Induction Course in Quantitative Methods for Finance

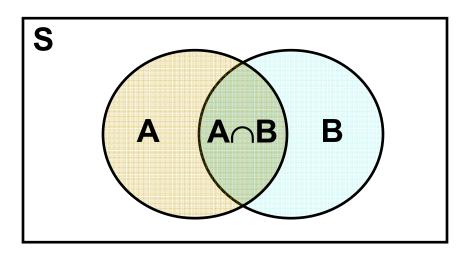
1

Probability, Discrete Random Variables and Probability Distributions

- Random Experiment a process leading to an uncertain outcome
- Basic Outcome a possible outcome of a random experiment
- Sample Space the collection of all possible outcomes of a random experiment
- Event any subset of basic outcomes from the sample space

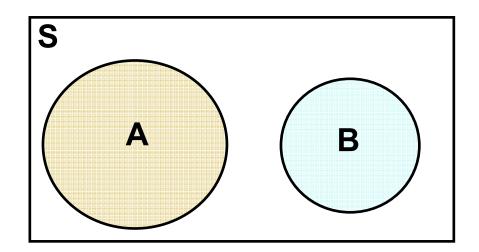
(continued)

 Intersection of Events – If A and B are two events in a sample space S, then the intersection, A ∩ B, is the set of all outcomes in S that belong to both A and B



(continued)

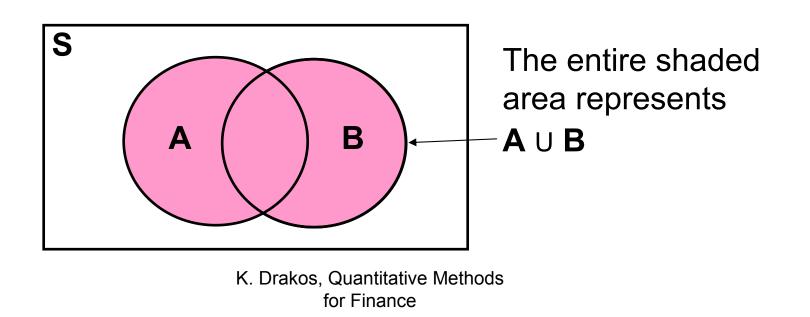
- A and B are Mutually Exclusive Events if they have no basic outcomes in common
 - i.e., the set $A \cap B$ is empty



(continued)

 Union of Events – If A and B are two events in a sample space S, then the union, A U B, is the set of all outcomes in S that belong to either

A or B



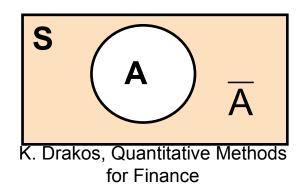
(continued)

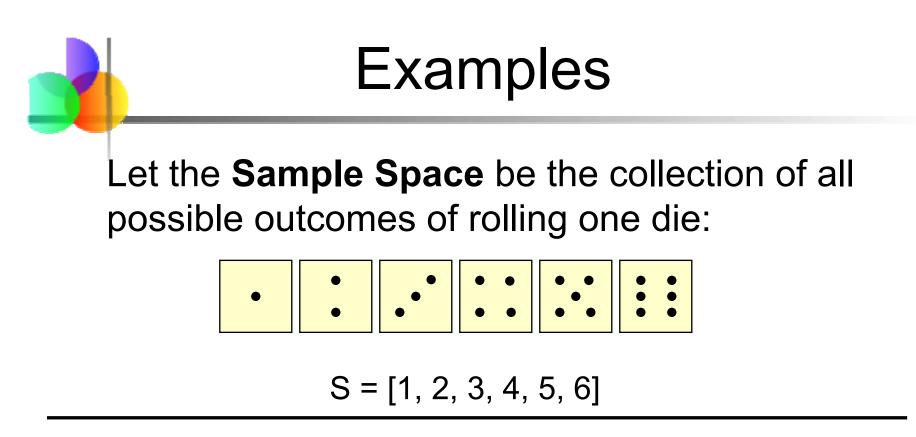
Events E₁, E₂, ... E_k are Collectively Exhaustive events if E₁ U E₂ U . . . U E_k = S

- i.e., the events completely cover the sample space

• The **Complement** of an event A is the set of all basic outcomes in the sample space that do not belong to A.

The complement is denoted \overline{A}





Let A be the event "Number rolled is even"

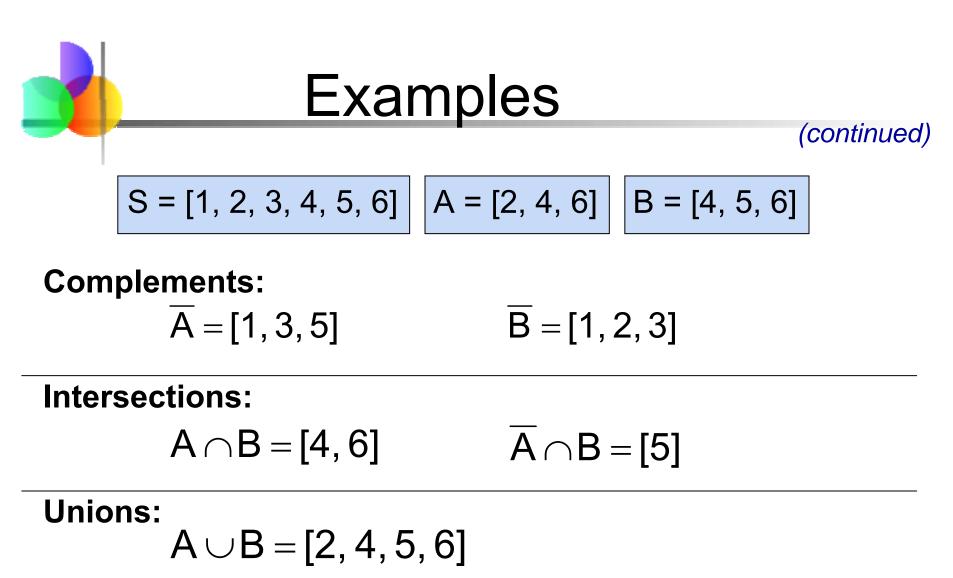
Let B be the event "Number rolled is at least 4"

Then

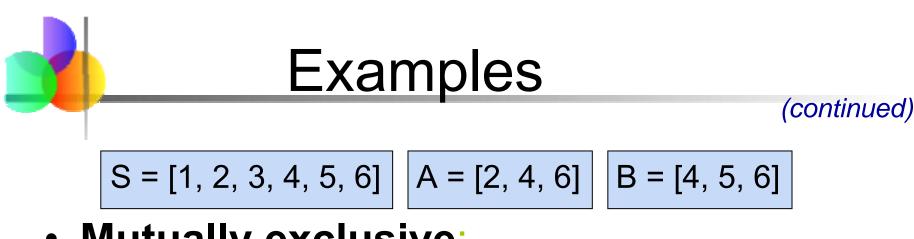
7

$$A = \begin{bmatrix} 2, 4, 6 \end{bmatrix} and B = \begin{bmatrix} 4, 5, 6 \end{bmatrix}$$

K. Drakos, Quantitative Methods
for Finance



 $A \cup A = [1, 2, 3, 4, 5, 6] = S$



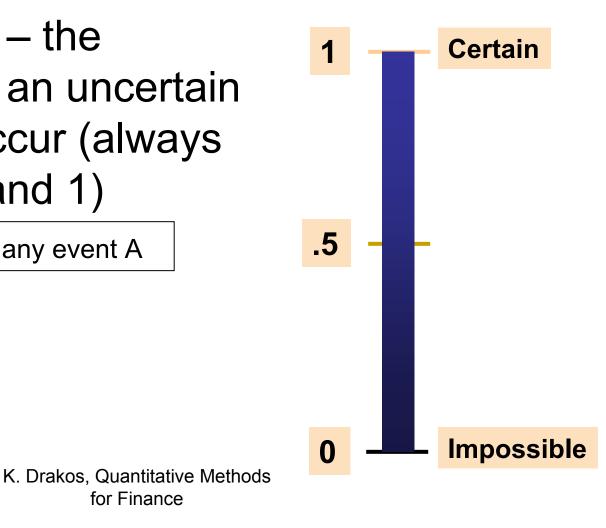
Mutually exclusive:

- A and B are not mutually exclusive
 - The outcomes 4 and 6 are common to both
- Collectively exhaustive:
 - A and B are not collectively exhaustive
 - $A \cup B$ does not contain 1 or 3

for Finance

 Probability – the chance that an uncertain event will occur (always between 0 and 1)

 $0 \le P(A) \le 1$ For any event A



Assessing Probability

• There are three approaches to assessing the probability of an uncertain event:

