

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής

Ευφυή Κινητά Δίκτυα: 6G

Εαρινό Εξάμηνο 2023-24 Γιάννης Θωμάς

Sources

- Innovative trends in the 6G era: A comprehensive survey of architecture, applications, technologies, and challenges.
 - Quy, Vu Khanh, et al. "Innovative trends in the 6G era: A comprehensive survey of architecture, applications, technologies, and challenges." IEEE Access 11 (2023): 39824-39844.
- 6G: The Next Horizon From Connected People and Things to Connected Intelligence
 - White paper, Huawei Technologies Co., Ltd.
 - https://www-file.huawei.com/-/media/corp2020/pdf/tech-insights/1/6g-w hite-paper-en.pdf?la=en
- Envisioning a 6G future
 - Ebook, Nokia & Bell labs
 - https://d1p0gxnqcu0lvz.cloudfront.net/documents/Nokia_Bell_Labs_
 Envisioning_a_6G_future_eBook_EN.pdf
- Ad-hoc paper citations...

6th Generation

- Previous Gens aim mainly performance
 - More BW, less delay, more reliability
- 6G aims
 - Innovation
 - Artificial intelligence
 - Sensing
 - Virtualization & Digital Twins
 - Reduced carbon footprint
 - Sustainability
 - Trust
 - Unification of terrestrial, satellite, underwater networks

Evolution of mobile wireless gens

6G roadmap

Drivers

- New Applications & New Business
- Proliferation of intelligence
- Sustainability / social responsibility

Driver 1: New Applications & New Business

Connected Devices to Internet

Emerging applications:

- Health care
- Intelligent transport systems
- Smart agriculture
- Smart cities
- Real-time entertainment

6G salient requirements:

- Tbps data rates
- Microsecond latencies
- Spatial multiplexing and THz frequency → 1000x capacity of 5G
- Energy efficiency
- Universal coverage
- Intelligent and reliable connections across the entire network

Driver 2: Proliferation of intelligence

- **Native AI support**: end-to-end (E2E) mobile communications systems will be designed with optimal support for AI and ML
- **Native data protection**: privacy, rights of data subjects, data control and processing, GDPR
- Native trutworthiness: multi-party & multi-lateral models
- Native diversified Ecosystem: collaboration and convergence of ICN and OT sectors

Driver 3: Sustainability

- Increased energy reqs
 - Growing (IoT) devices & AI computing
- 6G goal: 100-fold increase of bits/Joule
- New materials/ HW
 - performing many applications simultaneously, THz antennas, tunable materials/ intelligent surfaces
- New algorithms, protocols /SW
- New architectures
 - CRAN (fewer cells), dense topologies (less distance)
- New energy harvesting techniques
 - Renewable energy \rightarrow solar, vibration,
 - RF harvesting

5G Vs. 6G

Features	5G NR	6G
Peak Data Rates	20 Gbps	1 Tbps
Latency	1ms	Less than 1ms
Area Traffic Capacity	10Mbps/m2	1Gbps/m2
Frequency Bands	Sub 6GHz, mmWave (24-52.6 GHz)	Sub 6GHz mmWave band
		THz, VLC
Connection Density	1M devices/Km2	10M devices/Km2
Device Services	Reliable connectivity of devices	Real-Time Physical Interaction Scenarios.
Network Type	SDN, NFV, Slicing	SDN, NFV, Intelligent cloud, AI-based Slicing
		Machine Learning, Deep Learning
Technique Computing	Fog/Edge Computing, Cloud computing	Quantum Computing, Fog/Edge Computing
Mobility	Up to 500 Kmph	Up to 700 Kmph
Technology	D2D communication, Ultra-dense	VLC and Quantum Communications, Endogenous AI,
	Network, Relaying, Small Cell Access, NOMA	Blockchain, Smart Resource Allocation.
Applications	AR, VR, IoT, Smart Cities, Smart	Augmented Reality, Telerobotic, Teledriving,
	Home, Internet of Things	AR/VR/XR, Tele-Education, Internet of Everything

Drivers \rightarrow Vision

3 dimensions:

- Universal architecture
 - Global coverage
 - Ubiquitous access to heterogenous-nets

Novel solutions

- Intelligence
 - Al-driven selfawareness and selfadaptivity to address compexity and heterogeneity.
- Novel technologies
 - (0.1-10) THz spectrum
 - IRS

New spectrum

THz Spectrum

- Up to 100 Gbps with multi-GHz available bandwidth.
- More secure communications
 - the narrow beam and short pulse duration limit eavesdropping.
- Pass through numerous low-loss dielectric, nonmetallic, and low-absorption materials such as paper, plastic, ceramic, clothes, and packaging materials.
- Scatters less than near-infrared and optical approaches due to its longer wavelength.

