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  ABSTRACT  

 

   In this paper we investigate the option pricing performance when volatility risk premium is priced with  

parametric GARCH setting. This paper uses the series of implied volatility Index of the underling index 

instead of extracting daily spot volatilities by the use of series of the underling’s return to improve  the 

performance of GARH. In addition instead of using the traditional maximum Likelihood Estimator 

(MLE) with returns only, Joint maximum Likelihood Estimator (J-MLE) with the use of returns and 

implied volatility of index which increase the GARCH the option pricing performance. Furthermore, in 

the J-MLE the risk neutral measures (LRNVR) is a scaled version of the conditional physical variance 

driven from risk neutral coefficient rather than computed separately . This procedure of option pricing 

using GARCH instead of non-linear least squares (NLS) is less computational demanding and overcome 

the sampling noise from liquidity and mispriced options affect the estimation of parameter. 
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1 Introduction  
 

    The use of GARCH (generalized autoregressive conditional heteroskedastic) which follow the asset 

returns was introduced first time from Bollerslev’ (paper [1] ). The initial model of GARCH based to, was 

ARCH model, a specific case of GARHC, which was analyzed by Engle [2]. In terms of European option 

pricing the deference between the ARCH and Black and Sholes and Merton model was in the condition of 

asset return behavior. In the first case the asset returns has heteroscedastic behavior or dynamic behavior 

of variance. In the second one, the variance is homoscedastic or the variance is stable along time interval 

in option pricing. According to the GARCH pricing model,  is a generalization of ARCH model in which 

the conditional variance is  function of past conditional variance and past square shocks. What makes 

GARCH model differs from earlier, is primarily the fact that the price of the option is derived as a 

function of risk premiums. Secondly, the model under consideration is not Markovian. In other words the 

underlying security does not follow Markov process so we can not say that past prices are independent of 

the current ones. Unique GARCH Markov process is GARCH (0,1) or ARCH (1). Third, we can 

understand why developing some systematic biases-deviations (systematic bias) that are directly 

associated with the construction of the model of Black-Scholes. Furthermore an extension to the 

traditional GARCH models is the Heston-Nandi [3] physical affine-GARCH process which include the 

leverage effect or asymmetry (correlation of variance and return) of variance, asset return as the variance 

and asset return are negatively correlated. This phenomenon occurs when there is asymmetric relative to 

the current performance and future volatility. More specifically, a decline in the price of a share today 

will further increase volatility tomorrow than an equivalent rise in the stock price. The bad news (negative 

shocks) have greater impact on the variation, and therefore the volatility than the good news (positive 

shocks). Because of the complex structure of GARCH process, a more general version of the concept of 

neutral risk should be developed. Thus, Duan  ([7])  introduced the concept of valuation with local neutral 

risk( LRNVR, Locally risk-neutralized valuation relationship), where the conditional variance in next 

period remains unchanged after the change of probability measure as going to the risk neutral word. Thus, 

under the GARCH valuation model, the non-bound variation or fluctuation beyond any reserved of a 

period of time change by changing the measure of probability of transition to the risk neutral world. So it 

is obviously that the GARCH process unfolds in discrete time. In certαin conditions, sharehοlder risk 

preference may οverride the risk neutral valuatiοn relatiοnship. Figlewski (1997), fοr instance, cοmpares 

the purchase of an OTM οption tο buying a lοttery ticket. Investοrs are willing tο pay a price that is higher 

than the fair price since they like the pοtential payοff and the οption premium is sο lοw that mispricing 

becοmes negligible. However , we alsο have fund managers whο are willing tο buy cοmparatively 

expensive put οptions fοr fear οf the cοllapse οf their pοrtfolio value. Bοth types of behaviοur cοuld cause 

market price of οption tο be higher than the Black-Schοles price, interpreting intο a higher Black-Schοles 
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implied vοlatility. Theoretical Them The performance for GARCH group models under option pricing 

has been studied in the resent literature (see reference [4]).  

    Ιn section 2 we present similar studies for  GARCH option pricing family in term of method of 

estimation the GARCH parameters which is the key aspect in GARCH option pricing. In section 3 we 

describe the GARCH process specs of physical and risk neutral conditional variance while in section 4 

the methodology and specs of GARCH parameters estimators that will be used for valuation. The section 

5 describe the data that was used in the analysis , the index FUTSE 100  the volatility of index VFTSE 

and the underline option data. The following section describe the specifications of estimators thaw was 

used in each model and parameters results with the discussion of models fitting performance with the 

VFTSE. The section 7 represent the why the GARCH process with risk neutral distribution catch better 

the inventors behavior and the histogram of shocks of risk neutral and physical parameterizations and 

following by the options IV RMSE results. In the last section 9 (Appendix) we describe the matlab 

function that was created  for valuation and the rest code is up on request (izaravelis@live.com).  
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2   Literature Review  
 
 

Leptokurtosis  

 

   According to financial series returns seem to follow densities that is not normal. What make them 

unfollow the normal distribution is that their distribution has fatter tail on .Asset returns are asymmetric 

and have leptokurtic distribution (positive excess kurtosis). It also has thick tails which means that there is 

greater potential yields get outliers (extreme values) in relation to whether to follow a normal distribution. 

This fat tails are more visible in short term or high frequency investment periods like intraday  or daily 

returns and is not visible in higher frequency periods.  

 

Skewness 

 

    This phenomenon occurs when there is asymmetric relative to the current performance and implied 

volatility. More specifically, a decline in the price of a share today will further increase volatility 

tomorrow than an equivalent rise in the share price. That is, the bad news (negative shocks) have greater 

impact on the variation, and therefore the volatility than the good news (positive shocks). An other 

example is that OTM puts is more expensive than OTM calls as the more likely for price to drop and as 

result higher probability of  positive payoff of OTM put  than positive payoff of OTM call. Furthermore 

an other example is that whet the price drop then means an increase of leverage of a firm so increase of 

uncertainty and increase of volatility. 

 

    Finance studies have been focused in resent years on how to model  investors premia for  various risk 

in markets so the investors can price those risks and hedged from them. The most common premium is 

the volatility risk premium. As we referred the volatility is not constant like Black-Sholes model but time 

varying as was referred in many studies. From 1996 several studies in option valuation anomalies have 

been published in the literature. The implied volatility smiles became more convex since 1987 which 

introduce a more negative skewness. An other option pricing anomaly indicates that the variance come 

from options is higher than variance extracted from underline asset which produce high biases in 

volatility forecast. A try to overcome this problem is the to introduce a more negative variance risk 

premium. In several studies have been document that the two distribution of risk neutral and physical 

have significant differences. To overcome this divergence of two distributions , several studies ([19]-[23]) 

report stochastic volatility models with the market price of volatility risk as the measure chance from 

physical probability distribution to risk neutral distribution. Even so these mdels faild to price the 
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volatility risk consistent as they did not describe the sign , the magnitude and the dynamics of risk neutral 

parameter.  

   Duan [7] pioneered in GARCH model in option pricing literature. His study was significant and give 

rise of option pricing models to many other studies. The particular study incorporate  the an equlibrioum 

in term of investors preference basis in option pricing valuation. His argument namely locally risk neutral 

valuation relationship (LRNVR) with assumptions on the utility function allow the European style options 

to be priced more accurately.  This Duans drive many other papers to study the out of sample GARCH  

performance [3], [4], [5]. 

