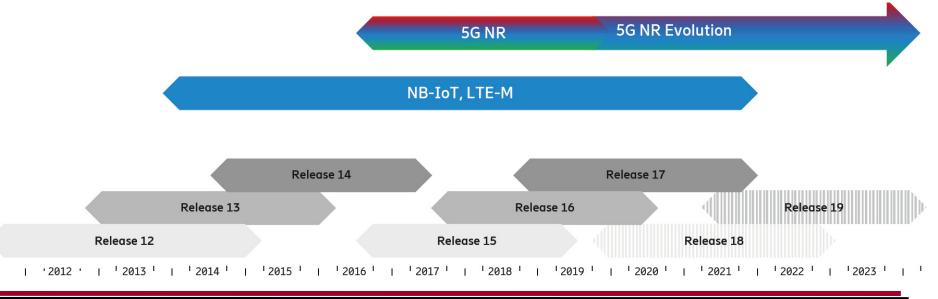


Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής

Ευφυή Κινητά Δίκτυα: 5G


Εαρινό Εξάμηνο 2023-24 Γιάννης Θωμάς

(Βασισμένο στο "5G wireless access an overview" White-paper της Ericsson)

https://www.ericsson.com/en/reports-and-papers/white-papers/5g-wireless-access-an-overview

5G – timeline

- a.k.a. New Radio (NR)
- standardized by 3GPP (the 3rd Generation Partnership Project)
 - Rel 13 Long Term Evolution for Machines: LTE-M (2016)
 - Rel 14 NB-IoT (2017)
 - Rel 15 5G (2019)

https://www.ericsson.com/en/reports-and-papers/white-papers/5g-wireless-access-an-overview

5G goals and challenges

- Connectivity for a very <u>wide range</u> of applications with <u>diverse</u> characteristics and requirements that bring value in a <u>variety</u> of dimensions, such as latency, data rate, reliability, and security.
- Lower <u>energy</u> per delivered bit than previous cellular networks.
- Sheer number of devices challenges signaling provisioning and connection management.

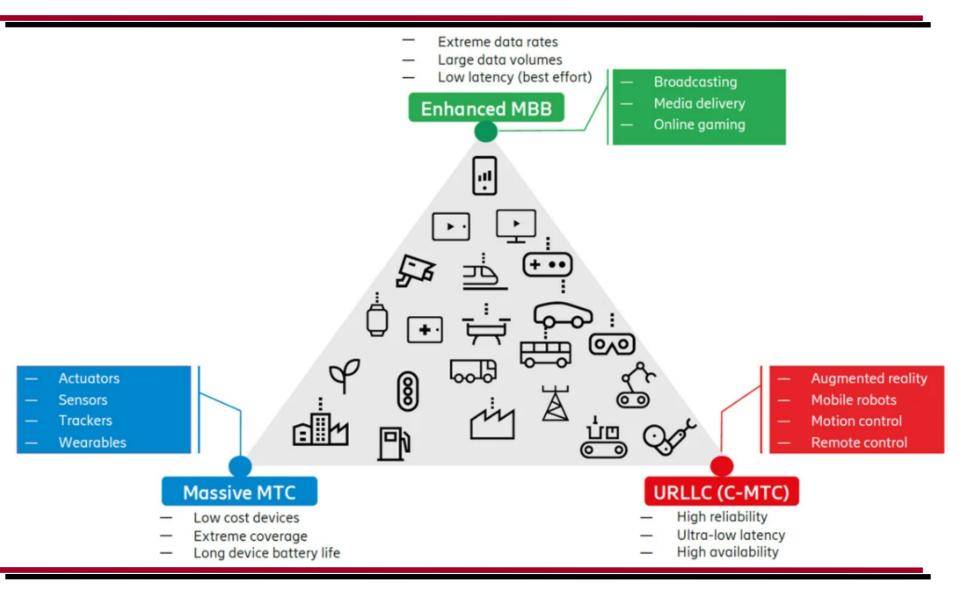
5G applications – eMBB

3 main use-case families:

- Enhanced Mobile Broadband (eMBB),
 - human-centric use cases: mobile telephony and media delivery.
 - enables large volumes of data transfer and extreme data rates.
 - Typical usage: mobile phones and mobile PCs/tablets.
- massive machine type communications (mMTC) and
- ultra-reliable low latency communications (URLLC)
 - also called critical machine type communications (cMTC)

5G applications – mMTC

3 main use case families:


- enhanced mobile broadband (eMBB)
- massive Machine Type Communications (**mMTC**) and
 - Machine-centric use cases
 - Connects massive number of low complexity narrow-bandwidth devices that infrequently send or receive small volumes of data.
 - Devices in challenging radio conditions requiring coverage extension capabilities
 - Devices may solely rely on **battery** power supply.
 - use cases: low-cost sensors, meters, actuators, trackers, and wearables.
- ultra-reliable low latency communications (URLLC)
 - also called critical machine type communications (cMTC)

5G applications – URLLC

3 main use case families:

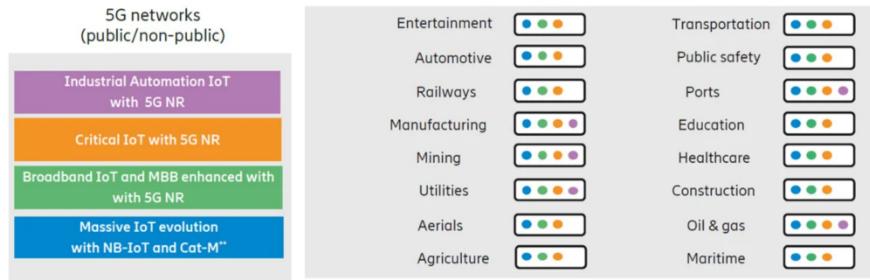
- enhanced mobile broadband (eMBB)
- massive machine type communications (mMTC) and
- Ultra-Reliable Low Latency Communications (URLLC)
 - also called critical machine type communications (cMTC)
 - Machine-centric
 - use cases: stringent requirements on reliability and latency
 - AR/VR, advanced wearables, autonomous vehicles, real-time human machine collaboration, cloud robotics and real-time coordination and control of machines and processes.
 - The reliability is defined as probability of successful data delivery within a specified time duration.

5G applications – all together

5G and IoT

There are over one billion cellular Internet of Things (IoT) connections in 2020 and Ericsson forecasts around 5 billion connections by 2025.

https://www.ericsson.com/en/reports-and-papers/mob ility-report


4 IoT connectivity segments:

- Massive IoT,
- Broadband IoT,
- Critical IoT, and
- Industrial Automation IoT

5G and IoT (cont.)

Massive IoT	Broadband IoT	Critical IoT	Industrial Automation IoT*
Low cost devices	High data rates	Bounded latencies	Ethernet protocols integration
Small data volumes	Large data volumes	Ultra-reliable data delivery	Time-Sensitive Networking
Extreme coverage	Low latency (best effort)	Ultra-low latency	Clock synchronization service

Industry digitalization with 5G networks

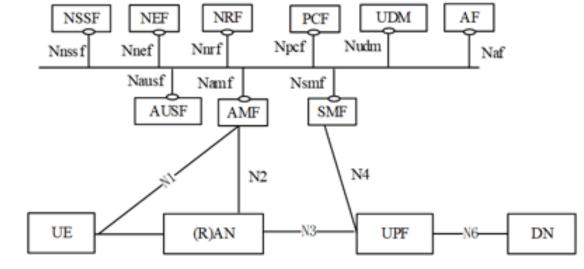
5G eMBB Reqs

- Peak data rate: 20 / 10 Gbps (*down/up link)
 - Carrier aggregation (16 x 17.5 Gbps in 400 MHz-wide carrier), higher modulation, Massive SU MIMO
- Peak spectral efficiency: 30 / 15 bps/Hz
 - Higher modulation (256QAM), Massive MIMO
- User-experienced data rate (fifth percentile user data rate): 100 / 50 Mbps
 - Multi-antenna
- Cell average spectral efficiency: Scenario dependent
 - Multi-antenna
- Fifth percentile user spectral efficiency: Scenario dependent
 - Multi-antenna
- Area traffic capacity: 10 Mbps/m2 (indoor hotspot scenario)
 - Multi-antenna
- User plane latency: 4 ms, one way for both downlink and uplink
 - Mini-slot, scalable numerology, fast HARQ, pre-emption
- Control plane latency: 10 ms
 - Mini-slot, scalable numerology, fast HARQ, pre-emption, RRC inactive

