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Revenue Maximization of a Perishable Product
with Fixed Capacity

This section describes a price optimization model that seeks to maximize rev-
enues for the case of a single perishable product with fixed capacity. Typical
examples are air tickets, hotel rooms, car rentals and theater tickets. We assume
that customers purchase tickets or book hotel rooms at different points in time;
however, all of them consume it at the same time. We also assume that price is
flexible.

Let w be some future date and let q be a positive integer representing a lead
time until w, e.g., the days before a stay at a hotel. The goal is to determine
the optimal price level for each day during the lead time. Let T denote the set
of q days, i.e, T = {1, . . . , q}. Moreover, let P ⊂ N be a given set of available
prices. For each day t ∈ T and for each price level p ∈ P we are given a demand
forecast (e.g., the number of expected bookings for w) which is denoted by Dt

p.
Furthermore, we are given a maximum number of bookings Cw that can be
accepted for the date w.

The above problem can be formulated as a mixed integer linear program
(MILP). The main decision variable is to determine the price level p for each
day t. For this purpose, a binary variable xpt is introduced. Let also a non-
negative continuous variable ytp to denote the number of bookings that originate
from day t and contribute to the revenues.

max
x,y

∑
t∈T

∑
p∈P

pytpxtp (1)

Subject to ∑
p∈P

xtp = 1 ∀t ∈ T (2)

∑
t∈T

∑
p∈P

ytpxtp ≤ Cw (3)

ytp ≤ Dt
p ∀t ∈ T, p ∈ P (4)
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Constraints (2) impose that a single price is selected per day. Constraint
(3) ensures that the total number of bookings accepted during the lead time
do not exceed the capacity of the target day. Constraints (4) ensure that the
contributing daily bookings is not exceeding the demand for corresponding price.

1 Combinatorial perspective

Let us assume, without loss of generality, that P = {p1, . . . , pn} for some n ∈ N.
Let t ∈ T be arbitrary but fixed. Order the products Dt

p1 · p1, . . . , Dt
pn · pn

in descending order. Mathematically, for t ∈ T let Πt = {πt
1, . . . , π

t
n} be a

permutation of P such that Dt
πt
1
· πt

1 ≥ . . . ≥ Dt
πt
n
· πt

n holds. We now consider

two cases depending on the magnitude of Cw.
First case:

∑
t∈T Dt

πt
1
≤ Cw

In this case, the optimal solution is not restricted by the value Cw, only by
the daily forecasting bounds Dt

p, i.e., the constraint (4). This implies an optimal
solution is simply given by xπt

1
= 1 and xπt

2
= 0, . . . , xπt

n
= 0 and ytp = Dt

p for
t ∈ T . This solution fulfills all constraints and maximises the objective as, for
t ∈ T , πt

1 yields the biggest benefit since Dt
πt
1
· πt

1 ≥ . . . ≥ Dt
πt
n
· πt

n holds.

Second case:
∑

t∈T Dt
πt
1
> Cw

In this case, Cw restricts the set of feasible solutions, e.g., the solution cor-
responding to the first case is not feasible anymore. However, we can find the
optimal solution by selecting the next best permutations. Consider the list of all
possible permutation tuples (π1

1 , . . . , π
q
1), (π

1
1 , . . . , π

q−1
1 , πq

2), . . . , (π
1
n, . . . , π

q
n).

Each tuple corresponds to a (not necessarily feasible) solution. We can order
this list of tuples by their corresponding objective value and choose the first tuple
that corresponds to a feasible solution.

2 Non-linear perspective

The objective function (1) contains the products of continuous with binary
variables and we need to linearize them. Let a new non-negative continuous
variable z, such that z = x × y. To that end, we remove Constraints (3) and
(4) and append to the mathematical model the following set of constraints:

ztp ≤ Dtpxtp ∀t ∈ T, p ∈ P (5)

∑
t∈T

∑
p∈P

ztp ≤ Cw (6)

Similarly, we replace the nonlinear terms from the objective function:

max
x,z

∑
t∈T

∑
p∈P

ztpPp (7)
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The discrete price optimization model (11), (6), (5) and (2) will find the
optimal revenue and will set a price for each day during the lead time; however,
it does not ensure that the contribution of the daily bookings is chronologically
consistent until the capacity (e.g. number of available rooms) is fully consumed.
In other words, as soon as a price is set and capacity exist, the corresponding
daily predicted bookings should be consumed. The associated rule can be math-
ematically depicted as follows: if we considered less than the predicted number
of bookings