      In 2000 Heston and Nandi [3] introduce affine-GARCH model with a semi-closed form formula for 

European option prices. In this paper shows the improvement of out of sample option valuation 

performance of the GARCH(1,1) on S&P 500 over a flexible ad hoc version of Black-Sholse. The ad hoc 

BS model filter the volatility from prices and updated every period wilde GARCH models filter  the 

volatility by maximum likelihood estimator from the asset prices. They show that the GARCH model 

underperform ad hoc BS when correlation of volatility and index returns is not involved and the out of 

sample performance of GARCH model rely on capture  the  fitting of path dependence in vοlatility and 

correlation of returns and volatility. 

      In basis of Heston and Nandi [3],   Christoffersen, Jacobs, Ornthanalai and Wang [24] extend the 

affine GARCH of  Heston and Nandi by introduce the both lοng-run and shοrt-run cοmpοnents. However 

any of the previous studies that was mentioned  does not price the volatility risk premium. In 2013 an 

updated study of Christoffersen, Heston, and Jacobs  [8]  was reported with a new pricing kernel to 

incorporate volatility risk premium. In tis paper they use Wednesdays out-of the money call and puts for 

the period of 1996-2004 from option metrics. As mentioned in this paper the use of Wednesday is 

because is the less likely day to be in holidays and so to avoid the day-of-the-week effect. In this 

empirical exercise it was addressed to investigate the deference between the physical and risk neutral 

distribution with a variance depend pricing kernel. In addition this paper use returns and option data to 

estimate the GARCH parameters. The process that was used in this paper is the GARCH Hetson-Nandi. 

The physical process mapped  to risk neutral process with scaling factors . As was referred previously in 

order to estimate the parameters optimize the a joint likelihood function which consist of two component , 

reurn and option component likelihood component. Three models was set in this paper  the first with no 

premia , the second account for equity premium  and the third one account for both premia equity and 

variance risk premium. The parameter that was estimated using the joint-MLE with returns and option. 

The volatility risk premium dramatically improvement in option fitting  in of IV RMSE and Bias when 

compare first and second model . When comparing the second and third model they show that equity risk 

premium (second) plays a much smaller role in improving option comparing with a model with no 

premia. The parameterizations with no volatility risk premia imply a strong positive bias implying that on 
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average the models underprice options when the volatility risk premium is excluded. This bias is virtually 

eliminated and the RMSE is radically improved as the volatility risk premium (third model) priced. 

     An other study published 2014 ([9]) focused on estimation procedure and option valuation 

performance of GARCH and NGARCH .The data that was used come from S&P500 call and put options 

from 1996 to 2010. In this paper the parameters estimated using three estimation methods for each 

process, nonlinear least square with option and returns ,maximum likelihood estimator with returns and   

maximum likelihood estimator with Returns&VIX  (for HN-GARCH and NGARCH process). Although 

the computation of NLE requires a large set of option data and many repetitions has to be done in order to 

estimate the optimals parameters  which is time consuming. In addition the NLE for NGARCH process 

needs  Mode Carlo simulation to value call options as closed form solution is not available. The empirical 

results shows that  NGARCH produce better RMSE than those with HN . According to estimator method 

NLE produce less errors for both processes. 

     An other paper which use the pricing kernel that allow volatility risk premium to be priced reported at 

2016 by Papantonis [6]. This paper again examine the important implication of volatility risk premium in 

the under the  GARCH setting in . This paper use a 14 years sample of daily closing prices daily of the 

S&P500 and VIX (2000 to 2014)  so 3520 daily observations. It is reported a  average magnitude of -3% 

of the deference between physical and risk neutral.in this paper a deferent approach of  GARCH 

parameter estimation was following compare to previous paper. This study, use only returns of S&P500 

and VIX so estimate the Joint-MLE  instead of returns and option data that was used in paper . In addition 

instead of option log likelihood use the log likelihood that correspond to the risk neutral volatility which 

is not affected by the option data properties. They show that parameter that was estimated using Joint-

MLE(j-MLE) with returns and VIX errors (bias model-observation). However this paper used no option 

data to compare and verify the option pricing errors of for each model that was used in order to 

investigate the in or out of sample option pricing performance. The joint-MLE increase dramatically from 

model with no leverage effect  to the model with leverage effect(HN). Those two models allow equity 

risk to be priced and not the volatility risk premium. The third mοdel allow the vοlatility risk premium tο 

be priced.  
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3 The GARCH models  
 

 

    In order to capture the volatility dynamics two models of GARCH type volatility filters will be used 

one with the physical representation and the second one with the risk neutral distributions which capture 

better the behavior of investors-shocks. However 

3.1 Physical dynamics  

 

    For the estimation of physical dynamics of GARCH the affine-GARCH introduced by Heston and 

Nandi [3] will be used. The advantage of this process is that it allows semi-closed for European call 

pricing solution which increase the accuracy of option valuation and computation much faster than 

simulations. This process can capture and reproduce some features of financial data like negative 

skeweness and asymmetry of volatility which is very important when  pricing options. This process takes 

the form of: 

 

                   (1) 

                                                (2) 

where ω is the mean of GARCH, r is the daily continuously compounded risk free rate , µ is the equity 

equity premium per unit of risk. The term z is the disturbance which follows the standard normal 

distribution. The parameter β is the autocorrelation term of GARCH and γ  captures the leverage effect 

(or the asymmetry of innovations) which introduce the negative correlation between the variance ht+2 and 

returns Rt+1 as covt(Rt+1, ht+2) = −2αγ ht+1. If γ>0  when covariance is negative. This also implies that 

the distribution of returns would be negatively skewed. The parameter a drives the kurtosis as the 

conditional variance of variance is a linear function of past variance given as vart(ht + 2) = 2α2 + 4α2γ2ht + 1. 

The long term variance  which is the mean of the conditional variance can be obtained by calculating the 

expectation (of eq 4)  , this yields : 

E[h!!!] =  h = (α+ω) / (1-ρ) 

where ρ= β + α γ2 

The parameter ρ is the autocorrelation of variance and should be less than 1 for the GARCH process to be 

stationary which ensures finite first and second order moments. In addition the parameters α, β and γ 

should be positive to avoid negative conditional variances.  
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3.2 Risk neutral dynamics  

 

 In order to price options under the risk-neutral measures we need to transform the previous GARCH 

model to its risk-neutral counterpart. Duan ([6]) suggest a LRNVR to change the measure of physical 

dynamics to risk neutral dynamics. However the LRNVR developed only allows only for the equity risk 

to be prised. A number of empirical studies ,however,have shown that volatility risk is also priced in 

equity markets. In order to overcome this limitation we employ a modified version of the pricing kernel 

which introduced by Christoffersen, Heston, and Jacobs ([8] ) that allow equity risk and variance risk  

premium to be jointly priced. This given as follows: 

  (3) 

where δ is time preference ,φ is the aversion of investors to equity and ξ capture risk investor aversion to 

variance risk. Thus the premiums come from two components the investors aversion for equity risk driven 

by φ and the aversion to the variance change incorporated in parameter ξ. If the pricing Kernel is 

decreasing in the spot price , we have φ<0. We also anticipate the pricing kernel to be increasing in 

volatility, i.e, ξ>0. Under this pricing kernel the risk neutral dynamics of the GARCH models equation 1 

and 2  can be written as follows: 

    (4) 

     (5) 

(See reference [5] for the proof). 