5G URLLC and mMTC Reqs

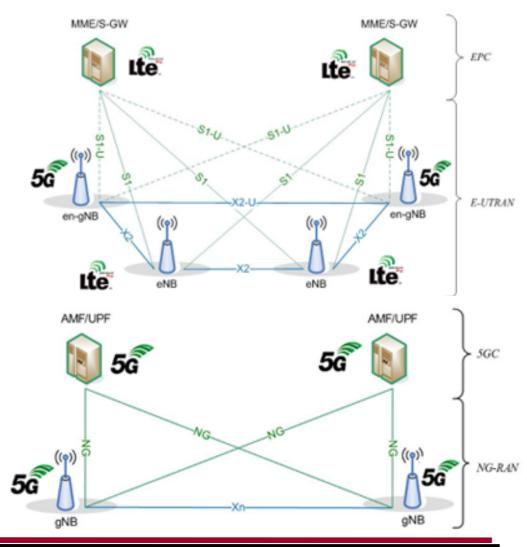
- User plane latency: 1 ms, one-way for both downlink and uplink
 - Mini-slot, flexible numerology, fast HARQ, pre-emption
- Control plane latency: 10 ms,
 - Mini-slot, scalable numerology, fast HARQ, pre-emption, RRC inactive
- **Connection density:** 1,000,000 devices per sq km2
- Reliability: 99.999% success rate
 - Multi-antenna, robust control and data design (low MCS/CQI), multiconnectivity (including duplication), retransmissions (HARQ)
- Mobility interruption time: 0 ms
 - multi-connectivity (dual connectivity)
- Battery life: 10 years RRC inactive,
 - power saving mode, enhanced Discontinuous Reception (DRX)
 - RRC: in CM-CONNECTED mode

Reference Architecture


- same elements as the previous generations:
 - User Equipment (UE),
 - Radio Access Network (NG-RAN) and
 - GNB (instead of eNode)
 - Core Network (5GC)
 - User Plane Function (**UPF**), handling the user data
 - Mobility management Function (AMF) that accesses the UE and the (R)AN
 - NG: interfaces between the access and the core networks. *ue* NG-RAN 5GC

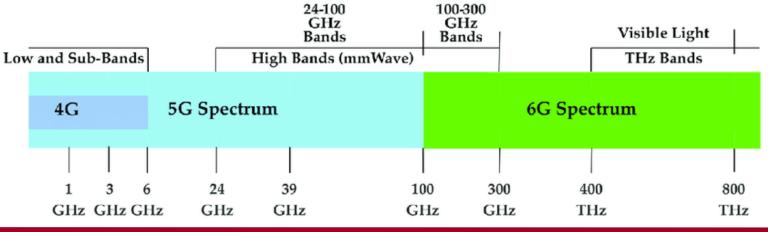
https://www.3gpp.org/technologies/5g-system-overview

Reference Architecture - 5GC


- Network entities are now Network functions (Nfs)
 - External Data Network (**DN**), mostly in the User Plane
 - Application Function (**AF**): controls the application(s)
 - Session Management Function (SMF) handles the calls and sessions, and contacts the UPF accordingly
 - Unified Data Management (**UDM**), functionally similar to 3G and 4G's HSS
 - Policy Control Function (PCF) controls that the user data traffic does not exceed the negotiated bearer(s) capacities
- Network Repository Function (NRF) "controls" the other NFs (register, deregister and update).
- security-related NFs: Network Exposure Function (NEF), Authentication Server Function (AUSF), Security Anchor Functionality (SEAF)
- The Network Slice Selection Function (NSSF)

https://www.3gpp.org/technologies/5g-system-overview

Non Stand Alone (NSA) Arch


- step towards 5G
- making the NR technology available without network replacement
- In NSA, only the 4G services are supported, but they enjoy the capacities offered by the 5G New Radio (lower latency, etc).
 - No 5GC!

