
1.1.1 Brennan and Schwartz (1980) 

 

 Possibly the most influential paper on the analysis of convertible bonds is 

due to Brennan and Schwartz (1980). In there, they continue the theme of 

valuing convertible securities by utilising contingent claims technique, as 

initiated by Ingersoll (1976) and, most importantly, they ameliorate several of 

the restrictive assumptions and conditions of previous research. 

 

The distinguishing features of their model are: 

a) Interest rates, which influence both the “straight bond” and the 

“converted stock” components of a convertible bond, are no longer 

assumed constant; they are allowed to change through time in a 

random manner. 

b) The firms issuing convertible bonds are allowed to have both common 

equity and ordinary debt in their capital structure. 

What follows is a detailed account of the Brennan and Schwartz (1980) 

analysis. 

 

1.1.1.1 Notation and basic setting 

The following notation is used: 

V :  Total firm market value 

B : Market value of straight bonds (non-callable, non-puttable, non-

convertible) 

C :  Market value of (callable) convertible bonds 

BN :  Number of straight bonds outstanding 



CN :  Number of (callable) convertible bonds outstanding 

ON : Number of ordinary shares outstanding (before any possible 

conversion) 

BCS :  Ordinary share price before any possible conversion 

ACS :  Ordinary share price after any possible conversion 

F :  Face value of each convertible bond 

c :  Coupon rate of convertible bond 

ConP :  Conversion price 

CP :  Price at which convertible bonds can be called by the firm 

ConP
Fq = : Conversion ratio 

 

A firm with debt, equity and convertibles in its capital structure has a market 

value given by 

BC
CB SNCNBNV ⋅+⋅+⋅= 0    (1) 

If the convertible bonds are converted to equity, then equation (1) becomes 

( ) AC
CB SNNCNBNV ⋅Δ++⋅+⋅= 0    (2) 

where NΔ  is the number of new ordinary shares issued due to conversion of 

the bonds. With the established notation this will be CNqN ⋅=Δ . Once 

converted, the value of the convertible bonds will be 

( ) ( )BNVZBNV
NN

qSq BB
AC ⋅−=⋅−

Δ+
=⋅

0

  (3) 



where the first equality comes from substituting ACS  from (2), and the second 

equality from defining 
NN

qZ
Δ+

=
0

 as the fraction of total ordinary shares 

owned by convertible bond holders after conversion. 

 

The value of a callable, convertible bond will depend on the optimal 

conversion (from bondholders) and call (from shareholders) strategies. The 

bonds will be called by management1 so that equity value, 

CNBNVSN CB ⋅−⋅−=⋅0  

is maximised. As evident from the above equation, maximisation of SN ⋅0  is 

equivalent to minimisation of CNC ⋅ ; and since CN  is constant, management 

will try to minimise the value of the convertibles. This will be accomplished if 

C  is not allowed to rise to above CP , i.e. CPC ≤ . On the other hand, 

convertible bonds will not be called when below CP , since this will mean a 

direct transfer of value from shareholders. These conditions imply that the 

optimal call strategy for the firm is to call when 

CPC =      (4) 

Regarding conversion, bondholders will always find it optimal to convert to 

ordinary shares if C  falls below its conversion value in (3). This implies that 
ACSqC ⋅≥ . Moreover, if C  exceeds the conversion value, bondholders would 

not convert since this would entail a loss of value to shareholders. Thus, the 

optimal conversion strategy is when 

( )BNVZSqC B
AC ⋅−=⋅=     (5) 

The value of the (callable) convertible bond, C , needs to be determined 

simultaneously, and subject to the optimal strategies in (4) and (5).2 This is 

done in the following section. 
                                                            
1 Conditional on absence of agency problems. 



 

1.1.1.2 The model 

Much like Black and Scholes (1973) and Ingersoll (1976), Brennan and 

Schwartz (1980) envisage corporate liabilities like (callable, convertible or not) 

bonds as (a portfolio of) options, written on the firm market value and the 

interest rate ( r ). Thus the value of straight and callable/convertible bonds 

will depend on V  and r , i.e. ( )rVB ,  and ( )rVC , . 

