b-1,St(f2,a-1));     
                    elseif strcmp(basis,'la') 
                        x(:,b)=laguerreL(b-1,St(f2,a-1)); 
                    elseif strcmp(basis,'he') 
                        x(:,b)=hermiteH(b-1,St(f2,a-1)); 
                    end 
                end 

                 
                coeff=regress(DisCF(f2,a),x); 

             
                for c=1:m+1 
                    s1(:,c)=St(:,a-1)*coeff(c,:); 
                end 

     
                Cont=sum(s1,2); 
            end 

             
        if Cont>=OptCF(:,a-1) 
            OptCF(:,a-1)=0; 
            OptExe(:,a-1)=0; 
        else 
            OptCF(:,a-1)=OptCF(:,a-1); 
            OptExe(:,a-1)=OptExe(:,a-1); 
        end         
    end 

  

ii. price16  

                                                           
16 Only the case the user has chosen to value a call is presented. 
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    for c=2:n 
        for d=1:M 
            if OptExe(d,c)==1 
                for e=c+1:n 
                    OptExe(d,e)=0; 
                    OptCF(d,e)=0; 
                end 
            else 
                continue 
            end 
        end 
    end 

     
    for a=2:n 
        OptCashDis(:,a)=OptCF(:,a)*exp(-rf*((a-1)*(T/n))); 
    end     

     
    c=sum(sum(OptCashDis)')/M 
    p=0; 

end     
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function [St,rt] = path2(S0,r0,d,sigma1,sigma2,T,n,M,a1,b1,a2,b2,flag) 

  
       rt=zeros(M,n); 
    rt(:,1)=r0; 
    St=zeros(M,n); 
    St(:,1)=S0; 

  
    z=randn(M+1,n); 
    w=randn(M+1,n); 
    p=corrcoef(z,w); 

  
    for ii=1:n 
        for jj=1:M 
            u(jj,ii)=(p(1,2)^2)*z(jj,ii)+(1-(p(1,2)^2))*w(jj,ii); 
        end 
    end 

     
        for ii=1:n-1 
            for jj=1:M-1 
                rt(jj,ii+1)=exp(-a2)*rt(jj,ii)+b2*(1-exp(-a2))+... 
                    sigma2*sqrt((1/(2*a2))*(1-exp((-2)*a2)))*u(jj,ii+1); 

         
                if strcmp(flag,'gBm') 
                    St(jj,ii+1)=St(jj,ii)*exp((rt(jj,ii+1)-((sigma1^2)/2)-

d)*(T/n)+sigma1*(sqrt(T/n))*z(jj,ii+1)); 
                elseif strcmp(flag,'aBm') 
                    St(jj,ii+1)=St(jj,ii)+(rt(jj,ii+1)-

d)*(T/n)+sigma1*(sqrt(T/n))*z(jj,ii+1); 
                elseif strcmp(flag,'ou') 
                    St(jj,ii+1)=exp(-a1)*St(jj,ii)+b1*(1-exp(-

a1))+sigma1*sqrt((1/(2*a1))*(1-exp((-2)*a1)))*z(jj,ii+1); 
                else 
                    msg = 'Error occurred.Please select between gBm,aBm and 

ou.'; 
                    error(msg) 
                end 
            end 
        end 

         
end 

  

 

  

  

 

 

iii. path2 
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function [c,p] = price2(St,K,T,rf,rt,M,n,m,flag) 
 

OptCF=zeros(M,n); 
OptExe=zeros(M,n); 

  
for a=n:-1:2 
    OptCF(:,a)=max(K-St(:,a),0); 
    f1=find(OptCF(:,a)~=0); 
    OptExe(f1,a)=1; 
    DisCF(:,a)=OptCF(:,a)*exp(-rf*(T/n)); 

  
    f2=find(St(:,a-1)<=K); 

     
    X=[]; 
    Y=[]; 
    Z=[]; 
    switch m 
        case 1 
            REGRESSORS=[ones(length(St(f2,a)),1) St(f2,a) rt(f2,a)]; 
        case 2 
            for h=0:m 
                j=m-h; 
                X(:,h+1)=(St(f2,a).^h).*(rt(f2,a).^j); 
            end 

  
            REGRESSORS=[ones(length(X),1) St(f2,a) rt(f2,a) X]; 
        case 3 
            for h=0:m 
                j=m-h; 
                X(:,h+1)=(St(f2,a).^h).*(rt(f2,a).^j); 
            end 

             
            for h=0:m-1 
                j=m-h-1; 
                Y(:,h+1)=(St(f2,a).^h).*(rt(f2,a).^j); 
            end 

     
        REGRESSORS=[ones(length(X),1) St(f2,a) rt(f2,a) X Y]; 
        case 4 
            for h=0:m 
                j=m-h; 
                X(:,h+1)=(St(f2,a).^h).*(rt(f2,a).^j); 
            end 

             
            for h=0:m-1 
                j=m-h-1; 
                Y(:,h+1)=(St(f2,a).^h).*(rt(f2,a).^j); 
            end 

             
            for h=0:m-2 
                j=m-h-2; 

 

iv. price217 

  

                                                           
17 Only the case the user has chosen to value a put is presented. 
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                Z(:,h+1)=(St(f2,a).^h).*(rt(f2,a).^j); 
            end 

     
        REGRESSORS=[ones(length(X),1) St(f2,a) rt(f2,a) X Y Z]; 
    end 

     
    coeff=regress(DisCF(f2,a),REGRESSORS); 

    
    for ii=1:m+1 
        s1(:,ii)=St(:,a-1)*coeff(ii,:); 
    end 

     
    Cont=sum(s1,2); 

     
    if Cont>=OptCF(:,a-1) 
        OptCF(:,a-1)=0; 
        OptExe(:,a-1)=0; 
    else 
        OptCF(:,a-1)=OptCF(:,a-1); 
        OptExe(:,a-1)=OptExe(:,a-1); 
    end         
    end 

  
for ii=2:n 
    for jj=1:M 
    if OptExe(jj,ii)==1 
        for e=ii+1:n 
            OptExe(jj,e)=0; 
            OptCF(jj,e)=0; 
        end 
    else 
        P=[]; 
    end 
    end 
end 

     
    OptCashDis(:,:)=OptCF(:,:)*exp(-rf*((a-1)*(T/n))); 

     
    c=0; 
    p=sum(sum(OptCashDis)')/M 
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