1. classical probability

probability of event A = $\frac{N_A}{N} = \frac{number of outcomes that satisfy the event}{total number of outcomes in the sample space}$

 Assumes all outcomes in the sample space are equally likely to occur

Counting the Possible Outcomes

 Use the Combinations formula to determine the number of combinations of n things taken k at a time

$$C_k^n = \frac{n!}{k!(n-k)!}$$

- where
 - n! = n(n-1)(n-2)...(1)
 - -0! = 1 by definition

Assessing Probability

Three approaches (continued)

2. relative frequency probability

probability of event $A = \lim_{n \to \infty} \frac{n_A}{n} = \frac{n \text{ umber of times that the event A has occured}}{n \text{ umber of times that the experiment is performed}}$

 the limit of the proportion of times that an event A occurs in a large number of trials, n

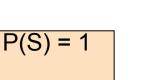
3. subjective probability

an individual opinion or belief about the probability of occurrence for Finance

1. If A is any event in the sample space S, then $0 \le P(A) \le 1$

2. Let A be an event in S, and let O_i denote the basic outcomes. Then

(the notation means that the summation is over all the basic outcomes in A)



$$\mathsf{P}(\mathsf{A}) = \sum_{\mathsf{A}} \mathsf{P}(\mathsf{O}_{\mathsf{i}})$$

• The Complement rule:

$$P(\overline{A}) = 1 - P(A)$$
 i.e., $P(A) + P(\overline{A}) = 1$

- The Addition rule:
 - The probability of the union of two events is

$$\mathsf{P}(\mathsf{A} \cup \mathsf{B}) = \mathsf{P}(\mathsf{A}) + \mathsf{P}(\mathsf{B}) - \mathsf{P}(\mathsf{A} \cap \mathsf{B})$$

A Probability Table

Probabilities and joint probabilities for two events A and B are summarized in this table:

	В	B	
Α	P(A ∩ B)	$P(A \cap \overline{B})$	P(A)
Ā	P(A∩B)	$P(\overline{A} \cap \overline{B})$	$P(\overline{A})$
	P(B)	$P(\overline{B})$	P(S)=1.0

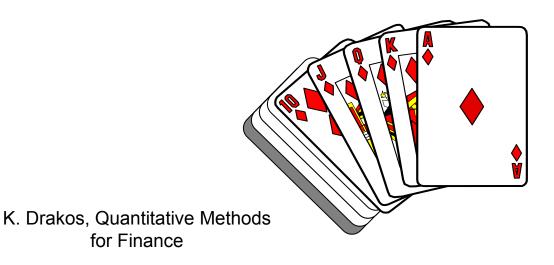
Addition Rule Example

Consider a standard deck of 52 cards, with four suits:

♥ ♣ ♦ ♠

Let event A = card is an Ace

Let event B = card is from a red suit

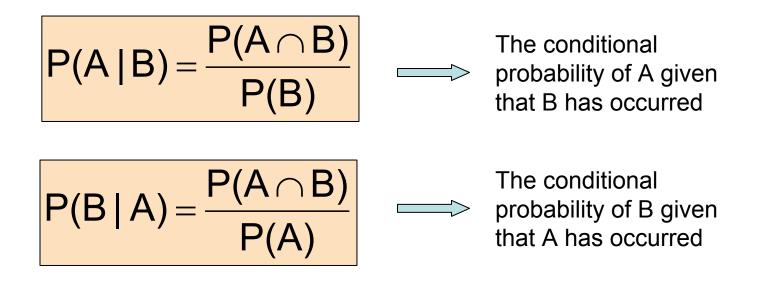


 $P(\text{Red} \cup \text{Ace}) = P(\text{Red}) + P(\text{Ace}) - P(\text{Red} \cap \text{Ace})$

= 20	6/52 + <mark>4</mark> /	52 - <mark>2</mark> /52	= 28/52	2
				Don't count
_	Co	lor		the two red aces twice!
Туре	Red	Black	Total	
Ace	2	2	4	
Non-Ace	24	24	48	
Total	26	26	52	

Conditional Probability

• A conditional probability is the probability of one event, given that another event has occurred:



Conditional Probability Example

- Of the cars on a used car lot, 70% have air conditioning (AC) and 40% have a CD player (CD). 20% of the cars have both.
- What is the probability that a car has a CD player, given that it has AC ?

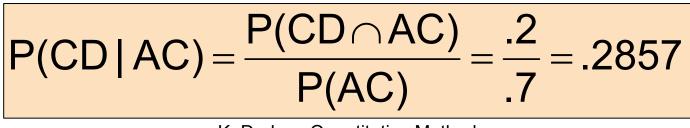
i.e., we want to find P(CD | AC)

Conditional Probability Example

Of the cars on a used car lot, 70% have air conditioning (AC) and 40% have a CD player (CD).

20% of the cars have both.

	CD	No CD	Total
AC	.2	.5	.7
No AC	.2	.1	.3
Total	.4	.6	1.0



Conditional Probability Example

(continued)

• Given AC, we only consider the top row (70% of the cars). Of these, 20% have a CD player. 20% of 70% is 28.57%.

		CD	No CD	Total	
	AC	.2	.5	.7	
	No AC	.2	.1	.3	
	Total	.4	.6	1.0	
P((CD AC)=	P(CD) P(A	racharrow AC)	$\frac{2}{.7}$ = .2	2857
	K L	Drakos Quantit	ativo Mathada		

Multiplication Rule

 Multiplication rule for two events A and B:

$$\mathsf{P}(\mathsf{A} \cap \mathsf{B}) = \mathsf{P}(\mathsf{A} \mid \mathsf{B})\mathsf{P}(\mathsf{B})$$

• also
$$P(A \cap B) = P(B|A)P(A)$$

Multiplication Rule Example

Туре

$$=\left(\frac{2}{4}\right)\left(\frac{4}{52}\right)=\frac{2}{52}$$

number of cards that are red and ace 2

total number of cards			52
Со	lor		
Red	Black	Total	
(2)	2	4	

Ace	(2)	2	4
Non-Ace	24	24	48
Total _{к.}	Drako 2,6 uantit	ative 26 hods	52

tor Finance

24

Statistical Independence

• Two events are statistically independent if and only if:

$$P(A \cap B) = P(A)P(B)$$

- Events A and B are independent when the probability of one event is not affected by the other event
- If A and B are independent, then

$$P(A | B) = P(A) \quad \text{if } P(B) > 0$$

$$P(B | A) = P(B) \quad \text{if } P(A) > 0$$
K. Drakos, Quantitative Methods
for Finance

Statistical Independence Example

• Of the cars on a used car lot, 70% have air conditioning (AC) and 40% have a CD player (CD). 20% of the cars have both.

	CD	No CD	Total
AC	.2	.5	.7
No AC	.2	.1	.3
Total	.4	.6	1.0

Are the events AC and CD statistically independent?

Statistical Independence Example

 CD
 No CD
 Total

 AC
 .2
 .5
 .7

 No AC
 .2
 .1
 .3

 Total
 .4
 .6
 1.0

 $P(AC \cap CD) = 0.2$

P(AC) = 0.7 P(CD) = 0.4 P(AC)P(CD) = (0.7)(0.4) = 0.28

 $P(AC \cap CD) = 0.2 \neq P(AC)P(CD) = 0.28$ So the two events are **not** statistically independent

(continued)

Bivariate Probabilities

Outcomes for bivariate events:

	B ₁	B ₂		B _k
A ₁	$P(A_1 \cap B_1)$	$P(A_1 \cap B_2)$		P(A₁∩B _k)
A ₂	$P(A_2 \cap B_1)$	$P(A_2 \cap B_2)$		$P(A_2 \cap B_k)$
	•	•		•
	•	•		•
	-	-	-	-
A _h	P(A _h ∩B ₁)	$P(A_h \cap B_2)$		P(A _h ∩B _k)

Joint and Marginal Probabilities

• The probability of a joint event, $A \cap B$:

 $P(A \cap B) = \frac{\text{number of outcomes satisfying A and B}}{\text{total number of elementary outcomes}}$