 

They assume that both the firm market value and the interest rate are 

random; specifically, 

( )[ ] VVV VdZdttVQVdV σμ +−= ,    (6) 

( ) rrr rdZdtradr σμ +−=     (7) 

where 

Vμ :    expected total rate of return of firm value 

( ) ( )tVDIItVQ CB ,, ++= : is the rate of cash payments made by the firm to all 

stakeholders; BI , CI  are the coupons paid to 

straight and convertible bondholders respectively, 

and ( )tVD ,  is the dividends distributed to 

shareholders 

rσ : volatility of firm market value changes 

VdZ , rdZ : two correlated (correlation ρ ) random 

components (Wiener processes) 

rμ :    the long run interest rate level 

                                                                                                                                                                          
2 Such conversion and call strategies are also discussed in Ingersoll (1976). 



a :    speed of mean-reversion 

rσ : volatility of interest rate changes 

 

Equations (6) and (7) are continuous-time equivalents of difference equations. 

Basically they imply that changes in firm market value are random and 

lognormally distributed while changes in the interest rate are pulled towards 

a level rμ  in the long run with speed a . 

 

Applying Itô’s lemma (1951) on ( )rVC , , Brennan and Schwartz (1980) show 

that the value of a convertible bond satisfies the following partial differential 

equation 

( )[ ] rrrVrrVrrrVVV CrraVrCCrCV σλμρσσσσ −−+++ 2222

2
1

2
1  

( )[ ] 0, =++−−+ tV CcFrCCtVQrV    (8) 

In this equation, λ is the market price of interest rate risk and subscripts on C  

denote partial derivatives with respect to the respective arguments. This 

partial differential equation, when solved subject to specific boundary 

conditions, will determine the value of the convertible bond. 

These boundary conditions are: 

Conversion condition  ( ) ( )( )trVBNVZtrVC B ,,,, −≥   

 (9) 

Call condition   ( ) ( )tCPtrVC ≤,,                

(10) 

Maturity condition 
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(11) 

Bankruptcy condition  ( ) FkNBNVkFtrVC CB +== 0 if,,             

(12) 

 

Boundary conditions (9) and (10) state what happens due to conversion of the 

bonds to equity and due to the bonds been called by management 

respectively. If the convertible bonds are assumed to mature at time T  and 

prior to senior debt maturity, then boundary condition (11) states that 

“convertible holders receive the conversion value if it exceeds the par value of 

the bond; then they receive the par value provided that this does not exceed 

the value of the firm less the par value of the senior debt ( 0B ). If this 

condition is not satisfied, the firm goes bankrupt and the convertible 

bondholders are paid after the senior bondholders” (Brennan and Schwartz 

(1980), p. 913). Finally, boundary condition (12) assumes that convertible 

bondholders will receive a fraction k  of the par value in case of bankruptcy. 

 

Solving equation (8) subject to (9)-(12) uniquely determines the value of the 

convertible bond. Unfortunately, this system can not be solved in closed-form, 

thus some numerical method must be employed. Brennan and Schwartz 

(1980) used the finite difference method3 to solve this system for a number of 

different parameters for convertible, callable bonds.  

                                                            
3 See Hull (2003), pp. 418-427 for an introduction to the finite difference method. I describe my 
application of the method in subsequent sections. 



 

Apart from providing the most sound valuation framework for convertible 

bonds, Brennan and Schwartz (1980) in their numerical example make a very 

powerful point: for a reasonable range of interest rates (0-20%), convertible 

bond values under constant interest rates are very close to those implied by 

their more complex model and thus, for practical reasons, it is preferable to 

use a constant interest rate assumption for valuing convertible bonds. This 

finding was subsequently exploited by Tsiveriotis and Fernandes (1998), a 

paper which is reviewed in the following section. 

 

1.1.2 Tsiveriotis and Fernandes (1998) 

 

In a paper targeted to practitioners, Tsiveriotis and Fernandes suggest ways 

to improve the convertible bonds valuation framework of Brennan and 

Schwartz (1980). Much like the latter authors, Tsiveriotis and Fernandes agree 

that convertible bonds can be accurately valued only by simultaneous pricing 

of the equity and fixed-income parts. However, they highlight a few aspects 

of previous models that seem unsatisfactory for practical applications. 