Spectrum

much wider range of frequencies than before, from below 1 GHz to 100 GHz.

- **Low-band** (below 2.5 GHz): excellent coverage,
- mid-band (2.5–10 GHz): good coverage and very high bitrates,
- **High-band** (10–100 GHz): highest bitrates and lowest latencies envisioned for 5G.

https://www.researchgate.net/publication/358001785/figure/fig2/AS:1122614135267330@1644663475488/4G-5G-and-6G-spectrum-bands.png

Multi-antenna

- large number of steerable antennas
- higher frequency bands: beamforming to extend coverage, reduce interference
- Iower frequency bands: full-dimensional MIMO ("massive MIMO") and interference avoidance by spatial separation.
- NR channels and signals have all been designed to support beamforming.
 - required to fully support operation at the higher frequency bands.

Beamforming

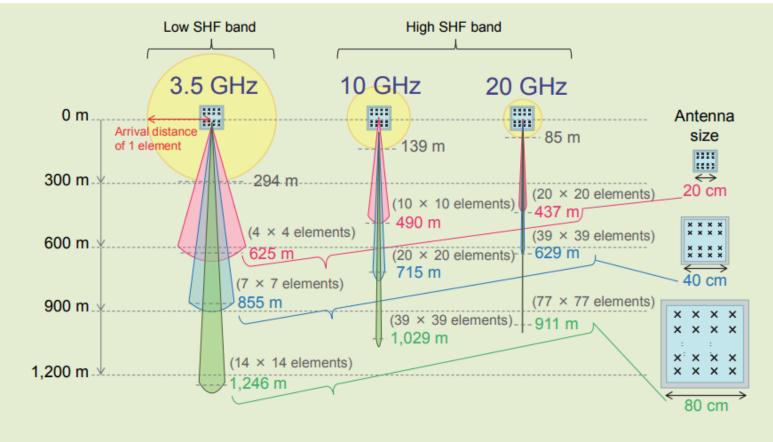
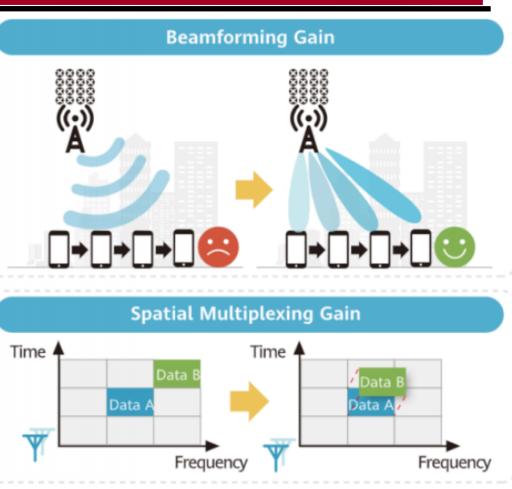



Figure 3 Beamforming effect

Suyama, Satoshi, et al. "5G multi-antenna technology and experimental trials." Â 2016 IEEE International Conference on Communication Systems (ICCS). IEEE, 2016.

Massive MIMO

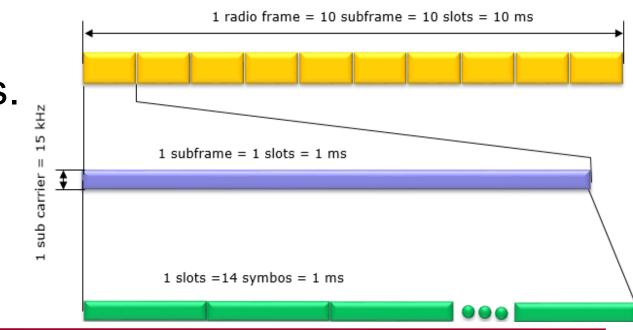
- "massive" refers to the number of antennas (not size)
- propagation loss compensation
 - Dynamic antenna directivity
 - Expanded communication range
- User/spatial multiplexing and simultaneous connection of many users
 - increased system capacity bands
- Precoding to avoid crossuser/stream interference
- Complex signal processing to support the large number of antennas.