 

Under risk neutral representation the conditional risk neutral variance is a version of physical variance 

multiplied by the scaling factor ξ (where   ξ = !
!!! ! !

   ).  When ξ >1 the risk neutral variance h*
t+1 exceed 

the physical variance ht+1 and more weight is given on the tails of innovations. The following formula 

shows how the variances are related under the two measures. 

 

(6) 
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The  estimation of the risk neutral parameters can be done through the following equations 

   (7) 

 

 (8) 

 

the last equations along with the sign restrictions imply that γ*>γ ,α*>α and ω*>ω . Thus instead of 

estimates parameter of two dynamic processes separately now it is possible to estimate the physical 

parameters and then scale it  (with eq 6,7,8 ) into the risk neutral ones. Is tis obvious that if ξ=0 then only  

equity risk is prized under the LRNVR according to Duans ([7] )  pricing kernel or to the Heston-Nandi 

model [3].  The new pricing kernel given in equation (3) improves upon the ability of the model to 

include to risk factors that way may be priced in the equity market. Again by taking the expectation of 

risk neutral process we obtain that  

   (9) 

Furthermore the risk neutral autocorrelation equation ( eq 10) is higher than the physical one which 

means that the risk neutral variance is more persistence than the physical one ,if ξ>0. 

   (10) 

In addition the variance of risk neutral conditional variance is also higher from the physical one since 

  

  (11) 
eq 1 the variance of risk neutral conditional variance process 

 

and the leverage effect is also higher under risk neutral measures as the correlation between the risk 

neutral variance and returns is now given as: 

  (12) 

 
Note that the specifications of the models that will be used in the analysis will be discussed in more 
details in section 6. 
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4 Parameters Estimation methodology  

4.1 Return likelihood estimator 

 

   This section presents the econometric methodology used to estimate the previous model. The estimation 

setup is most closely  related to paper [5]. In GARCH option pricing the estimation of the structural 

parameters of the models is an important step. In the literature the most common estimation methodology 

relies on the maximization  of likelihood function .Early studies estimated the GARCH model only by 

maximizing the likelihood of returns. Assuming that the innovation part of daily returns  

h!!! z!!! ~N(0, h!!!) is normaly distributed  the log-likelihood function has the following form : 

 

f rt h! = !
!!!!

e!
!"!

!!!          (13) 

and therefore the lοg Likelihοοd is 

lnℒ! θ =  − !
!
ln 2π − !

!
   ln (h! θ  )  +

!" !"
!"!! !!! !!!!  !!(!)

!

!!(!)
!
!!!        (14) 

 

This maximum likelihood estimator finds the parameter vector θ=(ω ,α ,β, γ)  that maximizes the value of 

the likelihood function ( max  lnℒ! θ  ) . After the estimation of θ is possible to convert the parameters 

into risk neutral measures θ* and use it in the European option pricing closed form formula or pricing 

under mode carlo simulation. However as was mentioned before this estimation approach of GRCH 

parameters does not capture the dynamics of option market prices and produce mispriced results in 

valuation options datasets. At this point several studies have been done in order to overcome the 

mispriced of using only MLE with returns only. An alternative method to estimate the parameters is the 

method of non-least square estimator (NLS). This method optimization method is based on minimization 

of error that comes from throw the deference of the theoretical/model prices of options as a function of ht 

(θ) and the market option price. An alternative way is , instead of  use the prices in NLS is to convert 

them into implied volatility. This estimation can improve the option valuation as take direct the 

information from the priced asset. However this estimation method has several disadvantages. One 

disadvantage is that this method requires a very demanding computational power and inefficiency 

especially when the model price come from simulations which loss in accuracy and is time consuming. 

An other disadvantage is that the market price of options includes the parameter of liquidity and some 

market prices may be misprized/unfaired. Last, an other disadvantage with the use of NLS with option 

only may overestimate some properties of option and does not take account the dynamics of underling 
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asset which can has impact on parameter fitting. For the previous reasons is better estimate the parameters 

using both option (NLS) and returns (MLE) jointly .  

    In this paper an alternative method will be used instead of option data, which contains as is expected 

equivalent information and results compare to use cross section options. This method use the implied 

volatility of index which is a weighted blended of a range of market option prices included in underline 

index which is much more efficient. The most common proxy is the VIX implied volatility index which is 

written from options on S&P500. However in this paper we will use the volatility index of FTSE 100. 

The first who investigate the significant and the increase of efficiency when use volatility proxy in the 

empirical analysis is Aït-Sahalia & Kimmelm [10]. Their investigate that the use of implied volatility 

proxies decrease the computational needs and they investigate that huge decrease of parameter’s fitting 

errors compare to fitting by cross section options datasets. The most resent paper thas is closed to the 

present paper who use VIX proxies is the Hao and Zhang [12] and Lin [9]  but these studies the do not 

use the risk neutral pricing kernel (that introduced from Christoffersen [8] , eq 3) to account for both 

equity and risk premium but only for equity (Duan[7]), that’s why Lin [9]  refer that NGARCH  produce 

better results than HN GARCH according to pricing errors.   

 

4.2 Risk neutral volatility likelihood estimation 

4.2.1 Volatility proxy 

 

    The volatility indexes are computed by the cross section of the options written on the referred index 

and so it is concider as a proxy for risk neutral variance.  

    According to ‘’FTSE IVI is cοmprised of neαr-term and next-term put αnd cαll options. Typically these 

correspond to the first and secοnd contrαct mοnths of the underlying future when estimating the 30-

cαlendar days(21trading days)  implied volatility, but may be any cοnsecutive mοnths depending οn the 

N-dαy vοlatility tο be calculated. In οrder tο minimize any pricing αnοmalies that cαn οccur clοse tο 

expiration a cut-οff of οne week (7 days) tο expiration is used. That is, when there is less than οne week 

to expiration οf the neαr -term οptions FTSE IVI rolls to the secοnd and third cοntract mοnths. Fοr 

example, suppose FTSE IVI is being cαlculated for the FTSE MIB index. These index options expire on 

the third Fridαy of the month. Cοnsequently, the secοnd Friday in Sepτember FTSE IVI wοuld be 

cαlculated using options expiring in Sepτember and Οctober. Hοwever, on the following Mondαy, the 

near-term optiοns wοuld mοve frοm September tο Οctober and the next-term οptions frοm October tο 

Nοvember.’’[13].  The prοxy will scaled tο daily which is the mαrket vοlatility since 

V!
(!) = !

!"!
 !!!""#!$%&'(

!""
        (15) 
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the    V!!""#!$%&'( is the market implied volatility for the index that study . This could be for example the 

VIX which is a measure of implied volatility for the S&P 500 index, the VFTSE or the VSTOXX which 

measures the implied volatility of the FTSE 100 and EUROSTOXX 50, respectively. All these indexes 

are computed in a daily basis by a cross section set of option prices written on the respective equity 

indexes .Table 5 in the appendix reports volatility indexes around the world which denote that can use the 

same method as in vix to for  the implied volatility model for the FTSE 100. 