 

One such aspect is credit risk. In practice, corporate securities are priced in 

such a manner so as to implicitly incorporate the possibility that the issuing 

corporation may not be able to cover future cash obligations. The Brennan 

and Schwartz (1980) framework does not account for that, thus an appropriate 

adjustment to this direction is needed if our valuation framework is to be of 

any value to practitioners. However, convertible bonds in particular present 

the following difficulty with respect to credit risk adjustments: their equity 

and bond components have different default risk exposures. For example, the 

equity into which a bond can be converted-since issued by the same 



corporation-will have zero credit risk (the issuer can always deliver its own 

stock), while coupon and principal payments and any put provisions will 

depend on the issuer’s access to the required cash in time and thus introduce 

credit risk. Therefore, any differential equation like (8) that describes the 

value of a convertible bond can not be adjusted for a credit risk spread in a 

theoretical sound manner, since only part of the security is influenced by the 

possibility of default. 

 

Another unsatisfactory aspect of previous treatments is that they involve 

variables like the total firm market value (V  in the previous section) and its 

volatility ( Vσ ) that are unobservable, difficult to estimate or proxy and 

impractical for front desk traders. 

Tsiveriotis and Fernandes (1998) propose a model that can directly 

incorporate market-observed credit spreads of straight bonds in the valuation 

of convertibles. The approach is based on the fact that the value of the future 

cash payments a rational convertible bondholder will choose to receive is 

itself a derivative of the underlying equity and interest rates, and therefore 

amenable to the same valuation tools as those employed by Brennan and 

Schwartz (1980). This however allows the adjustment of the different cash 

payment components (from converted equity and from the bond) for their 

different credit risk exposure, making the valuation more realistic. 

 

1.1.2.1 The model 

 

A convertible bond u  is a contingent claim on time, the underlying equity of 

the issuing firm, S , and on the interest rate, r , i.e. ( )rtSu ,, . As Brennan and 

Schwartz (1980) suggested, the optionality due to random interest rates is 

only a small part of the value of a convertible bond, thus I follow Tsiveriotis 



and Fernandes (1998) and assume that ( ).u  only depends on the underlying 

stock price S and time, t , i.e. ( )tSu , . 

 

Using similar arguments with those in Brennan and Schwartz (1980), they 

show that ( )tSu ,  will satisfy the partial differential equation 

( ) ( ) 0,,
2
1 22 =++−++ tSufurruSuruS ctSgSSσ    (13) 

where σ  is the volatility of equity price changes, gr  is the growth rate of the 

stock price, cr  is a credit spread reflecting payoff default risk and ( )tSuf ,,  

describes various predetermined external flows to the derivative (e.g. 

coupons c ). Once again, subscripts of u  denote partial derivatives with 

respect to the respective argument. 

 

As we have seen, equation (13) can be used to solve any convertible, puttable, 

callable bond once necessary boundary conditions are imposed; however one 

cannot assign a predetermined value for the credit spread cr  since (13) applies 

to both components of a convertible bond, and those have different credit 

risks as we have discussed. 

 

To overcome this, Tsiveriotis and Fernandes (1998) define a security v , related 

to u , which is referred to as the value of the “cash-only part of the convertible 

bond” (COCB). The holder of a COCB is entitled to all cash flows, and no 

equity flows, that an optimally behaving holder of the corresponding 

convertible bond would receive. 

 



By definition, the value of v  will be determined by the behaviour of the stock 

price S  and time t , ( )tSv , , and will satisfy a similar partial differential 

equation 

( ) ( ) 0
2
1 22 =++−++ tfvrrvSvrvS ctSgSSσ    (14) 

and equation (13) for the value of the convertible bond ( )tSu ,  can now be 

written as 

( ) ( ) ( ) 0
2
1 22 =++−−−++ tfvrrvuruSuruS ctSgSSσ   (15) 

What this accomplishes is that the component of the convertible bond related 

to equity, ( )vu − , is discounted with the risk-free rate, while the component 

related to the bond payments, v , will be discounted with a rate augmented by 

the necessary credit spread, ( )crr + . 

