

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής

Ευφυή Κινητά Δίκτυα: Επισκόπηση και Τάσεις Εαρινό Εξάμηνο 2024

Yannis Thomas

Based on slides made by Βασίλειος Σύρης

Fixed versus mobile broadband

Current period

Subscriptions increasing faster than subscribers

Check for yourself: https://www.ericsson.com/en/reports-and-papers/mobility-report/mobility-visualizer

Global mobile device growth

CAGR: Compound Annual Growth Rate

Traffic volume and device type

Exabyte = 2^16bit !!

Source: Cisco VNI Global Mobile Data Traffic Forecast Update, 2017-2022

Traffic volume and device type

Source: Cisco VNI Global Mobile Data Traffic Forecast Update, 2017-2022

Traffic type

Note: Figures in parentheses refer to 2016 and 2021 traffic share.

Source: Cisco VNI: Global Mobile Data Traffic Forecast Update, 2017

Traffic type

¹Traffic from embedded video in web browsing and social media is included in the application category "Video"

Cellular technologies

Cellular IoT

Narrowband Internet of things (**NB-IoT**): lowpower wide-area network (LPWAN) radio technology

Source: Ericsson Mobility Report, June 2022

M2M/IoT applications

- Connected home applications (home automation, home security and video surveillance, connected white goods, and tracking applications) 48% by 2023
- Connected car applications (fleet management, in-vehicle entertainment systems, emergency calling, Internet, vehicle diagnostics and navigation etc.) fastest-growing category, at a 30% growth

The importance of slow and short

- Fast (high speed) & long distance important
- Slow & short equally important
 - Longer battery lifetime, lower device cost, higher security
- Recent technologies:
 - IEEE 802.11ad/ay (WiGig):
 60GHz, single room
 - IEEE 802.11af (white Wi-Fi), 802.11ah (low power Wi-Fi):
 <900MHz, long distance
 - 4G/LTE-M Rel-12/13:
 1.4MHz 20MHz
 (Broadband)

IoT (Internet of Things)

Moving to higher frequencies ...

- 5G in Greece: 700 MHz, 2 GHz, 3.4-3.8 GHz, 26 GHz
 3G/4G bands: 800 MHz, 1.8 GHz, 2.1 GHz, 2.6 GHz
- mm-wave: 26-300 GHz (802.11ad/ay,WiGig: 60 GHz)

Higher frequency benefits

Source: Cisco Annual Internet Report, 2018–2023

Moving to higher frequencies ... without leaving lower frequencies

- 5G in Greece: 700 MHz, 2 GHz, 3.4-3.8 GHz, 26 GHz
 - 3G/4G bands: 800 MHz, 1.8 GHz, 2.1 GHz, 2.6 GHz
- mm-wave: 26-300 GHz (802.11ad/ay,WiGig: 60 GHz)
- Terahertz: 300 GHz-3 THz
- Visible light: 430-750 THz, infrared: 300-430 THz, ultraviolet: 750-1650 THz

Evolution

Evolution

Evolution

Uplink versus downlink

Mobile network evolution

- 1st Generation
 - Analogue mobile phone (e.g., AMPS, NMT)
 - Low quality speech, low speed data 2.4 kbps
- 2nd Generation
 - Digital mobile (e.g., GSM)
 - Digital voice, low speed data (9.6 kbps)
- Generation 2.5 [2.5G]
 - Packet switching data, Internet access
 - e.g., GPRS
 - higher data-rates
 - ◆ 10…171.2 kbps, in theory, ~40 kbps in practice

Mobile network evolution (cont)

- 3rd Generation [3G, 3G+] (digital) multimedia (e.g., UMTS)
 - Higher data-rate (144 kb/s ... 2 Mb/s, in theory)
 - HSDPA, HSUPA, HSPA, LTE
 - Interoperation with 2G and national roaming
- 4th Generation [4G]
 - Seamless High-speed wireless Internet access (e.g., LTE-Advanced, IEEE 802.11n, mobile WiMAX, 802.16e)
 - IP based communication (11 ... 54 Mb/s)
 - Short range, high capacity Wireless Internet Access (1 Gb/s)
 - "virtual reality" connection to the Internet
- 5th Generation [5G]
 - Heterogeneous small cells
 - mmWave
 - Network slicing, Network Function Virtualization (NFV)