 

4.2.2 Model implied volatility  

 

     Instead of using option prices in non-linear least square we need to use the implied volatility generated 

by the mode and compare it with the market observations. For this propose it is needed to use a implied 

volatility model that calculate the average risk neutral expectation of 30 or 21 calendar or trading days 

respectively as in the volatility proxy (section 4.1.1). According to reference [6] which is based on 

Christoffersen ([8]) study the estimation of the conditional variance forecast for all k-day ahead horizon  

is given as 

(16) 

 

under risk neutral measure use the eq 28 and 17 to this is given as  

 (17) 

 And the implied volatility model is defined as the square root of that (for T=τ = 21 tranding days) given 

as 

 (18) 
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4.2.3 Volatility likelihood estimation 

 

In order to construct the volatility based likelihood function we work in a similar named as NLS-option 

data method.  First we need market implied volatility data. For this propose we can use the volatility 

indexes of variances exchanges.  

 So we can construct the error between the market value of implied volatility (which is used as 

benchmark) .If Vt
(m)

 denoted the daily level of a market volatility index then we assume  

εt=( Vt
(m)

 - v(t) )~N(0,σv
2) . Then adjust the sum of errors by error variance . This procedure is equivalent 

to vega-adjusted (σv
2) οf the BS implied volatility pricing errors as in NLS estimator but instead of cross 

section option we use the volatility index that written of option as referred to previous section. Assume 

normal distribution N(0,σv
2): 

(19) 

 

and therefor the log likelihood function of risk neutral volatility can be written as  

 

lnℒ! Θ∗ =  − !
!
ln 2πσ!! − !

! !!!
     (V!

(!) − v! θ∗   )!  !
!!!    (20) 

 

 

4.3 Joint likelihood estimator  

 

The joint log-likelihood function on returns and volatility  is given as : 

 

lnℒ!
!!! = −

T
2
ln 2π −

1
2

ln h! θ  +
ln St

St − 1 − r − µ − 12  h! θ
!

h! θ

!

!!!

+

−
T
2
ln 2πσ!! −

1
2 σ!!

(V!
(!) − v! θ∗  )!  

!

!!!

   

    (21) 

  

This joint log likelihood function include two sources of information. The first source is the returns of 

index while the second one is the implied volatility of the index.  
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5 Data  
 

5.1 Indexes  
 
   In this study use daily returns data, daily implied volatility observations and options data. The  sample 

period is from 04-Jan-2000 to 20-Jun-2014 (14-years 3754 observations)  for both index prices and 

implied volatility. The index that is used is the FTSE 100 (symbol: UKX:IND  available in Blomberg 

Terminal) .This is a stock index of 100 companies with the highest  capitalization  traded in London Stock 

Exchange. This index include companies with international activity. The volatility index of FTSE 100 is 

VFTSE. Figure 1 presents daily prices of these two indexes . As  risk-free rate, 6 mounth-Shοrt Sterling 

London InterBank Offer Rate on uk pound  (LIBOR) was used.  The underlying asset is one of the UK 

indexes, the uk pound LIBOR performs to be more suitable. LIBOR rates are converted into continuously 

compounded rates and the monthly LIBOR rates are used to match the options time to maturity. 

Bloomberg Terminal is also the source for the risk free rates. 

 
Figure 1 FTSE 100 INDEX  daily prices  and annualized implied volatility daily quotes. The sample period is from 2000 to 2014. 
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5.2 Options data  
 

To empirically study the mοdels’ οptions performance we use call data from 2014 to 2016 calls. The 

option data was filter to verify  liquidity and no-arbitrage bounds. The followings outline how the option  

data that was filtered out. First Options which not satisfy the no-arbitrage conditions which indicate that 

the price of a European call option should not be less than the underline price subtracted by the discount 

strike price (C< So – K e-r T) was filter out. Second options with daily  volume less than 1 was filter out. 

Third options with more than 4 with no trading activity was filtered out. Furthermore we reduce 

magnitude of  the data sets by using only one day per week, each the Wednesday or Thursday call for 

each sample respectively from Bloomberg terminal. Note here that Wednesday is the less likely day of the 

week to be in holidays.  In addition according to Fοster and Viswanatham ([15])  high volatility days 

would be escorted by low trading vοlume due to the unwillingness of liquidity traders tο trade in periods 

of high vοlatility [15].  This phenοmenοn is called day the οf week effect. Previous papers indicate that 

Wednesday is the less likely day to be affected of this phenomenon with Monday and Friday affected 

most.  Overal  option data sample are the following: 

 

 

• Sample 1 :  call option with two maturities one week before 24-June-16 and one month after 24 

June-16  ( 17-June-16  < 24-June-16 < 16-July-2016 ). 

Maturity 17-June-16 : observations of all strike prices available from 23-June-14 to 13-May-16 

monthly frequency   

Maturity  16-July-2016 : observations of all strike prices available from 07-Aug-15 to 6-Jun-16 

with monthly frequency  

• Sample 2 : Wednesdays calls from 24-Jun-2014 to 09-Dec-2015 all maturities and strike prices 

available  (out of sample) 

• Sample 3 : Thursday calls from 24-Jun-2014 to 10-Dec-2015 all maturities and strike prices 

available (out of sample) 

 

Note here that the performance of the various GARCH models would be tested out-of-sample given that 

the models will be estimated using data from 2000 to 2014 , while option data covers the period 2014-

2016 for sample 1  and end 2014 to 2016 for two others. This out-of-sample exercise will enables us to 

better  
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Option data Average 
prises   

     
       sample 2 <30 30<T<60 60<T<90 90<T<120 120<T<180 T>180 

<0.79 - 0.50 1.73 4.38 4.38 4.375 
0.79 -0.8 - - - 0.60 0.60 0.6 
0.8-0.85 0.79 0.50 0.92 2.44 2.44 2.44 
0.85-0.9 3.86 6.08 17.87 33.59 33.59 33.59 
0.9-0.98 40.73 62.49 101.10 145.88 145.88 145.88 
0.98-1.04 134.58 160.94 199.40 246.63 246.63 246.63 

>1.04 1094.62 1114.25 - - - - 

       sample 3 
      <0.79 - - 0.50 - - - 

0.79 -0.8 - - - 0.50 0.50 0.50 
0.8-0.85 - 0.50 2.00 3.59 0.50 0.50 
0.85-0.9 2.94 6.32 24.04 41.71 40.92 40.92 
0.9-0.98 44.72 69.74 109.32 119.50 149.32 149.32 
0.98-1.04 144.04 173.13 209.50 209.50 248.68 248.68 

>1.04 1029.06 1040.54 - - - - 
 

Table 1  panels  for  sample 2 and 3 average option  prices  along maturity and moneyness 
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6 Parameters estimates procedure and results 
 
 
 