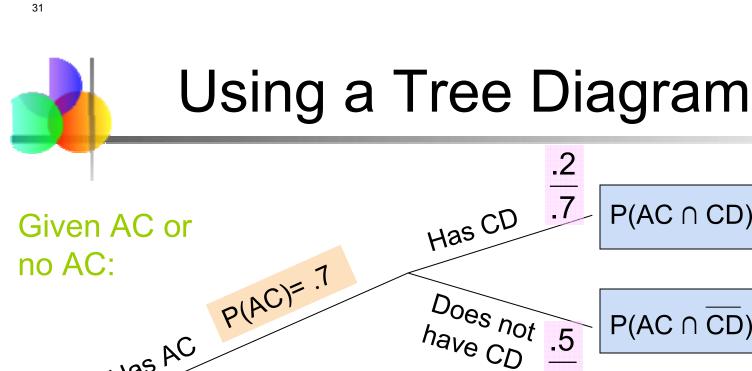
- Computing a marginal probability: $P(A) = P(A \cap B_1) + P(A \cap B_2) + \dots + P(A \cap B_k)$
- Where B₁, B₂, ..., B_k are k mutually exclusive and collectively exhaustive events

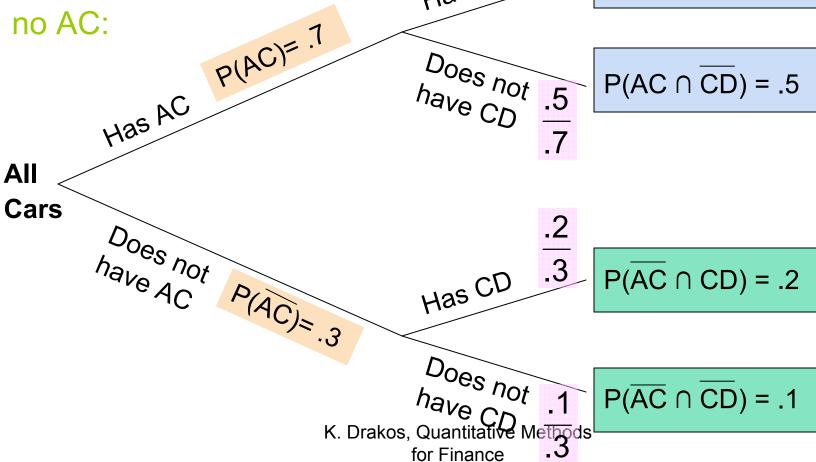
for Finance

Marginal Probability Example

P(Ace) = P(Ace \cap Red) + P(Ace \cap Black) = $\frac{2}{52} + \frac{2}{52} = \frac{4}{52}$

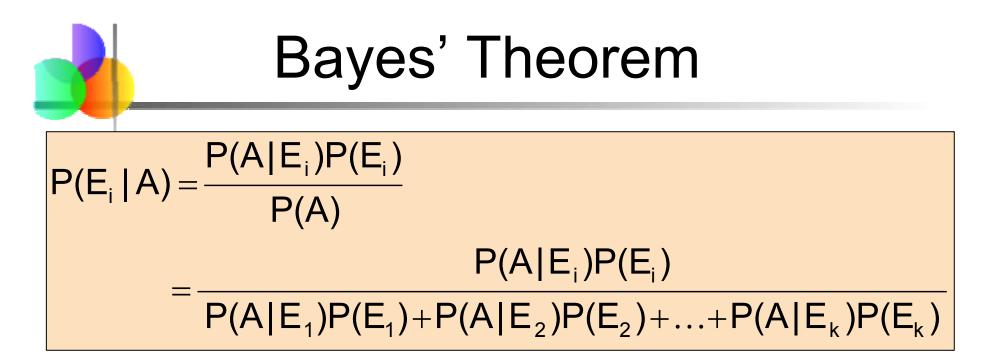
	Co		
Туре	Red	Black	Total
Ace	2	2	(4)
Non-Ace	24	24	48
Total	26	26	52





.2

 $P(AC \cap CD) = .2$



• where:

 $E_i = i^{th}$ event of k mutually exclusive and collectively

exhaustive events

A = new event that might impact $P(E_i)$

Bayes' Theorem Example

- A drilling company has estimated a 40% chance of striking oil for their new well.
- A detailed test has been scheduled for more information. Historically, 60% of successful wells have had detailed tests, and 20% of unsuccessful wells have had detailed tests.
- Given that this well has been scheduled for a detailed test, what is the probability that the well will be successful?

Bayes' Theorem Example

(continued)

• Let S = successful well

U = unsuccessful well

- P(S) = .4, P(U) = .6 (prior probabilities)
- Define the detailed test event as D
- Conditional probabilities:

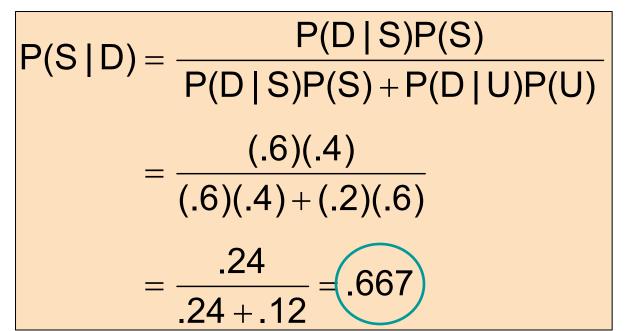
$$P(D|S) = .6$$
 $P(D|U) = .2$

• Goal is to find P(S|D)

Bayes' Theorem Example

(continued)

Apply Bayes' Theorem:

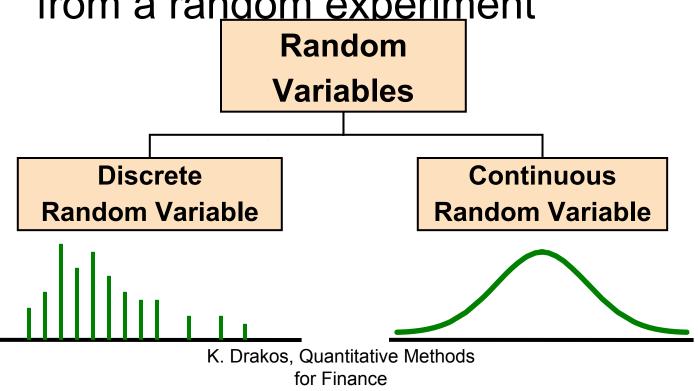


So the revised probability of success (from the original estimate of .4), given that this well has been scheduled for a detailed test, is for printing the state of the state

Discrete Random Variables and Probability Distributions

Introduction to Probability Distributions

- Random Variable
 - Represents a possible numerical value from a random experiment

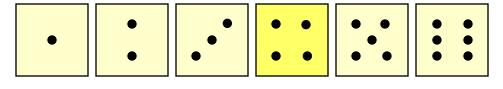


Discrete Random Variables

Can only take on a countable number of values

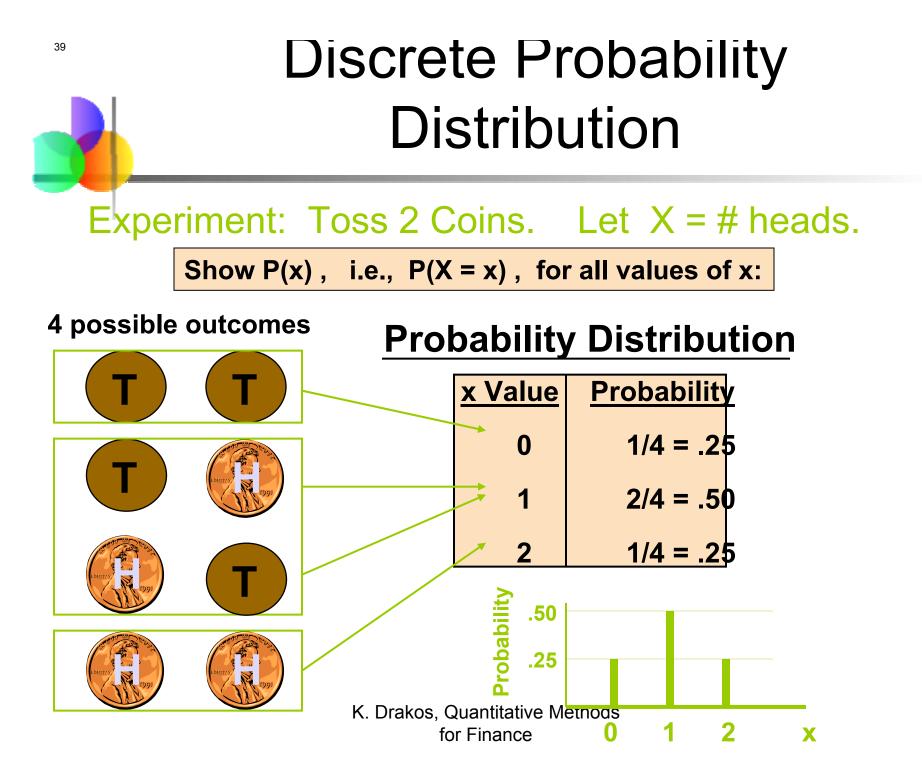
Examples:

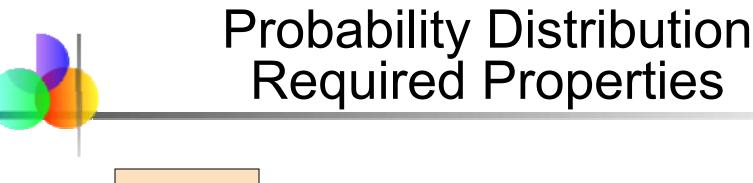
– Roll a die twice



Let X be the number of times 4 comes up (then X could be 0, 1, or 2 times)

 Toss a coin 5 times.
 Let X be the number of heads (then X = 0, 1, 2, 3, 4, or 5)





- $P(x) \ge 0$ for any value of x
- The individual probabilities sum to 1;

$$\sum_{x} P(x) = 1$$

(The notation indicates summation over all possible x values)

Cumulative Probability Function

 The cumulative probability function, denoted F(x₀), shows the probability that X is less than or equal to x₀

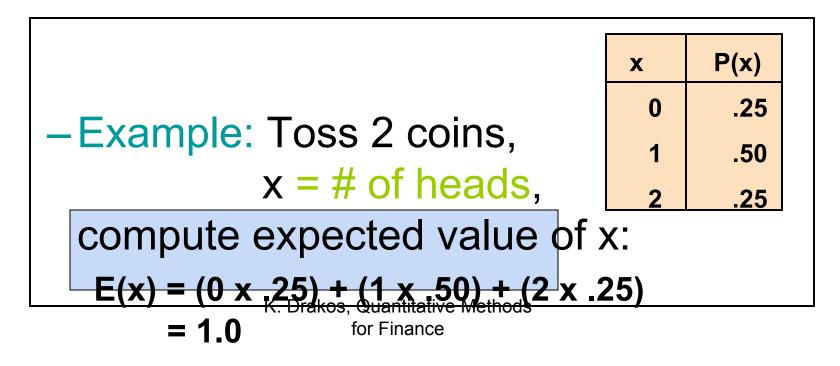
$$\mathsf{F}(\mathsf{X}_0) = \mathsf{P}(\mathsf{X} \leq \mathsf{X}_0)$$

• In other word
$$F(x_0) = \sum_{x \le x_0} P(x)$$

Expected Value

• Expected Value (or mean) of a discrete distribution (Weighted Average)

$$\mu = E(x) = \sum_{x} x P(x)$$



Variance and Standard Deviation

Variance of a discrete random variable X

$$\sigma^2 = \mathsf{E}(X - \mu)^2 = \sum_x (x - \mu)^2 \mathsf{P}(x)$$

• Standard Deviation of a discrete random variable X

$$\sigma = \sqrt{\sigma^2} = \sqrt{\sum_{x} (x - \mu)^2 P(x)}$$

Standard Deviation Example

- Example: Toss 2 coins, X = # heads, compute standard deviation (recall E(x) = 1) $\sigma = \sqrt{\sum_{x} (x - \mu)^2 P(x)}$

$$\sigma = \sqrt{(0-1)^2(.25) + (1-1)^2(.50) + (2-1)^2(.25)} = \sqrt{.50} = .707$$
Possible number of heads
= 0, 1, or 2
K. Drakos, Quantitative Methods

Functions of Random Variables

 If P(x) is the probability function of a discrete random variable X, and g(X) is some function of X, then the expected value of function g is

$$\mathsf{E}[g(X)] = \sum_{x} g(x) \mathsf{P}(x)$$

Linear Functions of Random Variables

• Let a and b be any constants.

• a) E(a) = a and Var(a) = 0

i.e., if a random variable always takes the value a, it will have mean a and variance 0

• b) $E(bX) = b\mu_X$ and $Var(bX) = b^2 \sigma_X^2$

i.e., the expected value of $b \cdot X$ is $b \cdot E(x)$

Linear Functions of Random Variables

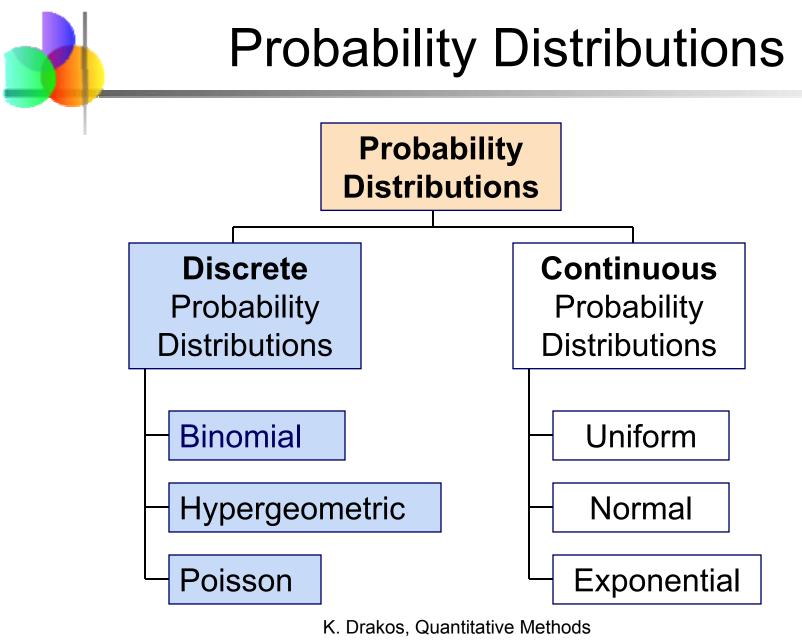
(continued)

- Let random variable X have mean μ_x and variance σ_x^2
- Let a and b be any constants.
- Let Y = a + bX
- Then the mean and variance of Y are

$$\mu_{Y} = E(a+bX) = a+b\mu_{X}$$

$$\sigma^2_{\rm Y} = Var(a+bX) = b^2 \sigma^2_{\rm X}$$

• so that the standard deviation of Y is $\sigma_{y} = |b|\sigma_{x}$



for Finance

Bernoulli Distribution

- Consider only two outcomes: "success" or "failure"
- Let P denote the probability of success
- Let 1 P be the probability of failure
- Define random variable X:

x = 1 if success, x = 0 if failure

• Then the Bernoulli probability function is

$$P(0) = (1-P)$$
 and $P(1) = P$

Bernoulli Distribution Mean and Variance The mean is µ = P

$$\mu = E(X) = \sum_{X} xP(x) = (0)(1-P) + (1)P = P$$

• The variance is
$$\sigma^2 = P(1 - P)$$

$$\sigma^2 = E[(X - \mu)^2] = \sum_{x} (x - \mu)^2 P(x)$$

$$=(0-P)^{2}(1-P)+(1-P)^{2}P=P(1-P)$$

Sequences of x Successes in n Trials

• The number of sequences with x successes in n independent trials is:

$$C_x^n = \frac{n!}{x!(n-x)!}$$

Where $n! = n \cdot (n - 1) \cdot (n - 2) \cdot ... \cdot 1$ and 0! = 1

 These sequences are mutually exclusive, since no two can occur at the same time K. Drakos, Quantitative Methods for Finance

Binomial Probability Distribution

- A fixed number of observations, n
 - e.g., 15 tosses of a coin; ten light bulbs taken from a warehouse
- Two mutually exclusive and collectively exhaustive categories
 - e.g., head or tail in each toss of a coin; defective or not defective light bulb
 - Generally called "success" and "failure"
 - Probability of success is P, probability of failure is 1 P
- Constant probability for each observation
 - e.g., Probability of getting a tail is the same each time we toss the coin
- Observations are independent
 - The outcome of one observation does not affect the outcome of the Other, Quantitative Methods for Finance

Possible Binomial Distribution Settings

- A manufacturing plant labels items as either defective or acceptable
- A firm bidding for contracts will either get a contract or not
- A marketing research firm receives survey responses of "yes I will buy" or "no I will not"
- New job applicants either accept the offer or reject it

Binomial Distribution Formula

$$P(x) = \frac{n!}{x!(n-x)!}P^{x}(1-P)^{n-x}$$

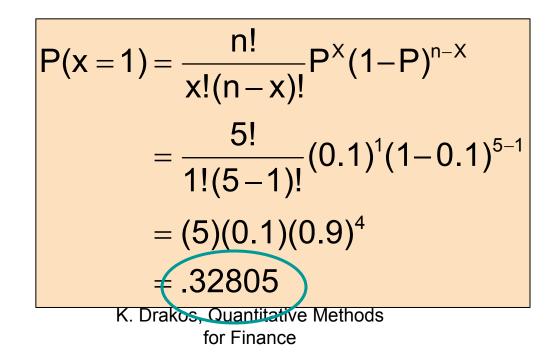
- P(x) = probability of x successes in n trials, with probability of success P on each trial
 - x = number of 'successes' in sample, (x = 0, 1, 2, ..., n)
 - n = sample size (number of trials or observations)
 - P = probability of "success"

```
Example: Flip a coin four
times, let x = \# heads:
n = 4
P = 0.5
1 - P = (1 - 0.5) = 0.5
x = 0, 1, 2, 3, 4
```


Calculating a Binomial Probability

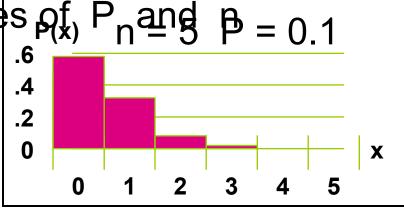
What is the probability of one success in five observations if the probability of success is 0.1?