Optical wireless communication (OWC) – Visible Light Communication (VLC)

- most promising spectrum range of OWC/VLC is 430-790 THz
- LED can play a dual role
 - They are everywhere
 - fast switch to diff light levels \rightarrow encoding
- Sort-range communication / line-of-sight (LOS)
 - Low deployment cost LEDs are everywhere
 - VLC offers extremely high BW (Tbps)
 - Spectrum is unlicensed (yet?)
 - Enhanced security \rightarrow absolute fading/shadowing
 - No electromagnetic radiation and/or interference → good for aircrafts

Intelligent reflecting surface (IRS)

- Game-changing 6G technology
 - Salient usecase: increase coverage of THz
- Tunable reflective elements
 - Control reflection amplitude and phase
- improve coverage, data throughput and energy efficiency
- Cheap: Planar arrays of metallic or dielectric patches with low power, complexity and cost

IRS (cont.)

- Metasurface: tunable reflecting elements
 - Mechanical (rotate), functional (liquid crystals) & electrical (phase shift)
- IRS **controller** adjusts wireless propagation environment
 - Tuning requires channel estimation (sensing?)
 - reflection optimization is a hard problem (computationally)
- Channel time variance should be considered too.

Digital Twins (DTs)

- Digital representations of a physical entity or product
 - Including virtual functionality
- Indistinguishable digital counterpart for practical purposes
 - system simulation, integration, testing, monitoring, and maintenance
- 3 deployment levels:
 - Monitoring: mirror or virtual representation
 - Simulation: exploit virtual functionality (test/dev/predict)
 - Operation: bidiractional interaction of objs & Twins

DT network life-cycle

Ahmadi, Hamed, et al. "Networked twins and twins of networks: An overview on the relationship between digital twins and 6G." IEEE Communications Standards Magazine 5.4 (2021): 154-160.

Cell-free MIMO

- Goal: Avoid inter-cell interference & uniform service
- Densely distributed transmitters
- M trans server N users
 - Time-division-duplex (TDD) for up and down link
- Beamforming: spacial division
- Joint transmission: many to one
- Transmit preprocessing: one to many
- Complicated power control at the Aps
 - CPU can become a bottleneck
- Suitable for indoor and hot-spot coverage scenarios

Joint Networking and Sensing

- Use cases:
 - localization for targets, Imaging, environment reconstruction, Monitoring, gesture & activity recognition
- New performance dimensions
 - Detection probability, sensing resolution and accuracy

https://www.ericsson.com/en/blog/2021/10/joint-sensing-and-communication-6g

Sensing Examples

- High-accuracy localization
 - Latency, Doppler, and angular spectrum information from scattered and reflected wireless signals can be processed to extract coordinates, orientation velocity
 - 3D space/ Device-free objs
 - High accuracy for unmanned Robots
 - Simultaneous imaging, mapping and localization
 - Imaging obtains the view, localization obtains location, mapping combines both into a 3D map
 - Map can be used to refine network design, e.g., improve interference
 - Unmanned vehicles see what is behind the corner
- Augmented human senses
 - Wearable devices (or implants)
 - "seeing beyond eyes" concept / see hidden objects with mm-level resolution
 - spectrogram sensing / unique absorption characteristics of materials
 - food calorie detection and environmental PM2.5

Sensing Examples (cont.)

Infrastructure is there: multiple connented APs/ BSs

Figure 3: Monostatic (left) and bi-static (right) operation. The time Δt between received pulse echoes gives the distance R between the target positions. Here, 'c' is the speed of light.

Metaverse

- Stems from AR, AI, and blockchain
- Extended reality (XR)
 - VR everywhere (not just office/home etc)
- two main tenets
 - Digital-physical fusion
 - digital and physical lives will become inextricably linked
 - Human augmentation
 - No cyborgs, rather insights into lives and control to physical via digital

Metaverse (cont.)

What is Native AI?

- Is having intrinsic trustworthy AI capabilities, where AI is a natural part of the functionality, in terms of design, deployment, operation, and maintenance.
- leverages a data-driven and knowledge-based ecosystem, where data/knowledge is consumed and produced to realize new AI-based functionality or augment and replace static, rule-based mechanisms with learning adaptive AI when needed."

https://www.ericsson.com/en/reports-and-papers/white-papers/ai-native

Native AI in telecom

Cellural τέλος!

- Ερωτήσεις
- Σχόλια
- Προτάσεις
- Παράπονα;