    In this section an empirical investigatiοn of the mοdel οutlined in section 4 will be presented. In order 

to optimize the maximum likelihood (eq.14 20 and 21) the Nelder-Mead simplex algorithm [16], a 

derivate free method for unconstrained multivariable function minimization is used. We use the function 

fminsearch matlab code which include the previous algorithm. The GARCH models are extremely 

sensitive to the initial parameters that was used in optimization procedure specially when write code 

instead of use a software. The software available in market has relocated sets of initial parameters for 

vector θo in optimization of standard GARCH . However there an not available financial software for the 

propose of this study the need to create a code is inevitable and there is no available initial parameter 

datasets in the literature for FTSE 100. For these reasons initial parameters that was used as a benchmark 

are closed to the estimated of the models parameters provided by Papadonis  [6] for S&P500 index. An 

alternative way to choose the appropriate initial parameters, is to set the initial vector as a random number 

with the appropriate restrictions then, do a long number of interactions and take the estimated vector θ 

that maximize the likelihood  that was estimated. In all models in the code we use as initial shock z(0)=0  

and as initial variance the variance of returns sample (h(0)= var(Rt) )  

 

Separated Step model  

 

   In order to investigate more clearly the physical and risk neutral dynamics of returns and implied 

volatility a  additional model which filter the returns and implied volatility separately was set up and 

compared to J-MLE estimator procedure. First, in order to estimate the physical parameters , we 

maximize the MLE  (eq 14  / code section 9.2) which use only returns under the  asymmetric model HN-

GARCH (eq 1&2) to find the physical parameter vector θ={µ, ω, α, β, γ} which allow only the equity risk 

to be priced  . Secondly in order to estimate the risk neutral parameter vector  θ* ={ω*, α* , β* , γ* } only 

using information embedded in the volatility index we maximize the risk neutral MLE (eq 20/ 9.3). This 

experiment will allow as to investigate how the physical and risk neutral spot volatility differs in order to 

prove the importance to include the risk neutral distribution to the model and how this will reduce 

mispricing.  
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Joint maximum likelihood estimator  

 

An other estimation procedure that will be used is j-MLE (returns –volatility) (eq 21) which consists of 

two component.  

1. The first model is the symmetric which account only for equity premium only (γ=ξ=0) since 

ξ = 0 
!" !" &"# 

  

ℎ∗ t+ 1  =  ht+ 1    
𝜔 = 𝜔∗

𝛼 = 𝛼∗  

        Resulting four parameters estimation into vector θsym={µ, ω, α, β} and θsym
* = {ω*, α*, β*,γ*} (eq19) 

.  

2. The second model is the asymmetric ( which allow for skewness γ ≠ 0 , ξ = 0) HN-GRARCH that 

allow only for equity premium and asymmetry which result in five parameter estimation         

θasym={µ, ω, α, β,γ} and θasym
* = {ω*, α*, β*,γ*}. 

 

3. And the last and most general economic (γ ≠ 0 & ξ ≠ 0 )   model that allow for both equity risk and 

indepent volatility risk by allowing ξ to be free parameter [5] resulting in six parameters to be 

estimated θrisk={µ, ω, α, β, γ, ξ} and θrisk
* = {ω*, α*, β*,γ*}.Note that the star parameters are under 

risk neutral measures.  

   As shown in the table 5 from second to forth column, represent the results of joint MLE which use both 

returns and implied volatility of index (IVI)  to estimates the parameters. According to models fitting 

measured by MLE value, if we compare the joint MLE from second to third column is visible that the 

value increase significantly from 27309.42 to 27853.47 which shows a better data fitting as we move 

from symmetric to the asymmetric model. Thus if we allow for asymmetry to be free parameter we gain 

accuracy in terms of data fitting. Note that these two models allow only equity risk to be priced.  If we 

compare fourth column with second and third , the fitting increasing even further since the joint MLE 

increase form 27309.42  to 27853.47  to 28058.00 . This is because the pricing kernel of the last model 

that was mentioned (fourth column) capture better the connection between physical and risk neutral 

distribution indicating that the volatility risk is indeed in the market . 

 However if we compare first column with the forth we can observe that the return component of j-MLE 

in forth column (11460.50) is lower than the respective one in the first column (11491.76 ) obtained using 

separated MLE procedure. Furthermore the volatility component of joint MLE (16561.87 (γ≠0 & ξ≠0 ) ) 

is higher than the volatility part of MLE using separated procedure ( 16544.45 first column). However in 

total despite of we loss accuracy in fitting the return component of joint MLE we gain accuracy in 

volatility part for joint MLE and in total (28036.21<28058.00). The opposite phenomenon occurs to the 

paper of Hao&Zhang[12] where they find that if the joint MLE fails to improve the fitting of implied 
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volatility component of joint MLE compare to the implied volatility MLE that was estimated separately. 

This is happened because they did the scaling factor ξ but instead of that they compute the physical and 

risk neutral processes separately without connectivity parameterization . 

    The increase of joint- MLE value of  the model with risk premium (γ≠0 & ξ≠0) happened because  we 

let the scaling factor  (1.6389) that drives the connectivity of risk neutral and variance and physical 

variance to be priced. This parameter adds flexibility to the model and allow to increase the accuracy. 

Finally in the study of  Christoffersen, Heston, Jacobs [ 5] use S&P500/VIX and option MLE instead of 

volatility MLE. In the referred study [5] they report  parameter  ξ =1.2039 while ours is 1.6389. This may 

be due to the fact that we use longer series of data and more recent (1996-2005 S&P500  vs  2000-2014 

FTSE100) which includes more resent crisis events (financial crises 2008  ,see figure 1) and increase the 

volatility premium . This is a very significant point and explains why resent studies focus on volatility 

risk premium. An other significant point is that the FUTSE 100 seams to has more negative risk premium.  

 

	

Separated 
MLE 

	
Joint-MLE					

	 	

   

symmetric (HN) 
(γ=ξ=0)  

asymmetric 
(γ≠0 ,ξ=0) 

asymmetric 
&volatility 
premium          
(γ≠0 & ξ≠0 ) 

physical parameters θ           
µ 0.43 

 
15.40 -0.66 0.36 

ω -1.48E-18 
 

8.22E-15 2.23E-31 4.86E-46 
α 3.64E-06 

 
1.65E-05 3.95E-06 1.63E-06 

β 0.81 
 

0.9438 0.8426 0.8574 
γ 208.63 

 
0 189.76 280.52 

ξ=1/(1-2αξ)   
 

1 1 1.6389 

 
  

    risk neutral parameters θ*   
 

  
  ω* 6.04E-20 

 
8.22E-15 2.23E-31 7.96E-46 

α* 4.38E-06 
 

1.65E-05 3.95E-06 4.39E-06 
β* 0.86 

 
0.94 0.84 0.86 

γ* 169.24 
 

15.40 189.10 189.10 

 
  

 
  

  Log Likelihood   
 

  
  MLE return 11491.76 

 
16173.09 11314.77 11460.50 

MLE ivi 16544.45 
 

11135.54 16532.58 16561.87 
MLE total 28036.21 

 
27309.42 27853.47 28058.00 

 
  

 
  

  Persistent ρ 0.9713 
 

0.9438 0.9849 0.9860 
Persistent ρ* 0.9868 

 
0.9440 0.9839 0.9943 

 
 

Table 2  parameter results estimates 
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   The fitting properties of the three models estimated can be also examined   in  figures 2,3, and 4. These 

figures shows the observed implied volatility index(solid line) versus the theoretical one ( dashed line 

generated by three models) both in-sample  (2000-2014) and out-of-sample (2014-2016). An example of 

using the parameters estimated with j-MLE (forth column table 1) to calculate the spot variance is the 

following  

 

ℎ∗ 2 = 7.96 10!!" + 0.86 ℎ 1 + 4.39 10!!(  𝑧∗ 1 − 189.10 ℎ∗ 1    )! 