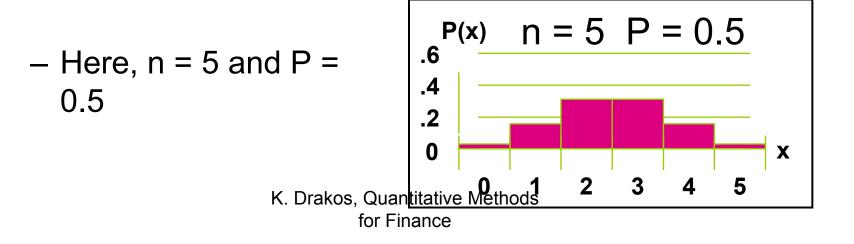
x = 1, n = 5, and P = 0.1



Binomial Distribution

- The shape of the binomial distribution depends on the values $\rho(f_x) P_n and B_{\mu} =$
- Here, n = 5 and P = 0.1





Binomial Distribution Mean and Variance

Mean

$$\mu = E(x) = nP$$

• Variance and Standard Deviation $\sigma^2 = nP(1-P)$

$$\sigma = \sqrt{nP(1-P)}$$

Where n = sample size

P = probability of success

(1 – P) = probability of failure K. Drakos, Quantitative Methods for Finance

Binomial Characteristics

Examples

$$\mu = nP = (5)(0.1) = 0.5$$

$$p(x) \quad n = 5 \quad P = 0.1$$

$$= 0.6708 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad x = 5 \quad P = 0.1$$

$$\mu = nP = (5)(0.5) = 2.5$$

$$\sigma = \sqrt{nP(1-P)} = \sqrt{(5)(0.5)(1-0.5)}$$

$$= 1.118$$

$$P(x) \quad n = 5 \quad P = 0.5$$

$$A_{12} \quad A_{13} \quad A$$

The Poisson Distribution

- Apply the Poisson Distribution when:
 - You wish to count the number of times an event occurs in a given continuous interval
 - The probability that an event occurs in one subinterval is very small and is the same for all subintervals
 - The number of events that occur in one subinterval is independent of the number of events that occur in the other subintervals
 - There can be no more than one occurrence in each subinterval
 - The average number of events per unit is λ (lambda)

$$\mathsf{P}(\mathsf{x}) = \frac{\mathrm{e}^{-\lambda} \lambda^{\mathsf{x}}}{\mathsf{x}!}$$

where:

- x = number of successes per unit
- λ = expected number of successes per unit
- e = base of the natural logarithm system (2.71828...)

Poisson Distribution Characteristics

Mean

$$\mu = E(x) = \lambda$$

Variance and Standard Deviation

$$\sigma^{2} = E[(X - \mu)^{2}] = \lambda$$
$$\sigma = \sqrt{\lambda}$$

where λ = expected number of successes per unit

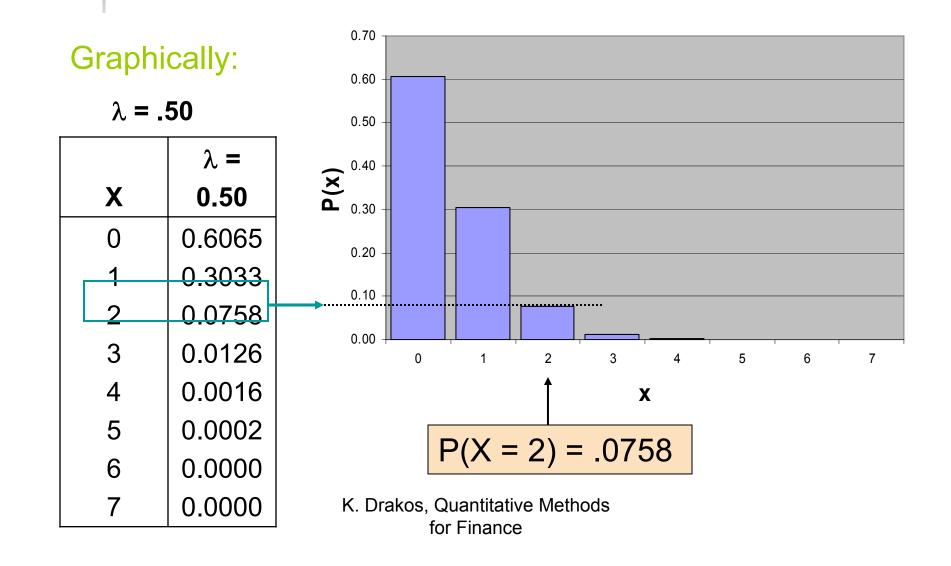
Using Poisson Tables

	λ								
x	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90
0	0.904	0.818	0.740	0.670	0.606	0.548	0.496	0.449	0.4066
1	0.090	0.163	0.222	0.268	0.303	0.329	0.347	0.359	0.3659
2	0.004	0.016	0.033	0.053	0.075	0.098	0.121	0.143	0.1647
3	0.000	0.001	0.003	0.007	0.012	0.019	0.028	0.038	0.0494
4	0.000	0.000	0.000	0.000	0.001	0.003	0.005	0.007	0.0111
5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.0020
6	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0003
7	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000

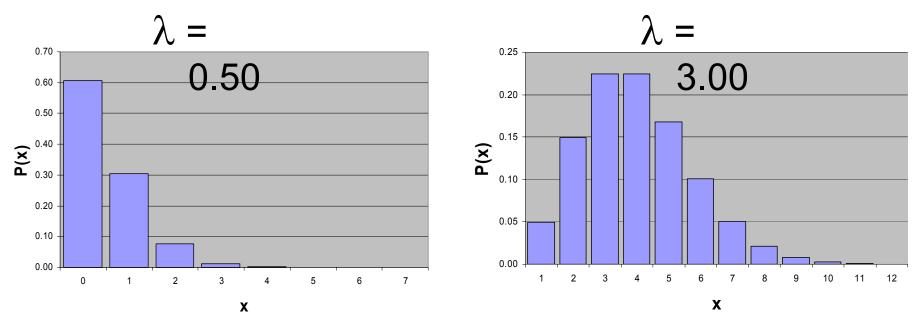
Example: Find P(X = 2) if $\lambda = .50$

$$P(X=2) = \frac{e^{-\lambda}\lambda^{X}}{X!} = \frac{e^{-0.50}(0.50)^{2}}{2!} = .0758$$

Graph of Poisson Probabilities



- The shape of the Poisson Distribution depends on the parameter λ :



Joint Probability Functions

 A joint probability function is used to express the probability that X takes the specific value x and simultaneously Y takes the value y, as a function of x and y

$$\mathsf{P}(\mathsf{x},\mathsf{y}) = \mathsf{P}(\mathsf{X} = \mathsf{x} \cap \mathsf{Y} = \mathsf{y})$$

• The marginal probabilities are

$$\mathsf{P}(\mathsf{x}) = \sum_{\mathsf{y}} \mathsf{P}(\mathsf{x},\mathsf{y})$$

$$P(y) = \sum_{x} P(x, y)$$

Conditional Probability Functions

 The conditional probability function of the random variable Y expresses the probability that Y takes the value y when the value x is specified for X.

$$\mathsf{P}(\mathsf{y} \mid \mathsf{x}) = \frac{\mathsf{P}(\mathsf{x}, \mathsf{y})}{\mathsf{P}(\mathsf{x})}$$

• Similarly, the conditional probability function of X, given Y = y is: P(x, y)

$$\mathsf{P}(\mathsf{x} \mid \mathsf{y}) = \frac{\mathsf{P}(\mathsf{x},\mathsf{y})}{\mathsf{P}(\mathsf{y})}$$