Wireless Evolution

- Unlicensed spectrum
- WLANs 802.11 (Wi-Fi):
 - 802.11b, 802.11g/a, 802.11n/Wi-Fi 4 (~150-300Mbps),
 - 802.11ac/Wi-Fi 5 (~300-900Mbps, max 5.4Gbps)
 - 802.11ax/Wi-Fi 6 (max 9.6Gbps) 2020
 - 802.11ad (WiGig, 60 GHz, up to 8Gbps)
 - 802.11ay (WiGig2, 60 GHz, up to 176 Gbps)
 - 802.11ah (700 MHz), 802.11af (TV white spaces), long range communication
- Metropolitan/community wireless networks, opportunistic device-to-device communication

Wired vs. wireless

- wired: very low attenuation, no interference, low bit error probability, high deployment cost (digging)
- wireless: high attenuation (variable), interference (variable), high bit error probability (variable), low deployment cost

Packet-based future

	2G (2000)	Early 3G (2002/3)	Late 3G (2004/5)	4G (2006+)
Air Interface				
Voice	Circuit	Circuit	Circuit	Packet
Data	Circuit	Packet	Packet	Packet
Access Network				
Voice	Circuit	Circuit	Packet	Packet
Data	Circuit	Circuit	Packet	Packet
Core Network				
Voice	Circuit	Packet	Packet	Packet
Data	Overlay Packet	Packet	Packet	Packet

Interconnection at multiple layers

Mobile traffic offloading

Note: Offload pertains to traffic from dual-mode devices (excluding laptops) over Wi-Fi or small-cell networks.

Source: Cisco VNI: Global Mobile Data Traffic Forecast Update, 2017

Wireless architectures

- Cellular
 - hierarchical RAN (Radio Access Network)
 - moving towards flat, peer-to-peer, mesh
- WLAN
 - Iocal connectivity (until now)
 - dense deployments
- Wireless multihop
 - Ad Hoc: infrastructure-less
 - Wireless Mesh Networks: GateWays connecting to fixed network
- Sensor networks

3G/UMTS Hierarchical Radio Access Network (RAN)

RNS: Radio Network Subsystem

WiMAX (IEEE 802.16) RAN with relaying

3G Long Term Evolution (LTE) RAN

5G flexibility – SDN & NFV

- 'Softwarisation' of the network
- NFV and SDN enabling flexibility in where functions are deployed and scaled
- CP/UP split decoupling of user plane traffic from control plane functions
- Centrlaized-RAN centralized cloud-based architecture
- Multi-access Edge Computing (MEC) pushing Core Network functions and content ingress to cell sites

From coverage to capacity deployments

- Installation/Maintenance/Interference optimization is important
- Centralization necessary => Cloud RANs
- Intelligent necessary

RRU-BBU separation

- RRU (Remote Radio Unit): sends/receives signals (EM waves) through antenna
- BBU (BaseBand Unit): conversion between analog and digital signals
- CPRI (Common Public Radio Interface): specification that defines the interfacing transport, connectivity and control communications between BBUs and RRUs

BBU centralization and pooling: Cloud RAN

BBU centralization and pooling: Cloud RAN

Cloud RAN with virtualization

Remote Radio Head (RRH) synonym for RRU

Virtualization gains

- HW and SW totally decoupled
- Operator can dynamically allocate processing resources within a centralized baseband pool to different virtualized base stations and different air interface standards
- simpler inter-vendor interoperability
- cost reduction to manage, maintain, expand and upgrade base station

Multiaccess Edge Computing: Caching

Pushing to the edges

 Multi-access edge computing (MEC) enables cloud computing capabilities and an IT service environment at the edge of the cellular network and, more in general at the edge of any network.

From small cells to no cells: device-to-device communication

 Constrained IoT devices (Things): limited/no connectivity, insecure channel

Disconnected from the Internet device

Disconnected from the Internet device

From small cells to no cells: device-to-device communication

- Constrained IoT devices (Things): limited/no connectivity, insecure channel
- Secure and trusted communication between disconnected IoT devices
 - Trusted = perform actions according to owner defined policies

Disconnected from the Internet device Disconnected from the Internet device

Θα ξεκινήσουμε στις 12:10

Επιστρέφουμε 2:00