https://forum.huawei.com/enterprise/en/what-is-massive-mimosu-mimo-and-mu-mimo/thread/667284186240794625-667213872962088960

Massive Single-User (SU) MIMO

- SU: all resources was allocated to one user and will improve single-user throughput.
 - In Multi-User (MU) MIMO, multiple user use a carrier (OFDMA)
- BW aggregation
- Similar to SU MIMO used in LTE, BUT:
 - In theory: more (up to 64) narrower layers
 - In practice: up to 4 due to UE limitations

Scallable Numerology


- Numerology: Set of parameters that define the physical layer structure,
 - the subcarrier spacing,
 - symbol duration, and
 - cyclic prefix length in an OFDM system.
- Challenge to support so wide spectrum
- OFDM, 15-120KHz spacing
 - LTE uses a single spacing (15KHz)
- 3.300 subcarriers: 50/100/200/400 MHz
 - Correlated spacings: 15/30/60/120 kHz

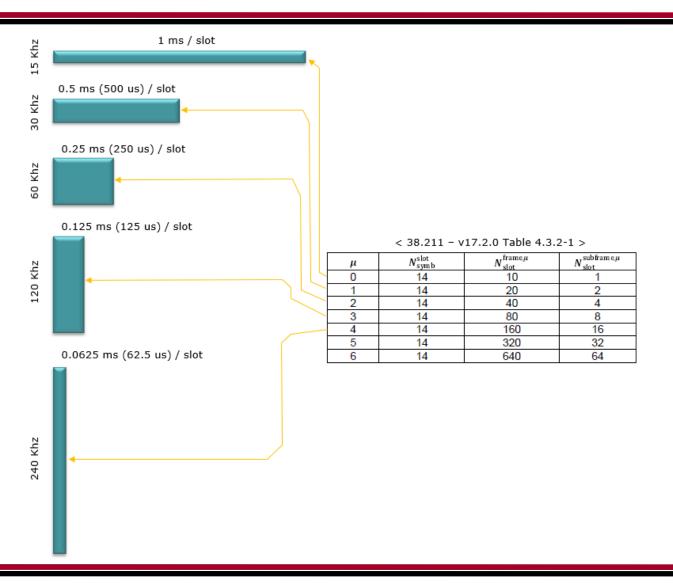
Radio Frame ($\mu = 0$)

- length of a Radio Frame is always 10 ms
- length of a subframe is always 1 ms.

< 38.211 - Table 4.3.2-1 >

μ	$N_{ m symb}^{ m slot}$	$N_{\rm slot}^{\rm frame,\mu}$	$N_{\rm slot}^{\rm subframe,\mu}$
0	14	10	1
1	14	20	2
2	14	40	4
3	14	80	8
4	14	160	16

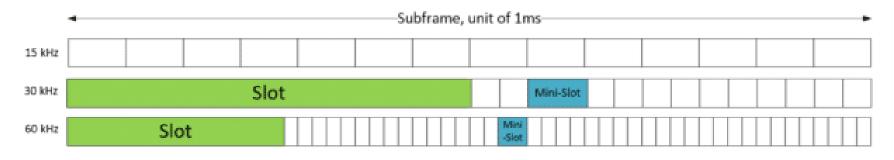
https://www.sharetechnote.com/html/5G/5G_FrameStructure.html


Radio Frame ($\mu = 6$)

- length of a Radio Frame is always 10 ms
- length of a subframe is always 1 ms.

< 38.211 - v17.2.0 Table 4.3.2-1 > $N_{-}^{\operatorname{subframe}\mu}$ $N_{\rm symb}^{\rm slot}$ $N_{\rm slot}^{\rm frame,\mu}$ μ 1 radio frame = 10 subframe = 640 slots = 10 ms 1 subframe = 64 slots = 1 ms = 960 kHz sub carrier 1 slots =14 symbols = 0.01565 ms