K. Drakos, Quantitative Methods for Finance

Independence

 The jointly distributed random variables X and Y are said to be independent if and only if their joint probability function is the product of their marginal probability functions:

$$P(x,y) = P(x)P(y)$$

for all possible pairs of values x and y

A set of k random variables are independent if and only if

$$\mathsf{P}(\mathsf{x}_1, \mathsf{x}_2, \cdots, \mathsf{x}_k) = \mathsf{P}(\mathsf{x}_1) \mathsf{P}(\mathsf{x}_2) \cdots \mathsf{P}(\mathsf{x}_k)$$

Covariance

- Let X and Y be discrete random variables with means μ_X and μ_Y
- The expected value of (X $\mu_X)(Y$ $\mu_Y)$ is called the covariance between X and Y
- For discrete random variables

$$Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] = \sum_x \sum_y (x - \mu_x)(y - \mu_y)P(x, y)$$

An equivalent expression is

$$Cov(X, Y) = E(XY) - \mu_x \mu_y = \sum_x \sum_y xy P(x, y) - \mu_x \mu_y$$

- The covariance measures the strength of the linear relationship between two variables
- If two random variables are statistically independent, the covariance between them is 0
 - The converse is not necessarily true

Correlation

• The correlation between X and Y is:

$$\rho = Corr(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

- ρ = 0 $\, \Rightarrow \,$ no linear relationship between X and Y
- $\rho > 0 \Rightarrow$ positive linear relationship between X and Y
 - » when X is high (low) then Y is likely to be high (low)
 - » ρ = +1 \Rightarrow perfect positive linear dependency
- $\rho < 0 \Rightarrow$ negative linear relationship between X and Y
 - » $\rho = -1 \implies$ perfect negative linear dependency
 - » when X is high (low) then Y is likely to be low

(high). Drakos, Quantitative Methods

Portfolio Analysis

- Let random variable X be the price for stock A
- Let random variable Y be the price for stock B
- The market value, W, for the portfolio is given by the linear function

$$W = aX + bY$$

- (a is the number of shares of stock A,
 - b is the number of shares of stock B)

Portfolio Analysis

(continued)

• The mean value for W is

$$\mu_{W} = E[W] = E[aX + bY]$$
$$= a\mu_{X} + b\mu_{Y}$$

• The variance for W is

$$\sigma_W^2 = a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2abCov(X,Y)$$

or using the correlation formula

$$\sigma_{W}^{2} = a^{2}\sigma_{X}^{2} + b^{2}\sigma_{Y}^{2} + 2abCorr(X,Y)\sigma_{X}\sigma_{Y}$$

Example: Investment Returns

Return per \$1,000 for two types of investments

		Investment				
P(x _i y _i)	Economic condition	Passive Fund X	Aggressive Fund Y			
.2	Recession	- \$ 25	- \$200			
.5	Stable Economy	+ 50	+ 60			
.3	Expanding Economy	+ 100	+ 350			

 $E(x) = \mu_x = (-25)(.2) + (50)(.5) + (100)(.3) = 50$

$$E(y) = \mu_v = (-200)(.2) + (60)(.5) + (350)(.3) = 95$$

Deviation for Investment Returns

		Investment				
P(x _i y _i)	Economic condition	Passive Fund X	Aggressive Fund Y			
0.2	Recession	- \$ 25	- \$200			
0.5	Stable Economy	+ 50	+ 60			
0.3	Expanding Economy	+ 100	+ 350			

$$\sigma_{\rm X} = \sqrt{(-25-50)^2(0.2) + (50-50)^2(0.5) + (100-50)^2(0.3)}$$

= 43.30

$$\sigma_{y} = \sqrt{(-200 - 95)^{2}(0.2) + (60 - 95)^{2}(0.5) + (350 - 95)^{2}(0.3)}$$

= 193.71

Covariance for Investment Returns

		Investment				
P(x _i y _i)	Economic condition	Passive Fund X	Aggressive Fund Y			
.2	Recession	- \$ 25	- \$200			
.5	Stable Economy	+ 50	+ 60			
.3	Expanding Economy	+ 100	+ 350			

Cov(X, Y) = (-25 - 50)(-200 - 95)(.2) + (50 - 50)(60 - 95)(.5) + (100 - 50)(350 - 95)(.3) = 8250

Portfolio Example

Investment X: $\mu_x = 50 \ \sigma_x = 43.30$ Investment Y: $\mu_y = 95 \ \sigma_y = 193.21$ $\sigma_{xy} = 8250$

Suppose 40% of the portfolio (P) is in Investment X and 60% is in Investment Y:

E(P) = .4(50) + (.6)(95) = 77

$$\sigma_{P} = \sqrt{(.4)^{2}(43.30)^{2} + (.6)^{2}(193.21)^{2} + 2(.4)(.6)(8250)}$$

= 133.04

The portfolio return and portfolio variability are between the values for investments X and Y considered individually

Interpreting the Results for Investment Returns

• The aggressive fund has a higher expected return, but much more risk

$$\mu_y = 95 > \mu_x = 50$$

but
 $\sigma_y = 193.21 > \sigma_x = 43.30$

 The Covariance of 8250 indicates that the two investments are positively related and will vary in the same direction

Continuous Random Variables and Probability Distributions

Continuous Probability Distributions

- A continuous random variable is a variable that can assume any value in an interval
 - thickness of an item
 - time required to complete a task
 - temperature
 - height, in inches
- These can potentially take on any value, depending only on the ability to measure accurately.

for Finance

Cumulative Distribution Function

The cumulative distribution function, F(x), for a continuous random variable X expresses the probability that X does not exceed the value of x

$$F(x) = P(X \le x)$$

 Let a and b be two possible values of X, with a < b. The probability that X lies between a and b is

$$P(a < X < b) = F(b) - F(a)$$

Probability Density Function

The probability density function, f(x), of random variable X has the following properties:

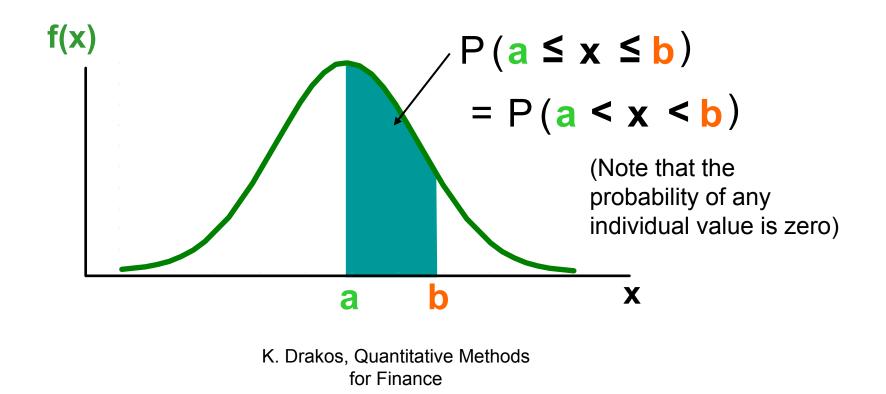
- 1. f(x) > 0 for all values of x
- 2. The area under the probability density function f(x) over all values of the random variable X is equal to 1.0
- 3. The probability that X lies between two values is the area under the density function graph between the two values
- 4. The cumulative density function $F(x_0)$ is the area under the probability density function f(x) from the minimum x_m value up to x_0

$$F(x_0) = \int_{x_m}^{x_0} f(x) dx$$

K. Drakos, Quantitative Methods for Finance

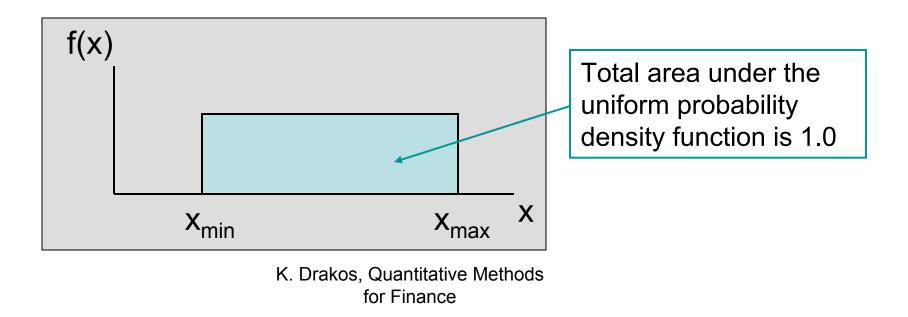
Probability as an Area

Shaded area under the curve is the probability that X is between a and b



The Uniform Distribution

 The uniform distribution is a probability distribution that has equal probabilities for all possible outcomes of the random variable



The Uniform Distribution

(continued)

The Continuous Uniform Distribution:

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \le x \le b \\ 0 & \text{otherwise} \end{cases}$$

where

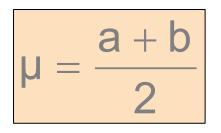
f(x) = value of the density function at any x value

a = minimum value of x

b = maximum value of x

Properties of the Uniform Distribution

The mean of a uniform distribution is



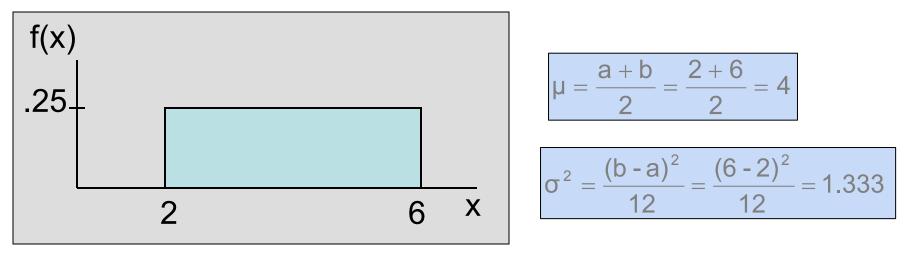
• The variance is

$$\sigma^2 = \frac{(b-a)^2}{12}$$

Uniform Distribution Example

Example: Uniform probability distribution over the range $2 \le x \le 6$:

$$f(x) = \frac{1}{6-2} = .25$$
 for $2 \le x \le 6$



Expectations for Continuous Random Variables

- The mean of X, denoted μ_X , is defined as the expected value of X

$$\mu_X = E(X)$$

• The variance of X, denoted σ_X^2 , is defined as the expectation of the squared deviation, $(X - \mu_X)^2$, of a random variable from its mean

$$\sigma_{X}^{2} = E[(X - \mu_{X})^{2}]$$

Linear Functions of Variables

- Let W = a + bX, where X has mean μ_X and variance σ_{x}^2 , and a and b are constants
- Then the mean of W is

$$\mu_{W} = E(a+bX) = a+b\mu_{X}$$

• the variance is

$$\sigma_{W}^{2} = Var(a+bX) = b^{2}\sigma_{X}^{2}$$

the standard deviation of W is

$$\sigma_w = \left| b \right| \sigma_x$$

K. Drakos, Quantitative Methods for Finance

• An important special case of the previous results is the standardized random variable

$$Z = \frac{X - \mu_X}{\sigma_X}$$

• which has a mean 0 and variance 1

The Normal Distribution

(continued)

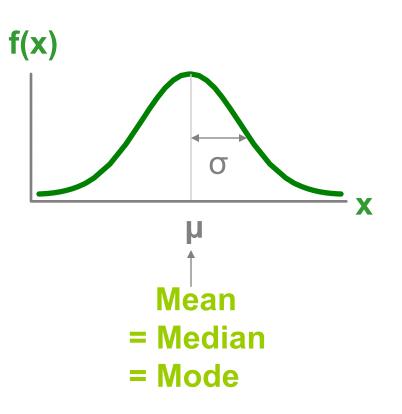
- Bell Shaped'
- Symmetrical
- Mean, Median and Mode are Equal

Location is determined by the mean, $\boldsymbol{\mu}$

Spread is determined by the standard deviation, $\boldsymbol{\sigma}$

The random variable has an infinite theoretical range:

+ ∞ to $-\infty$

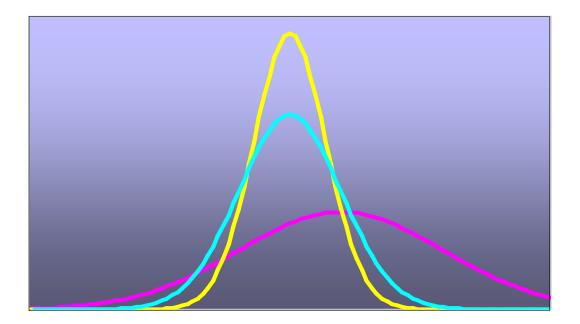


The Normal Distribution

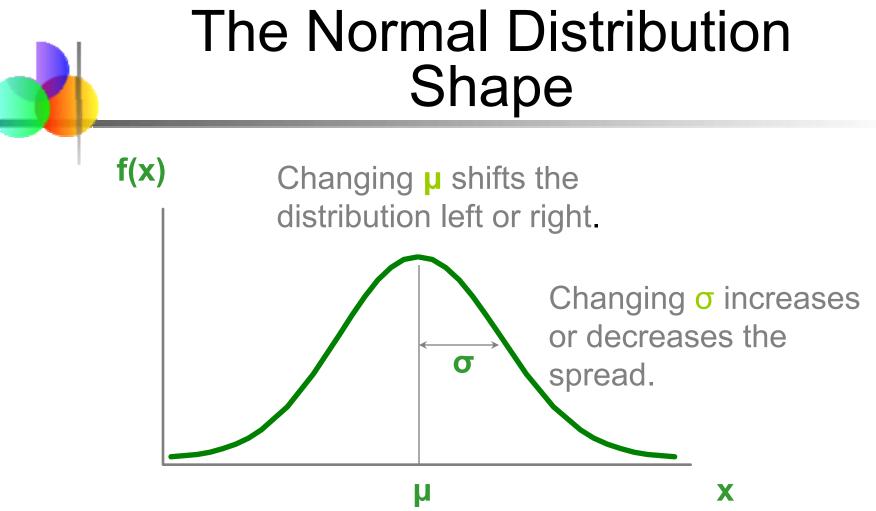
(continued)

- The normal distribution closely approximates the probability distributions of a wide range of random variables
- Distributions of sample means approach a normal distribution given a "large" sample size
- Computations of probabilities are direct and elegant
- The normal probability distribution has led to good business decisions for a number of applications

Many Normal Distributions



By varying the parameters μ and σ , we obtain different normal distributions



Given the mean μ and variance σ we define the normal distribution using the notation K. Drakos, Quarter Methods for Finance

The Normal Probability Density Function

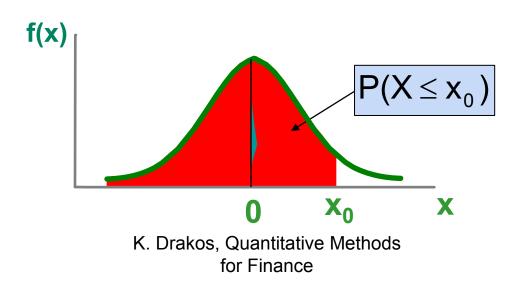
The formula for the normal probability density function is

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}$$

- Where e = the mathematical constant approximated by 2.71828
 - π = the mathematical constant approximated by 3.14159
 - μ = the population mean
 - σ = the population standard deviation
 - x = any value of the continuous variable, $-\infty < x < \infty$

 For a normal random variable X with mean μ and variance σ², i.e., X~N(μ, σ²), the cumulative distribution function is

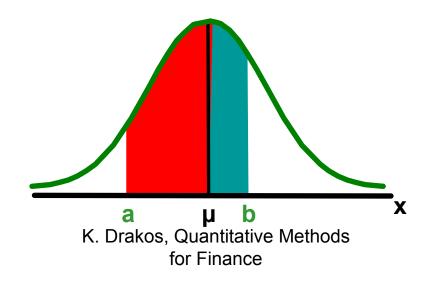
$$\mathsf{F}(\mathsf{X}_0) = \mathsf{P}(\mathsf{X} \leq \mathsf{X}_0)$$