 

where   h*(1)=var(returns) 

              𝑧∗ 1 = 0 

substitute the parameters mentioned to eq 17  

ℎ∗ 𝑡 + 1 = 7.96 10!!" + 0.86 ℎ 𝑡 + 4.39 10!!(  𝑧∗ 𝑡 − 189.10 ℎ∗ 𝑡    )! 

 

solve the eq 16 for z*(t+1) 

 

𝑧∗ 𝑡 + 1 =
log 𝑠 𝑡 + 1

𝑠 𝑡 −  𝑟𝑓 + 12ℎ
∗ 𝑡 + 1

ℎ∗(𝑡 + 1)
; 

 

 

As shown in the figures the in-sample fit improves as we move form figure 2 (which account for 

symmetric model) with the figure 2 (which account for leverage effect γ that controls the skewness ). If 

we compare the figure 2 (asymmetric model) with the figure 3 (model which allow for risk neutral 

premium to be priced   γ ≠ 0 and ξ ≠ 0 ) the in-sample fitting improve even further. This also verified by 

the in-sample RMSE which equal to 4.5107, 4.1868 and 3.9963 respectively  for three models considered. 

In addition the same pattern is observed in the out-of-sample performance. 
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Figure 2 annualized variance dotted line compared with the implied volatility of index VFTSE for symmetric model estimated with J-MLE 
method for in sample and out of sample  

 
Figure 3  annualized variance dotted line compared with the implied volatility of index VFTSE for asymmetric model estimated with J-MLE 
method for in sample and out of sample 
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Figure 4  annualized variance dotted line compared with the implied volatility of index VFTSE for asymmetric and vol. risk premium  model 
estimated with J-MLE method for in sample and out of sample. 
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7 Results and discussion   
 

7.1 Economic implications 
 

7.1.1 Volatility risk premium  
 

  In order to investigate the performance of j-MLE approach to draw volatility risk premium we define the 
volatility risk premium as    

  (21) 

 

which denote the deference between the physical conditional volatility and the risk neutral conditional 

volatility. In order to produce the volatility premium we use the parameter that was estimated with the 

separated procedure. Then we calculate the variance time series of ht+1 and h*
t+1 from the historic daily 

prices of the index (using the eq 1&2 and 4&5 for physical and risk neutral measures respectively) .The 

deference of the square root of these two processes defines the VRPt (see eq 21 ) .This is shown in solid 

line in figure 5. The average VRPt is the dash-dotted line figure 5 . The same procedure followed to 

calculate the average volatility premium under the Joint-MLE model accounting for asymmetry and risk 

premium (𝛾 ≠ 0 & 𝜉 ≠ 0  ) . This is shown as the dash line in figure 5. 

 
Figure 5  in-sample annualized  square route volatility risk premium  (solid line) average annualized volatility under joint MLE model (risk 
premium model) (dashed line) average annualized volatility premium under 2 step model (dashed dotted line). 
 

  As shown in figure 5 the VRP drops bellow zero just one time imitating that the risk neutral variance in 

higher than the physical variance almost in all sample points. The dash-dotted line indicates the annual 

average volatility risk premium of -2.8%. According to the j-MLE model (with the pricing kernel which 
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allow variance risk ξ to be priced) the average  annual volatility risk premium is -3.01% (dash line figure 

5) which is close  to the value obtained by separated procedure (-2.8%). This negative value is also very 

close to other studies (see reference [17]  [18]) . These results indicate that the byers of market volatility 

want to pay a premium to hedge their position. This motive is equivalent to negative volatility premium. 

 

7.1.2 Persistence effect 
 

In order to investigate how options behave when news related to the underling index come (shock) and 

produce a vibration of volatility , an impulse response function of the conditional volatility should be 

considered. Furthermore is also important to compare the risk neutral and physical variance impulse 

responses. To do so we convert  equation (2)  into  an ARCH process as follows : 

 

 (22) 

 

 
then the impulse response function of k-day ahead horizon  is obtained as follows  

 

 

irf(k) =  α𝜌!  
!!!!!!! !∗ !

!∗
      (23) 

 

under risk neutral measures ℎ  is substituted by   h∗ = (α∗ +ω∗) / (1-ρ*)   )  with   ρ*= β + α* γ*2 . In 

figure 6 we present the irf under the risk neutral measure  for a specific shock 𝑧 = ±1,±3,±7 and the 

parameters account for the j-MLE modes with both equity and risk premium (𝛾 ≠ 0 & 𝜉 ≠ 0 ). As shown 

in  figure 6 the model has an approximated 250 k-day ahead horizon of forecast. Now if we  set  k=0 we 

can plot the sudden  return  innovation impact. 

 

 

Δℎ∗ z % =  αρ 
!!!!!!! !∗ !

!∗
        (24) 
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Figure 6  Impulse response of variance of k-day horizon for shocks  = ±1,±3,±7 of risk neutral variance for parameters of  asymmetric 

&volatility premium model (table 1 column 4) 
 

 
Figure 7  returns innovations shocks impact for risk neutral variance for j-MLE model with risk premium 
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7.1.3 Histogram  
 

In order to extract in-sample histogram of innovations under the risk neutral and physical measure for the 

asymmetric and equity and volatility risk premium model we filter the series of innovation z and  z*.  

As initial innovation and variance z(1) =z*(1)=0 and  h(0)=h(0)=var (returns of index). 

ℎ 2 = 𝜔 + 𝛽ℎ 1 + 𝑎(  𝑧 1 − 𝛾 ℎ 1    )! 

 

ℎ 𝑡 + 1 = 𝜔 + 𝛽ℎ 𝑡 + 𝑎(  𝑧 𝑧 − 𝛾 ℎ 𝑡    )! 

 

𝑧 𝑡 + 1 =
log 𝑠 𝑡 + 1

𝑠 𝑡 −  𝑟𝑓 −  𝑚 − 12 ∗ ℎ 𝑡 + 1

ℎ(𝑡 + 1)
 

 
 

ℎ∗ 2 = 𝜔∗ + 𝛽ℎ 1 + 𝑎∗(  𝑧∗ 1 − 𝛾∗ ℎ∗ 1    )! 

 

ℎ∗ 𝑡 + 1 = 𝜔∗ + 𝛽ℎ 𝑡 + 𝑎∗(  𝑧∗ 𝑡 − 𝛾∗ ℎ∗ 𝑡    )! 

