Notes:

1. Duration: 2.5 hours
2. Explain everything carefully. You will be graded on the clarity of your arguments.

Exercises:

1. We define the sum of two sets $A, B \subseteq \mathbb{R}^{n}$ and the product of a real number λ with a set $A \subseteq \mathbb{R}^{n}$ as:

$$
\begin{aligned}
A+B & \triangleq\{x=a+b: a \in A, b \in B\} \\
\lambda A & \triangleq\{x=\lambda a: a \in A\} .
\end{aligned}
$$

(α^{\prime}) (0.5 point) Prove that for all $\lambda \in \mathbb{R}$ and all $A, B \subseteq \mathbb{R}^{2}$ we have $\lambda(A+B)=\lambda A+\lambda B$.
(β^{\prime}) (0.5 point) Prove that, on the other hand, the following property does not hold, by providing a counterexample: for all $\lambda, \mu \in \mathbb{R}$, and $A \subseteq \mathbb{R}^{n},(\lambda+\mu) A=\lambda A+\mu A$.
(γ^{\prime}) (1 point) Prove that if $\lambda, \mu \geq 0$ and $A \subset \mathbb{R}^{n}$ is convex, than $(\lambda+\mu) A=\lambda A+\mu A$.
(δ^{\prime}) (0.5 point) Prove that the previous property does not hold is A is not convex.
Hint: two sets A and B are equal iff $A \subseteq B$ and $B \subseteq A$.

Solution

$\left(\alpha^{\prime}\right)$ Let $x \in \lambda(A+B)$. Then $x=\lambda(a+b)=\lambda a+\lambda b$, so $x \in \lambda A+\lambda B$. Now let $x \in \lambda A+\lambda B$. Then $x=\lambda a+\lambda b=$ $\lambda(a+b)$ and so $x \in \lambda(A+B)$.
(β^{\prime}) If $\lambda=-\mu$ and not zero, then the left-hand side is the set $\{0\}$, but the rigght hand side is in general not. For example, $[0,1]-[0,1]=[-1,1]$.
$\left(\gamma^{\prime}\right)$ Let $x \in(\lambda+\mu) A$. Then $x=(\lambda+\mu) a=\lambda a+\mu a$ for some $a \in A$, therefore $x \in \lambda A+\mu A$. Now let $x \in \lambda A+\mu A$. We have

$$
x=\lambda a_{1}+\mu a_{2}=(\lambda+\mu)\left(\frac{\lambda}{\lambda+\mu} a_{1}+\frac{\mu}{\lambda+\mu} a_{2}\right)
$$

and since A is convex, $\left(\frac{\lambda}{\lambda+\mu} a_{1}+\frac{\mu}{\lambda+\mu} a_{2}\right)$ belongs to A, and so $x \in(\lambda+\mu) A$.
(δ^{\prime}) As a counterexample, consider $\lambda=\mu=1$ and $A=\{0,1\}$. In this case, $2 A=\{0,2\}$ but $A+A=\{0,1,2\}$
2. (2 points) Prove that the following function is convex:

$$
f(x, y)=x^{2}-4 x y+5 y^{2}-\log (x y), \quad x, y>0
$$

Solution: We just compute the Hessian and show that it is positive. We have:

$$
\begin{gathered}
\frac{\partial f}{\partial x}=2 x-4 y-\frac{1}{x}, \quad \frac{\partial^{2} f}{\partial x^{2}}=2+\frac{1}{x^{2}} \\
\frac{\partial f}{\partial y}=-4 x+10 y-\frac{1}{y}, \quad \frac{\partial^{2} f}{\partial x^{2}}=10+\frac{1}{y^{2}} \\
\frac{\partial^{2} f}{\partial x \partial y}=-4
\end{gathered}
$$

therefore the Hessian is

$$
H=\left[\begin{array}{cc}
2+\frac{1}{1} x^{2} & -4 \\
-4 & 10+\frac{1}{y^{2}}
\end{array}\right]
$$

whose characteristic polynomial is, setting $A=2+\frac{1}{x^{2}}$ and $B=2+\frac{1}{y^{2}}$,