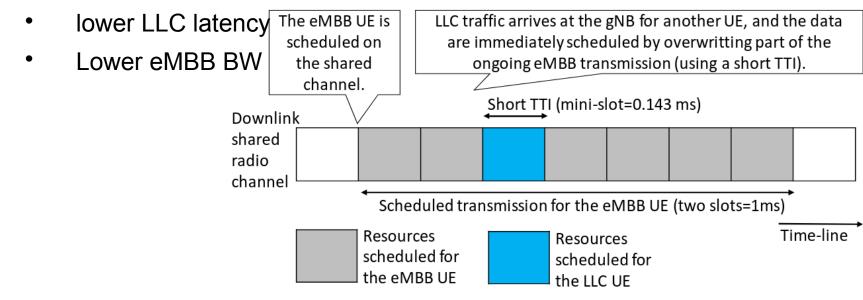
https://www.sharetechnote.com/html/5G/5G_FrameStructure.html


Slot length

https://www.sharetechnote.com/html/5G/5G_FrameStructure.html

Mini-slot https://www.etsi.org/deliver/etsi_tr/138900_138999/138912/15.00.00_60/tr_138912v150000p.pdf

- Low latency communication
- 2, 4, 7 or 14 OFDM symbols
- Target slot lengths are at least 1ms, 0.5ms
- finer TDM granularity of scheduling for the same/different UEs within a slot
- NR-LTE coexistence

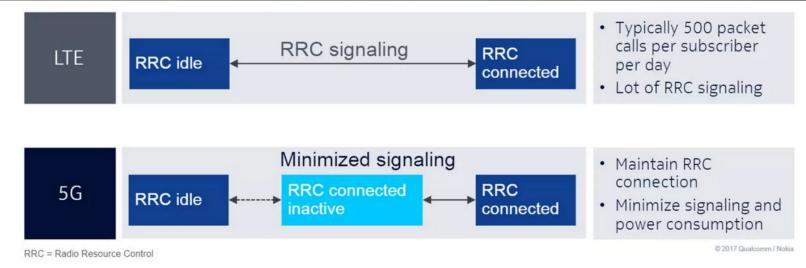


https://www.5gworldpro.com/blog/2020/05/04/216-what-is-mini-slot-in-5g/

Pre-emption

Problem:

- The LLC traffic takes priority over the best effort eMBB data flows
- LLC traffic is quite unpredictable
 - Reservation is inefficient \rightarrow less BW for eMBB
 - If not reserved, eMBB monopolizes channel causing latency to LLC
- Solution: Override eMBB minislots when LLC appears \rightarrow

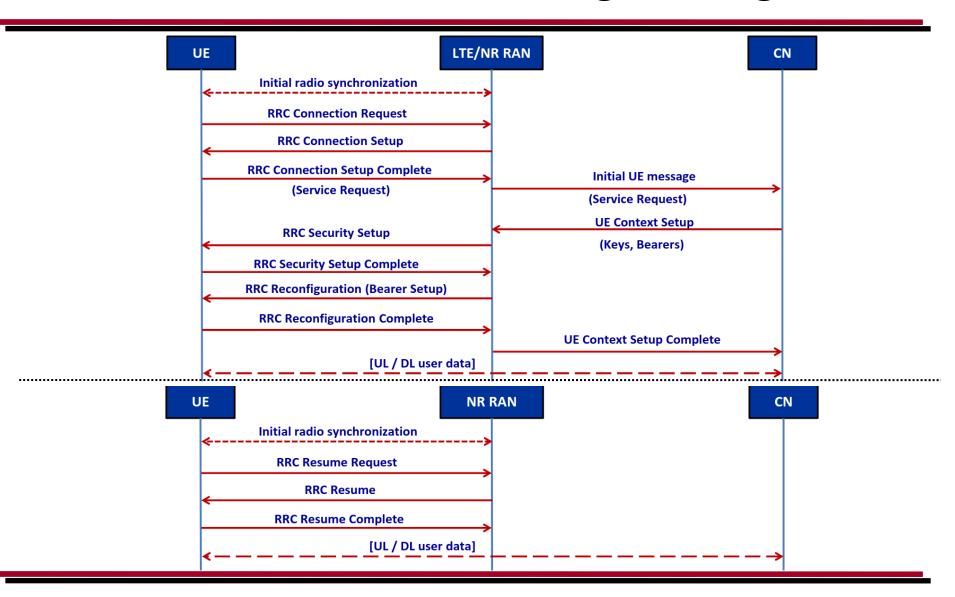


Pedersen, Klaus I., et al. "Punctured scheduling for critical low latency data on a shared channel with mobile broadband." 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall). IEEE, 2017.