 

𝑧∗ 𝑡 + 1 =
log 𝑠 𝑡 + 1

𝑠 𝑡 −  𝑟𝑓 + 12ℎ
∗ 𝑡 + 1

ℎ∗(𝑡 + 1)
; 

 
Then we calculate the frequency innovation series and divide by the number of z series to obtain the 

respective probabilities  

 
Figure 8 in-sample histogram of innovation z and z* for risk neutral dotted line and physical measures respectively  
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As shown in figure 8 there is clear deference between the two patterns. If compare the risk neutral 

histogram with the physical one , clearly we can clearly observe that the risk neutral one have variance 

more negative skewness and higher kurtosis.   

 

7.2 Option pricing results  
  

7.2.1 Semi-closed form European call valuation  
 
In order to compute the out-of-sample option prices ,we will  use the semi-closed form solution that was 

derived by Heston and Nandi (Appendix 9.8). They show that a European call option price with  

expiration period T and strike price K is calculated by 

 
 

 
 

(25) 
 
In this fοrmula, Re denοtes the real part οf a cοmplex number. f*(iφ) represent the  cοnditiοnal 

characteristic functiοn οf the lοg asset price using the risk neutral prοbabilities. i is the imaginary number. 

The put οption price can be οbtained by put-call parity. Heston and Nandi (2000) shοw that this functiοn 

οf the lοg asset price under the risk neutral measure: 

f ∗ i φ = E S!
! exp(A! + B!h!!!∗ )    (26) 

with coefficients  

At = At+1  + φ r + Βt+1 w -0.5 ln(1-2 α*  Bt+1 )   (27) 

B! = φ −0.5 + γ∗ − 0.5 γ∗!  + !.! !!!∗ !

!!!  !!!! !∗
+ β∗ Β!!!   (28) 

Despite the formula needs a numerical integration this calculation instead of straight forward calculation 

however the numerical integrations is behave well and is not time intensive. The variance ht+1 is the spot 

out of sample variance as we referred in section 6.  Note that we use semi-closed for solution instead of 

mode carlo simulation because closed form solution is available and in not time intensive. 

.  
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7.3 Option pricing results and comparison  
 
 

In order to investigate the option pricing  performance of the models we convert the valuation pricing 

results of all model into Black and Shores implied volatility and the calculate implied volatility RMSE. 

The IV RMSE is slit into 2 categories , the moneyness (S/K) and maturity in terms of days until 

expiration for each model. We split the results in order to have a more clear view on performance of the 

models across the maturity (t) and moneyness (i)  for three samples. The IVRMSE is then computed as 

follows: 

 
 

IV RMSE = !
!

  (𝜎!,!!"  !"#$%& − 𝜎!,!!"  !"#$%  )!!,!       (29) 
  
 

 
In tables the models refered as ‘sym’ ,’asym’,asym&  risk premium’ and  ‘BS’. The ‘sym’ is the 

symmetric model with only equity premium (γ=0 & ξ=0).  the ‘asym’ is the model with the equity 

premium and leverage effect ( 𝛾 ≠ 0 , 𝜉 = 0)  , the  ‘asym & risk premium’ is the model accounting for 

leverage effect and  equity premium and volatility risk premium (γ≠0 & ξ≠0). Our benchmark model is 

the Black-Sholes model (denoted as ‘BS’). All valuation results  for ‘asym’, ‘sym’ and ‘asym&  risk 

premium  corresponding to the risk neutral parameters (*) estimated using J-MLE reported  in Table 1.  
 
   Table 6 describe the out-of –sample  performance  of models for  sample 1 across moneyness for all 

maturities . If we compare the first with the second column we observe that when allowing for asymmetry 

the option pricing  performance improves as the RMSE decreases. This means that the asymmetric 

parameter γ plays a significant role in option price fit. Now if we move from the second one column to 

third we can observe a dramatic  decrease in IV RMSE as we allow volatility risk  to be priced. Thus the 

volatility risk premium  (ξ )  plays a very significant role compare to asymmetric parameter γ*. This result 

indicates the important of the volatility risk premium to improve the performance of GARCH option price  

fit. Now if we compare the models with the BS IV we can observe that the first two models fit worst than 

the BS model while the asymmetric & risk premium fits dramatically better. The symmetric GARCH 

models (sym) fits worse compare to BS for every moneyness. Finally we observe that all models the 

worst performance option-fit performance is for moneyness levels of  0.85-0.9 and  0.9-0.98.  
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IV RMSE by moneyness (S/K)    sample 1  

  

   moedel sym asym 

asym&  risk 

premium BS 

<0.79 0.2014 0.1430 0.0223 0.0642 

0.79 -0.8 0.2005 0.1414 0.0234 0.0652 

0.8-0.85 0.2023 0.1500 0.0217 0.0615 

0.85-0.9 0.1959 0.1521 0.0310 0.0668 

0.9-0.98 0.2056 0.1820 0.1031 0.1232 

0.98-1.04 0.1786 0.1673 0.0383 0.0828 

>1.04 0.1747 0.1679 0.0526 0.0866 

     
Table 3 out-of-sample IV RMSE sample 1 

 
 
 
   Now if the comparison is made across maturity (Table 4) we can observe similar results to previous 

comparison. However we can observe that the asym model performs better for maturities until 60 days 

than BS. In addition the table indicates that the worst performance of all models s observed for the short 

term maturities  (T<30).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5 and 6  also reports out-of-sample IV RMSE for sample 2 and 3. If we compare the first column 

(sym model ) with the second  we observe that when we allow for asymmetry (second column) the option 

IV RMSE by maturity (days to expiration)   sample 1 

 

moedel sym asym 

asym&  risk 

premium BS 

<30 0.3585 0.3569 0.3519 0.3793 

30-60 0.1311 0.0732 0.0488 0.0873 

60-120 0.1673 0.1041 0.0418 0.0843 

90-120 0.1768 0.1198 0.0408 0.0841 

120-200 0.1704 0.1210 0.0506 0.1001 

200-250 0.2057 0.1502 0.0295 0.0626 

>365 0.2339 0.1803 0.0166 0.0370 

Table 4 out-of-sample IV RMSE sample 1 along maturity (days to expiration) 
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pricing  performance increases as the RMSE decrease. This means that the asymmetric parameter γ plays 

a significant role in option fit again .Now if we move from the second column to third we can observe a 

dramatic  decrease in IV RMSE when we allow volatility risk  to be priced again. If compare the IV 

RMSE across the money less, we observe that the  option pricing performance decreases as the 

moneyness level increases  (for moneyness >0.79) . The asym&	 risk	 prem	 	 model	 has	 its	 worst	

performance	 for	 moneyness	 lower	 than	 0.79	 (0.0815	 sample	 2	 and	 0.0793	 sample	 3)	 the	 opposite	

phenomenon	happens	in	the	other	two	models.	