$$
(A-s)(B-s)-16=s^{2}-(A+B) s+A B-16
$$

with determinant

$$
\Delta=(A+B)^{2}-4(A B-16)=(A-B)^{2}+48
$$

and solutions

$$
s_{1,2}=\frac{A+B \pm \sqrt{(A-B)^{2}+48}}{2}
$$

which can be shown to be always positive, observing that $A, B>0$ and taking cases on whether $A \geq B$ or $B \geq A$.
3. Consider the following optimization problem:

$$
\begin{array}{cc}
\text { minimize: } & 3 x_{1}+7 x_{2}+10 x_{3}, \\
\text { subject to: } & x_{1}+3 x_{2}+5 x_{3} \geq 7, \\
& x_{1}\left(1-x_{1}\right)=0, \quad x_{2}\left(1-x_{2}\right)=0, \quad x_{3}\left(1-x_{3}\right)=0 .
\end{array}
$$

(α^{\prime}) (0.5 point) What is the solution of the above problem?
(β^{\prime}) (0.5 point) Write the Lagrangian for the above problem.
$\left(\gamma^{\prime}\right)\left(0.5\right.$ point) What is the dual function when any $\mu_{i}>0$?
(δ^{\prime}) (1 point) What is the dual function when all $\mu_{i}<0$? (the other cases are trickier)

Solution

(α^{\prime}) The variables x_{1}, x_{2}, x_{3} can only take the values 0 and 1 . There are 2^{3} points that satisfy the equalities, and only two of them also satisfy the inequality, $(1,1,1)$ and $(0,1,1)$. The second one is clearly the optimum solution, for which the objective function becomes $f\left(x_{1}, x_{2}, x_{3}\right)=17$.
(β^{\prime})

$$
\begin{aligned}
& L\left(x_{1}, x_{2}, x_{3}, \lambda, \mu_{1}, \mu_{2}, \mu_{3}\right) \\
& \quad=3 x_{1}+7 x_{2}+10 x_{3}+\lambda\left(7-x_{1}-3 x_{3}-5 x_{3}\right)+\mu_{1} x_{1}\left(1-x_{2}\right)+\mu_{2} x_{2}\left(1-x_{2}\right)+\mu_{3} x_{3}\left(1-x_{3}\right) \\
& \quad=7 \lambda+\left(3 x_{1}-\lambda x_{1}+\mu_{1} x_{1}\left(1-x_{1}\right)\right)+\left(7 x_{2}-3 \lambda x_{2}+\mu_{2} x_{2}\left(1-x_{1}\right)\right)+\left(10 x_{3}-5 \lambda x_{3}+\mu_{3} x_{3}\left(1-x_{3}\right)\right) \\
& \quad=7 \lambda+\left(-\mu_{1} x_{1}^{2}+\left(3-\lambda+\mu_{1}\right) x_{1}\right)+\left(-\mu_{2} x_{2}^{2}+\left(7-3 \lambda+\mu_{2}\right) x_{2}\right)+\left(-\mu_{3} x_{1}^{2}+\left(10-5 \lambda+\mu_{3}\right) x_{3}\right)
\end{aligned}
$$

$\left(\gamma^{\prime}\right)$ When any of the μ_{i} is positive, by taking $x \rightarrow \pm \infty$ the Lagrangian goes to $-\infty$, so $g\left(\lambda, \mu_{1}, \mu_{2}, \mu_{3}\right)=-\infty$.
δ^{\prime}) In this case, each of the three trinomials has a minimum. Let $h(x)=a x^{2}+b x$ a scalar function with $a>0$. By taking the deriviative, its minimum is achieved for $x=-\frac{b}{2 a}$, where

$$
h\left(-\frac{b}{2 a}\right)=a \frac{b^{2}}{4 a^{2}}-\frac{b^{2}}{2 a}=-\frac{b^{2}}{4 a}
$$

Using this result in the three functions of x_{1}, x_{2}, and x_{3}, we have

$$
g\left(\lambda, \mu_{1}, \mu_{2}, \mu_{3}\right)=7 \lambda+\frac{3-\lambda+\mu_{1}}{\mu_{1}}+\frac{7-3 \lambda+\mu_{2}}{\mu_{2}}+\frac{10-\lambda+\mu_{3}}{\mu_{3}} .
$$

4. Consider the following optimization problem:

$$
\left.\begin{array}{l}
\text { minimize: } \\
\text { subject to: }
\end{array} \quad(x-2)^{2}+2(y-1)^{2}\right)
$$