Fast Hybrid Automatic Repeat reQuest (HARQ)

- Enhanced reliability through <u>error detection</u> and <u>retransmission</u>
 - Forward error correction and ARQ
- Compared to 4G:
 - multiple HARQ-ACK feedback channels
 - Shorter Transmission Time Interval (TTI)
 - Soft Combining
 - Combine multiple received signal instances, such as erroneously received packets
 - advanced beamforming techniques
 - Channel coding with better error correction capabilities

Energy: RRC inactive, Discontinuous reception (DRX), WakeUp Signal (WUS)

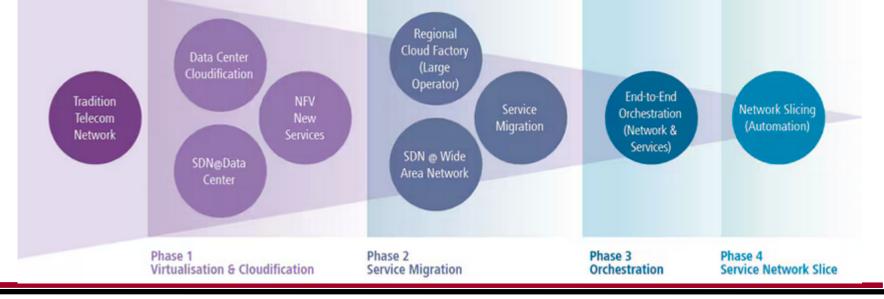


• 3 states:

- **Idle**: no active connection with gNB – sleeping/unreachable

- DRX: checks periodically the physical downlink control channel
- Synchronization needed, DRX period managed by 5GC
- **Connected**: active control and data connection with gNB
- Inactive: active control bearer, UE context not removed from RAN
- "Inactive" offers faster transition to "connected" for ultra-low latency apps
- WUS: more frequent than DRX, wake up only when packet is waiting
- BDW adaptation and dynamic antenna activation

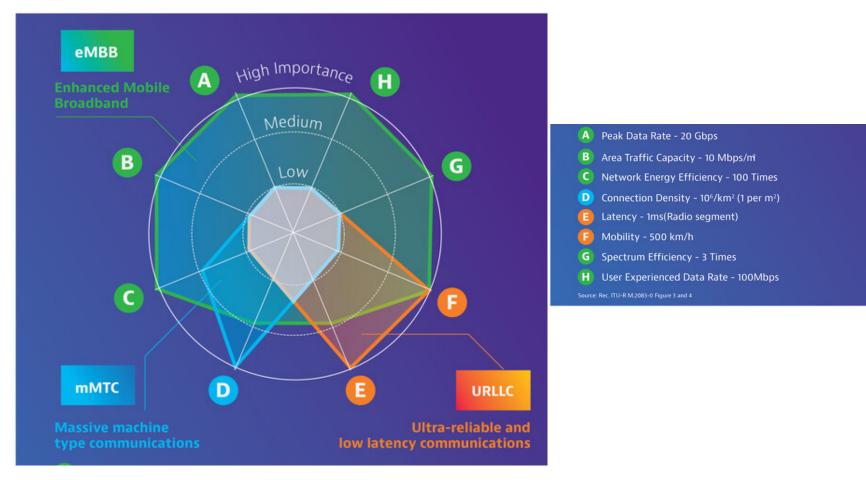
Reconnection message diagram



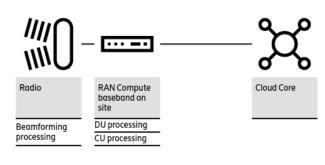
LTE/NR spectrum coexistence

- NR in the same spectrum with LTE deployment
- LTE-compatible NR numerology based on 15 kHz subcarrier spacing,
 - identical time/frequency resource grids for NR and LTE
- Enhanced LTE/NR overlay in the downlink
 - Through reserved resources
 - Forward compatibility