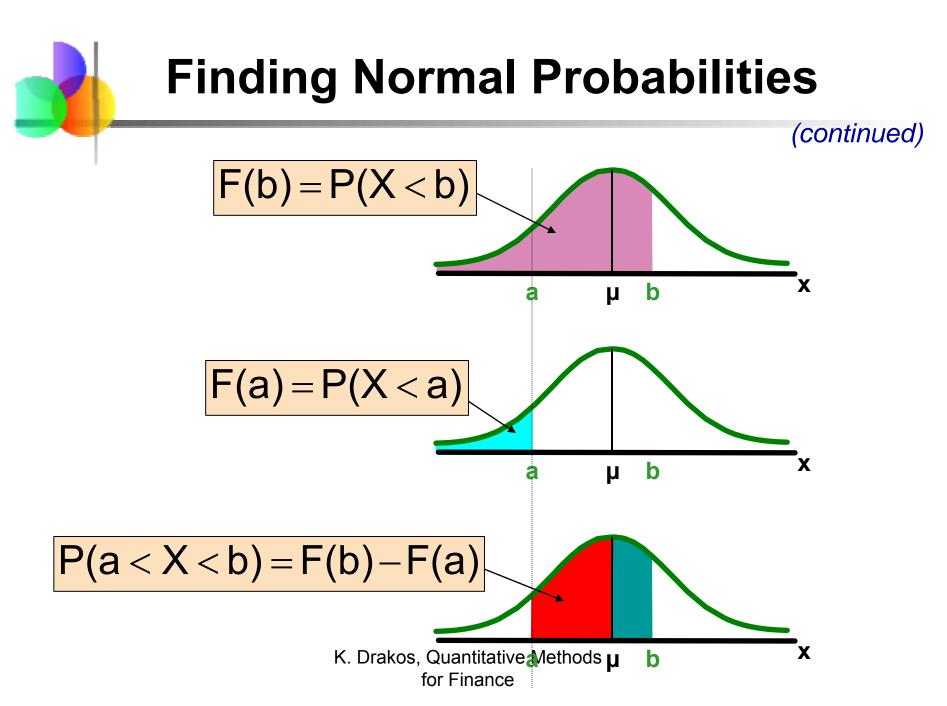


Finding Normal Probabilities

The probability for a range of values is measured by the area under the curve

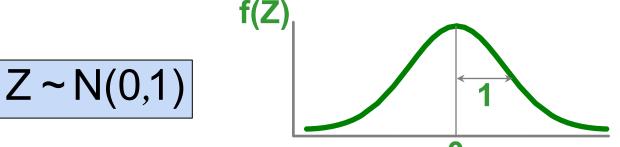
$$P(a < X < b) = F(b) - F(a)$$





The Standardized Normal

Any normal distribution (with any mean and variance combination) can be transformed into the standardized normal distribution (Z), with mean 0 and variance 1 f(z)



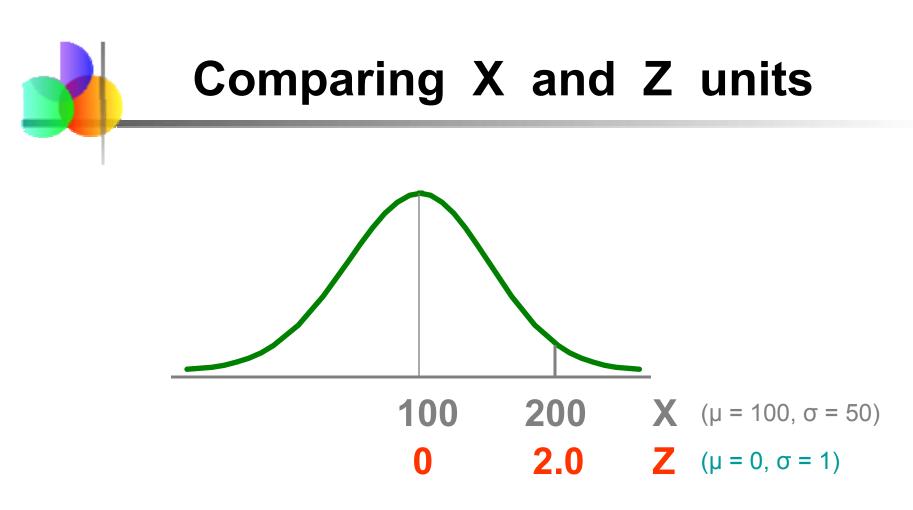
 Need to transform X units into Z units by subtracting the mean of X and dividing by its standard deviation

Example

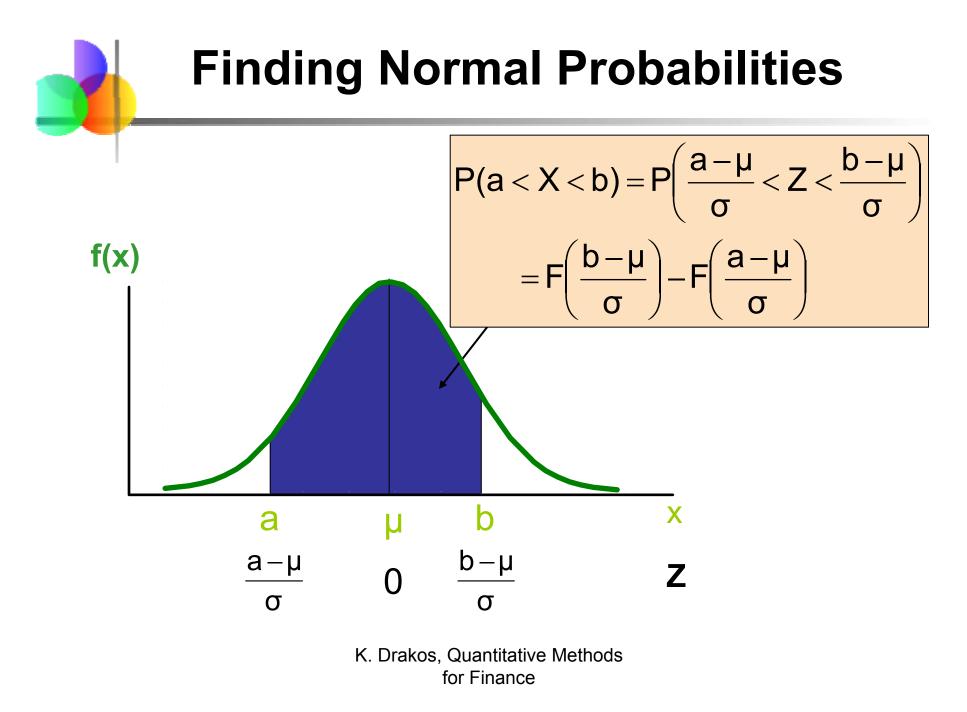
 If X is distributed normally with mean of 100 and standard deviation of 50, the Z value for X = 200 is

$$Z = \frac{X - \mu}{\sigma} = \frac{200 - 100}{50} = 2.0$$

 This says that X = 200 is two standard deviations (2 increments of 50 units) above the mean of 100.



Note that the distribution is the same, only the scale has changed. We can express the problem in original units (X) or in standardized units (Z)



Example

In the Czech Republic in 2002, the average region had an unemployment rate of 9.94% with a standard deviation of 4.15%. Assume that unemployment rates are Normally distributed. What fraction of regions would you expect to have an unemployment rate of 5 to 15%? Here we want to know

$$P(5 < X < 15) = P\left(\frac{5 - 9.94}{4.15} < Z < \frac{15 - 9.94}{4.15}\right) = P(-1.19 < Z < 1.22) =$$
$$= F(1.22) - F(-1.19)$$

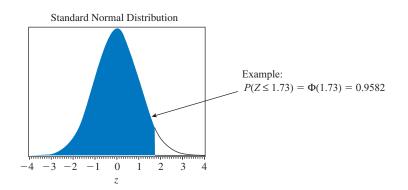


Table 1 Cumulative Probabilities for the Standard Normal Distribution $\Phi(z) = P(Z \le z)$

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

Source: This table was generated using the SAS® function PROBNORM.

Example

From the table we have that F(1.22) = 0.888and F(-1.19) = 1 - F(1.19) = 1 - 0.8830 = 0.117.

Thus, P(5 < X < 15) = 0.888 – 0.117 = 0.771

Probability as Area Under the Curve The total area under the curve is 1.0, and the curve is symmetric, so half is above the mean, half is below $-\infty < X < \mu) = 0.5$ $P(\mu < X < \infty) = 0.5$ $\mathsf{P}(-\infty < \mathsf{X} < \infty) = 1.0$ for Finance

The Exponential Distribution

 Used to model the length of time between two occurrences of an event (the time between arrivals)

– Examples:

- Time between trucks arriving at an unloading dock
- Time between transactions at an ATM Machine
- Time between phone calls to the main operator

 The exponential random variable T (t>0) has a probability density function

$$f(t) = \lambda e^{-\lambda t} \quad \text{for } t > 0$$

- Where
 - $-\lambda$ is the mean number of occurrences per unit time
 - t is the number of time units until the next occurrence

(continued)

- e = 2.71828
- T is said to follow an exponential probability distribution

The Exponential Distribution

- Defined by a single parameter, its mean λ (lambda)
- The cumulative distribution function (the probability that an arrival time is less than some specified time t) is

$$F(t) = 1 - e^{-\lambda t}$$

where e = mathematical constant approximated by 2.71828

 λ = the population mean number of arrivals per unit

t = any value of the continuous variable where t > 0 K. Drakos, Quantitative Methods for Finance

Exponential Distribution Example

Example: Customers arrive at the service counter at the rate of 15 per hour. What is the probability that the arrival time between consecutive customers is less than three minutes?

- The mean number of arrivals per hour is 15, so $\lambda = 15$
- Three minutes is .05 hours
- P(arrival time < .05) = $1 e^{-\lambda X} = 1 e^{-(15)(.05)} = 0.5276$
- So there is a 52.76% probability that the arrival time between successive customers is less than three minutes