Useful Formulas

Present value:

$$
P V=\frac{C_{t}}{(1+r)^{t}}
$$

Present values when there are multiple cash flows:

$$
P V=\frac{C_{1}}{(1+r)^{1}}+\frac{C_{2}}{(1+r)^{2}}+\frac{C_{3}}{(1+r)^{3}}+\ldots+\frac{C_{T}}{(1+r)^{T}}=\sum_{t=1}^{T} \frac{C_{t}}{(1+r)^{t}}
$$

Net Present Value (NPV):

$$
N P V=-C_{0}+P V=-C_{0}+\sum_{t=1}^{T} \frac{C_{t}}{(1+r)^{t}}
$$

Present value of perpetuity:
$P V=\frac{C}{r}$
Present value of growing perpetuity:

$$
P V=\frac{C_{1}}{r-g} \quad \text { We assume that } \mathrm{r} \text { is greater than } \mathrm{g} .
$$

Present value of an annuity that pays $€ 1$ at the end of each of the t years starting in year 1 (Annuity Factor):

$$
P V=\sum_{t=1}^{T} \frac{1}{(1+r)^{t}}=\frac{1-\frac{1}{(1+r)^{t}}}{r}=\frac{1}{r}-\frac{1}{r(1+r)^{t}}
$$

Present value of an annuity that pays $\boldsymbol{€ 1}$ at the start of each of the \mathbf{t} years starting in year 1 (Annuity Due):

$$
P V=\left[\sum_{t=1}^{T} \frac{1}{(1+r)^{t}}\right](1+r)=\left[\frac{1-\frac{1}{(1+r)^{t}}}{r}\right](1+r)=\left[\frac{1}{r}-\frac{1}{r(1+r)^{t}}\right](1+r)
$$

Calculating Annual Payments:

Annual Payment $=\frac{P V}{\text { Annuity Factor }}$
Merger Gains and Costs:
Gain $=P V_{A B}-\left(\mathrm{PV}_{\mathrm{A}}+\mathrm{PV}_{\mathrm{B}}\right)$
Cost $_{\mathrm{A}}=$ Cash paid $-\mathrm{PV}_{\mathrm{B}}$
$\operatorname{Cost}_{\mathrm{A}}=\mathrm{NP}_{\mathrm{AB}}-\mathrm{PV}_{\mathrm{B}} \quad \operatorname{Cost}_{\mathrm{A}}=\mathrm{xPV}_{\mathrm{AB}}-\mathrm{PV}_{\mathrm{B}}$
$\mathrm{NPV}_{\mathrm{A}}=$ Gain - Cost
Net Advantage to Leasing (NAL):
NAL $=$ PV Cost of Leasing - PV Cost of Owning