∑
p∈P ztp <

∑
p∈P Dtpxtp for a given day t , then for the next day

t+1 the contribution of bookings should zero for all prices, i.e.,
∑

p∈P ztp ≤ 0.
An additional binary variable a is introduced to model the above rule. In

particular, let a be equal to 1 if capacity is reached on day t and thus
∑

p∈P ztp ≤
ξ
∑

p∈P Dtpxtp, where ξ is the equality tolerance; 0, otherwise.
On the basis of the above, the following set of bigM constraints should be

appended to the model:

−M1tat ≤
∑
p∈P

(ztp − ξxtpDtp) ∀t ∈ T − {q}, (8)

∑
p∈P

z(t+1)p ≤ M2t(1− at) ∀t ∈ T − {q}, (9)

at ≥
∑
p∈P

(ztp − xtpDtp) ∀t ∈ T − {q}, (10)

where M1t = min{Cw, ξmaxp Dtp} and M2t = min{Cw,maxp D(t+1)p}.

Markdown Optimization with No Replenishment
and Salvage value

This section describes a markdown optimization model that seeks to maximize
revenues for the case of a single product, with initial inventory I0. The product
perishes and has a low salvage value s once the season is over. Let a planning
horizon of t ∈ T days or weeks that represents the sales season. There is a given
set of available prices P that consists of fixed float numbers with decreasing
order. For each day t ∈ T and price level p ∈ P the forecast of the demand is
given and it is denoted as Dt

p. The goal is to maximize the collected revenue of
the sales season.

For perishable products, markdown is needed to manage the demand and
maximize revenue. However, pricing is not flexible and only involves price re-
ductions. The retailer initially sets high prices, and then “learns” the demand.
Popular products sell quickly at high prices. Low-reservation-price products
must be marked down. The willingness-to-pay (WTP) changes over the plan-
ning horizon. At the beginning, the WTP is often high (e.g. buy a bathing suit
at the start of the summer) and then gradually reduces. During peak periods,
the WTP often reduces, and consumers become more price-sensitive. Finally,
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we assume that every period the retailer re-runs the price optimization engine
with updated info.

The above described markdown optimization problem can be formulated
as a mixed integer linear program (MILP). The main decision variable is to
determine the price level p for each period t. For this purpose, a binary variable
xt,p is introduced. Let also a non-negative continuous variable zt,p to denote
the estimated number of items that will be sold at period t for the selected
price xt,p. Finally, let non-negative continuous variable IT to denote the ending
inventory at period T .

max
x,z,IT

∑
t∈T

∑
p∈P

zt,pPp + IT s (11)

Subject to ∑
t∈T

∑
p∈P

zt,p + IT = I0 (12)

zt,p ≤ xt,pD
p
t ∀t ∈ T, p ∈ P (13)

∑
p∈P

xt,p = 1 ∀t ∈ T (14)

x0,1 = 1 (15)

p∑
q=0

xt,q −
p∑

p=0

xt+1,q ≥ 0 ∀p ∈ P, t ∈ T − {q} (16)

The objective function (11) calculates the total collected revenue for each
period and the price level selected for each period. The total salvage value of
the remaining inventory is subtracted from the revenue. Constraint (12) models
the inventory constraint and limits the amount of inventory the retailer can sell
to the initial value I0. Constraint (13) ensures that the number of items to be
sold at each period is not exceeding the demand. Constraint (14) enforces that
one price is selected per period. Constraint (15) ensures that the full price will
be selected for the first period. Finally, Constraints (16) stipulates that price
markdowns are irreversible and can only be decreasing from period to period.

The above model (11) to (16) will work as expected for the case inventory
is left at the end of the sales season. If this is not the case, then it does not
ensure that the items sold is chronologically consistent until the initial inventory
is fully consumed. In other words, as soon as a price is set and inventory exist,
the corresponding demand should be consumed. The associated rule can be
mathematically depicted as follows: if we considered less than the predicted
demand

∑
p∈P zt,p <

∑
p∈P Dp

t xt,p for a given period t , then for the next period
t+1 the z-variables should be forced to zero for all prices, i.e.,

∑
p∈P ztp ≤ 0.

To that end, a new binary variable a is introduced to model the above rule and
the block of constraints (8) to (10) must be appended to the model.
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