 
IV	RMSE	by	moneyness	(S/K)	sample	2	

	 	

moedel	 sym	 asym	

asym&		risk	

prem	 BS	

<0.79	 0.1600	 0.0893	 0.0815	 0.0886	

0.79	-0.8	 0.2436	 0.1660	 0.0087	 0.1537	

0.8-0.85	 0.2418	 0.1687	 0.0130	 0.1544	

0.85-0.9	 0.2388	 0.1753	 0.0277	 0.1567	

0.9-0.98	 0.2468	 0.1937	 0.0418	 0.1645	

0.98-1.04	 0.2607	 0.2110	 0.0352	 0.1718	

>1.04	 0.2730	 0.2259	 0.0401	 0.1815	

	 	 	 	 	
Table 5 out-of-sample IV	RMSE	bt	moneyness	(S/K)	sample	2 

 
 
 

IV	RMSE	by	moneyness	(S/K)	sample	3	

	 	

moedel	 sym	 asym	

asym&		risk	

prem	 BS	

<0.79	 0.1612	 0.0887	 0.0793	 0.0891	

0.79	-0.8	 0.2462	 0.1685	 0.0078	 0.1562	

0.8-0.85	 0.2444	 0.1709	 0.0128	 0.1569	

0.85-0.9	 0.2397	 0.1761	 0.0289	 0.1577	

0.9-0.98	 0.2466	 0.1932	 0.0435	 0.1654	

0.98-1.04	 0.2617	 0.2120	 0.0380	 0.1730	

>1.04	 0.2737	 0.2262	 0.0402	 0.1822	

Table 6 out-of-sample  IV	RMSE	by	moneyness	(S/K)	sample	3 
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When we split the IV RMSE results we can observe in terms of maturity (table 7 & 8) for samples 2 and 3 

that  the pricing performance decreases as the maturity increase for sym ,asym  and BS model. However 

the opposite behavior  occurs for  the asym&		risk	prem	model. 

 

IV	RMSE	by	maturity	(days	to	expiration)	sample	2	

	

model	 sym	 asym	 asym&		risk	prem	 BS	

<30	 0.1810	 0.1515	 0.0955	 0.1387	

30-60	 0.2278	 0.1693	 0.0604	 0.1684	

60-120	 0.2243	 0.1696	 0.0453	 0.1513	

90-120	 0.2292	 0.1715	 0.0383	 0.1506	

120-200	 0.2394	 0.1756	 0.0321	 0.1567	

200-250	 0.2426	 0.1771	 0.0280	 0.1570	

>365	 0.2486	 0.1877	 0.0293	 0.1585	

Table 7  out-of-sample IV	RMSE	by	maturity	(days	to	expiration)	sample	2 
 

 

 

IV	RMSE	by	maturity	(days	to	expiration)	sample	3	

	

model	 sym	 asym	 asym&		risk	prem	 BS	

<30	 0.1916	 0.1561	 0.0947	 0.1505	

30-60	 0.2267	 0.1684	 0.0607	 0.1682	

60-120	 0.2255	 0.1713	 0.0482	 0.1528	

90-120	 0.2319	 0.1721	 0.0378	 0.1536	

120-200	 0.2417	 0.1786	 0.0314	 0.1583	

200-250	 0.2436	 0.1773	 0.0289	 0.1584	

>365	 0.2495	 0.1886	 0.0284	 0.1595	

Table 8  out-of-sample IV	RMSE	by	maturity	(days	to	expiration)	for		sample	3 
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   Now in order to more clearly investigate the performance across moneyness we fix the maturity and 

split the data along moneyness for sample	2 and 3.The results are summarized in figure 9 and 10 .  If we 

compare the two figures we can observe that the results for samples	2 and 3 are identical. According to 

IV RMSE for short term maturity options (T<30) the error increase as the moneyness increases (0.85< 

S/K <1.02) for all models while the asym& risk premium model exhibiting a lower increase of  errors and 

the best option fit. According to options with maturity from one to two months (30 < T < 60) and the 

deepest out of the money call (S/K <0.79) , the symmetric models has the best option valuation 

performance compare to others which have almost same errors. The asymmetric and BS models have 

similar performance across the moneyness for this maturity. If move on the maturity form two to three 

months we can observe similar behavior for all models ,again the symmetric model has the best 

performance for deepest out-of-the money options. If we move further move in terms of maturity as 

shown in the figures 9 and 10 the options with long term maturity higher than three moths (T>90)  has 

more consistent behavior and are identical. Again the symmetric model has the best performance of IV 

RMSE for the deepest out-of-the-money (S/K <0.79)  options, which is the most difficult to value (in 

terms of IV RMSE). For maturity >90 days to expire the and moneyness form 0.79 to 0.85 asym&risk 

prem model dominates dramatically  the other models. As the moneyness increase (S/K>0.85) the error of 

the asym &risk prem model increase but not much.  

   To summarize for all maturities higher than 30 days the symmetric model has thee best option pricing 

performance with moneyness lower than 0.79. However , for all the moneyness categories the asym and 

vol risk prem model outperforms dramatically to all other models. 
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Figure 9 This figure shows the out-of-sample  IV RMSE for deferent maturity (days to expire) bounds and along the moneyness (S/K) for 

sample 2 which computed every Thursday for the out of sample period. The sym is the symmetric model with only equity premium the asym 
is the model with asymmetry (non zero γ) and the  asym is the model account for asymmetry equity and risk premium. All three models 

estimated with joint MLE. 
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Figure 10  This figure shows the out-of-sample IV RMSE for deferent maturity (days to expire) bounds and along the moneyness (S/K) for 

sample 3 which computed every Thursday for the out of sample period. The sym is the symmetric model with only equity premium the asym 
is the model with asymmetry (non zero γ) and the  asym is the model account for asymmetry equity and risk premium. All three models 

estimated with joint MLE. 
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8 Conclusion  
 
 
 
     This paper examines the option pricing performance of various GARCH models. These models are 

estimated using a MLE procedure which use two source of information the spot price of FTSE 100 index 

and its implied  volatility index. The filter can considered as equivalent to the use of a large cross-

sectional set of option prices with the additional advantage of being less computational and time expense. 

 According to our results  Joint MLE estimation outperforms the traditional MLE which use only the one 

component of joint MLE (underling  returns  in terms of volatility)  fitting. In addition under joint MLE ,  

the risk neutral parameterization that was used by mapping the physical parameters inside the Joint MLE.  

   We identify an average volatility risk premium of -3.01% using a joint MLE model with asymmetry 

equity and volatility risk premium  and  -2.8% when separated MLE procedure is implied. This indicates 

the importance of letting the volatility risk premium to be free parameter (incorporated in the model)  to 

better capture the behavior of investors. When estimating the variance response function we found an 

approximated 250 k-day ahead horizon of forecast for variance with volatility risk premium. In addition if 

compare the risk neutral innovation distribution with the physical one , clearly we can observe the risk 

neutral one have variance more negative skewness and higher kurtosis. 

     In terms of out-of-sample option pricing exercise the symmetric model has the best performance for 

short term maturities (in term of days to expiration) less than one month and deep out of the money calls 

with moneyness less than 0.79. The most general model outperforms BS sym and asymmetric models for 

all maturities (in term of days to expiration ) and moneyness higher than 0.79.  

    An interesting direction for futures studies is the estimation and option valuation using high frequency  

returns and implied volatility return data to improve further the short term performance of the models.  

An alternative direction would be to include jumps into the underlying return dynamics. 
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9 Aappendix     

9.1 Volatility Indexes Around the World 
 

 
Table 2 Volatility Indexes Around the World 
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9.2 Semi closed Heston-Nandi GARCH Call option pricing  function 
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