 

Equations (14) and (15) are two partial differential equations that need to be 

solved simultaneously for ( )tSu ,  and ( )tSv ,  subject to the appropriate 

boundary conditions. The boundary conditions that conclude the problem 

are: 

Maturity conditions 
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Conversion conditions 



( ) [ ]TtaStSu ,0for , ∈≥     (18) 

( ) ( ) [ ]TtaStSutSv ,0for , if0, ∈≤=    (19) 

Call conditions 

( ) ( ) [ ]TTtaSBtSu cc ,for ,max, ∈≤    (20) 

( ) ( ) [ ]TTtBtSutSv cc ,for , if0, ∈≥=    (21) 

Put conditions 

( ) [ ]TTtBtSu pp ,for , ∈≥    (22) 

( ) ( ) [ ]TTtBtSuBtSv ppp ,for , if, ∈≤=    (23) 

where 

T :  maturity of convertible bond 

a : Conversion ratio, number of ordinary shares a convertible bond 

can be converted to 

B : Face value of each convertible bond 

c : coupon paid by convertible bond 

cB : Price at which the convertible bond can be called by firm 

management 

cT : Time after which firm management can call the convertible bond 

pB : Cash amount received by convertible bondholder when 

deciding to put the bond back to the issuing firm 

cT : Time after which convertible bondholders can put the 

convertible bond back to the issuing firm 

 



As evident from the boundary conditions, the COCB value ( )tSv ,  assumes 

non-zero values only when a cash payment takes place, either at maturity 

(equation (17)) or when put (equation (23)). 

 

The system of equations (14)-(15) subject to (16)-(23) completely describes the 

valuation problem and needs to be solved for the unknown functions ( )tSu , , 

( )tSv ,  and the levels of the stock price S  at which conversion, call or put 

exercises take place. Unfortunately, the system is highly non-linear and can 

not be solved in closed-form as the Black and Scholes (1973) European option 

problem. Thus, some numerical scheme must be employed in order to 

determine the convertible bond price for a set of parameter values. In the next 

section we discuss how to employ the finite difference method to numerically 

evaluate the model proposed by Tsiveriotis and Fernandes (1998). 

 

1.3 Finite Difference method 

 

The finite difference method was brought to finance from engineering by 

Brennan and Schwartz (1977) who first used it to price American style 

options. Since then, this method and the binomial asset pricing model of Cox, 

Ross and Rubinstein (1979) are considered the most widely applied numerical 

pricing methods. 

 

The finite difference method involves approximating the differential equation 

that a contingent claim satisfies by discrete-time difference equations which 

are solved iteratively, from known boundary conditions and backwards in 

time, until the price of the contingent claim is determined. Two finite 

difference schemes have been proposed in the literature: the implicit method, 



which while very robust, is very computationally demanding and the explicit 

method which is easier to compute but less stable. 

 

Following Tsiveriotis and Fernandes (1998) I will employ the explicit finite 

difference method to tackle the problem at hand. First, I apply the 

transformations ( )Sx ln=  and tT −=τ  to differential equations (14) and (15), 

which now become 

( ) ( ) ( ) 0
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1 2
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( ) ( ) 0
22

1 2
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The above differential equations are discretised in the following fashion: 

Define N  equally spaced prices ix , Ni ,,1…= , each with a distance h . Divide 

the time to maturity of the convertible bond T into steps of length τΔ . Under 

this discretisation scheme, equations (24) and (25) become 
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(26) 
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 (27) 

The solution proceeds as follows: At the maturity of the convertible bond T , 

conditions (16) and (17) are applied and ( )00 ,vu  are determined. After that, 

we work backwards in time: At time step 1+k  (time ( ) ττ Δ+= 1k ) we start 



with ( )kk vu , , and using (26) we calculate 1+ku  and check for early conversion, 

call and/or put exercises using (18), (20) and (22). Then equation (27) is used 

to estimate 1+kv  and early conversion, call and/or put exercises are checked 

via (19), (21) and (23). Iteratively, the steps are repeated until the initial prices 

are determined. 

 

In the next chapter we apply the above-described finite difference algorithm 

is applied to the valuation of the convertible bonds issued by XXX Ltd. 
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