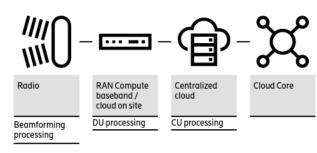
Important Technologies: NFV


- Network Function Virtualization
 - Separation of HW and SW
 - See "5GC architecture"
- Densification makes RAN management challenging.
 - Cry for flexibility and automation
- NFV provides full automation of network management, NFV Management & Orchestration functions (NFV--MANO)

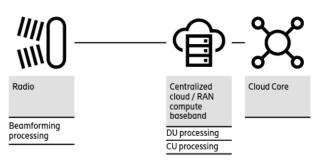
Important Technologies: Slicing


- Replacement of QoS identifiers
- Transforming the physical network into multiple logical networks on top of a shared infrastructure
- A network slice spans from the UE to the Data Network (DN),
- A slice may belong to a single customer/group or may be shared among multiple customers
- Slices may be based on
 - latency, bandwidth, reliability, security
- The O-RAN (Open RAN) ALLIANCE specifies solutions for an open RAN to support end-to-end network slicing for 3GPP-specified 5G systems

Slicing and use-case families

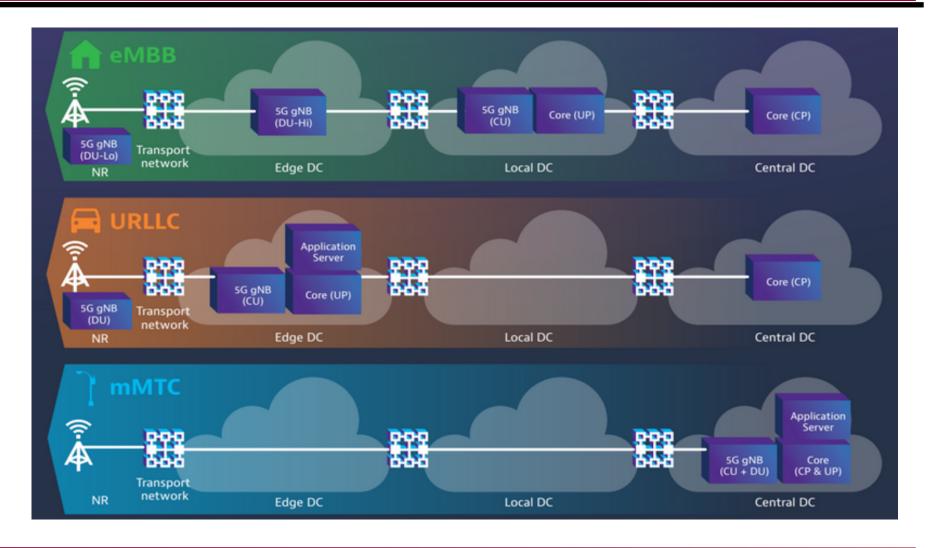


Important Technologies: RAN cloudification


- **C-RAN: separation** of the RAN baseband software and the RAN baseband hardware
- software can run on off-the-shelf hw
 - Easier scale-up, protocol update, openess?
 - @ local RAN or provider's DC or public cloud
- Connect C-RAN and antenna site with dark fiber.
- C-RAN drivers:
 - Cloud economics flexibility in deployment, benefits of scale,
 - common and unified and automated operation (AI)
 - Development of new enterprise business

Distributed deployment of radios

Centralized RAN deployment



https://www.ericsson.com/4ab4fb/assets/local/reports-papers/further-insights/doc/whats-next-for-ran.pdf

Important Technologies: Edge Computing

- a.k.a. Mobile Edge Computing (MEC) or Multi-Access Edge Computing,
- bring processing and storage closer to where data is generated or consumed.
- 'edge' is within or at the boundary of an access network or at the UE premises (train, airplane, enterprise etc.)
- virtualize the cloud beyond the four walls of the data center
- Gains:
 - Better data control and lower costs: less transport to central hubs and reducing vulnerabilities
 - Faster insights and actions
 - Continuous operations even when disconnected
- Empowered by the shared infrastructure from application perspective
 - network slicing!

All together

https://www.viavisolutions.com/en-us/5g-network-slicing