(α^{\prime}) (0.5 point) Explain why it is a convex optimization problem.
(β^{\prime}) (0.5 point) Draw a plot showing the constraints and the contours of the optimization function
$\left(\gamma^{\prime}\right)(0.5$ point) Write the Lagrangian.
(δ^{\prime}) (0.5 point) Write the KKT conditions.
(ε^{\prime}) (1 point) Solve the KKT conditions

Solution:

(α^{\prime}) The inequalities are linear and the Hessian of the quadratic optimization function is positive definite. Therefore, this is a convex optimization function.
(β^{\prime}) See the plot
$\left(\gamma^{\prime}\right)$

$$
L\left(x, y, \lambda_{1}, \lambda_{2}\right)=(x-2)^{2}+2(y-1)^{2}+\lambda_{1}(x+4 y-3)+\lambda_{2}(y-x)
$$

$\Sigma \chi \eta \dot{\mu} \mu \alpha$ 1: Problem 1
(δ^{\prime}) The KKT conditions are:

$$
\begin{aligned}
& \quad \\
& \lambda_{1}(x+4 y-3)=0,
\end{aligned} \quad \begin{gathered}
x+4 y \leq 3, \quad y-x \leq 0 \quad \lambda_{1} \geq 0, \quad \lambda_{2} \geq 0 \\
2(y-x)=0, \\
2(x-2)+\lambda_{1}-\lambda_{2}=0, \quad 4(y-1)+4 \lambda_{1}+\lambda_{2}=0
\end{gathered}
$$

(ε^{\prime}) We consider four case using the two complementary slackness conditions.
i. If $\lambda_{1}=0$ and $\lambda_{2}=0$, then it follows that $y=1$ and $x=2$, which, however violates the first constraint. This is the location of the unconstrained minimum.
ii. If $\lambda_{1}>0$ and $\lambda_{2}>0$, then it follows that $y=x$ and $x+4 y-3=0$, which means that $x=y=\frac{3}{5}$. In this case, the constraints on the gradient of the Lagrangian are:

$$
\begin{aligned}
& 2\left(\frac{3}{5}-\frac{10}{5}\right)+\lambda_{1}-\lambda_{2}=0, \\
& 4\left(\frac{3}{5}-\frac{5}{5}\right)+4 \lambda_{1}+\lambda_{2}=0,
\end{aligned} \Leftrightarrow \quad \begin{gathered}
\lambda_{1}-\lambda_{2}=\frac{14}{5}, \\
4 \lambda_{1}+\lambda_{2}=\frac{8}{5}
\end{gathered} \Leftrightarrow \quad \begin{gathered}
\lambda_{1}=\frac{22}{25} \\
\lambda_{2}=\frac{22}{25}-\frac{14}{5},
\end{gathered}
$$

so $\lambda_{2}<0$ and again this is not permitted.
iii. If $\lambda_{1}=0$ but $\lambda_{2}>0$, then it follows that $x=y$, and then

$$
\begin{gathered}
2(x-2)-\lambda_{2}=0, \\
4(x-1)+\lambda_{2}=0
\end{gathered} \Rightarrow 2 x-4+4 x-4=0 \Rightarrow x=\frac{4}{3} \Rightarrow y=\frac{4}{3}
$$

which violates the first constraint, so this case is excluded.
iv. The last case is $\lambda_{1}>0$ and $\lambda_{2}=0$, in which case $x+4 y-3=0 \Rightarrow x=3-4 y$, and so requiring the gradient of the Lagrangian to be zero we have

$$
\begin{gathered}
2(3-4 y-2)+\lambda_{1}=0, \\
4 y-4+4 \lambda_{1}=0
\end{gathered} \Rightarrow \begin{gathered}
2-8 y+\lambda_{1}=0, \\
8 y-8+8 \lambda_{1}=0
\end{gathered} \Rightarrow-6+9 \lambda_{1}=0 \Rightarrow \lambda_{1}=\frac{2}{3}
$$

and so

$$
8 y=2+\frac{2}{3}=\frac{8}{3} \Rightarrow y=\frac{1}{3} \Rightarrow x=3-\frac{4}{3}=\frac{5}{3}
$$

so in this case the KKT are satisfied, and as the problem is convex, it follows that the location of the optimim is

$$
\left(x_{\min }, y_{\min }\right)=\left(\frac{31}{17}, \frac{5}{17}\right)
$$

