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Seven Bridges of Königsberg
(solved by Leonhard Euler in 1736) • Königsberg (now 

Kaliningrad) is a city on 
the Pregel river in 
Prussia

• The city occupied two 
islands plus areas in 
both river banks

• Problem: Walk through 
all parts of the city and 
cross each bridge only 
once?



Euler’s idea

• Path inside each land mass is irrelevant. 
• The only important feature is the sequence of bridges crossed. 

• Thus, remove all features from consideration except the list of land masses and the bridges 
connecting them.

• Abstraction: model your input as:

• Vertices: island, river bank

• Edges: bridge



Graph abstraction

• Map city to graph elements

• City parts → graph nodes

• City bridges → graph edges

• Cross every edge (bridge) exactly once in a 
walk?

• Observation: sequence of bridges crossed is 
important to solving this problem



Key observation 1

• Intermediate nodes in the route need an even number of edges 
(bridges)
• Because you arrive and leave from these parts of the city



Key observation 2

• Assume start and end nodes are different (otherwise previous 
observation holds for these nodes as well)

• Start node must have an odd number of bridges
• Otherwise you will get stuck in that part of the city if you ever visit it again

• Same argument for ending node: 

Start walking

End walk



Seven Bridges of Konigsberg

Euler’s Conjecture:

• Graph nodes must have even number 
of edges

• There can be zero or two nodes with 
odd number of edges

• All parts of the city have odd number 
of bridges connecting them with the 
rest of the city

• Thus, no Eulerian trail exists



Graph Definitions



What is a Graph 

• An undirected graph G is defined as G = (V, E)

• V is a set of all vertices or nodes

• E is a set of all edges or relationships with endpoints from set V



What is a Graph 

• Special edges: loops and multiple edges

• Loop: An edge whose endpoints are equal

• Multiple edges: Edges that have the same pair of endpoints

• Graphs without loops and multiple edges: simple graphs

• Graphs with multiple edges: multigraphs



Directed Graphs 

• A directed graph G is defined as G = (V, E)

• V is a set of all vertices

• E is a set of all directed edges (u,v), a directed edge (u,v) is an 
outgoing edge of u, and an incoming edge of v.



Weighted Graphs 

• A weighted graph is a graph whose edges have been labeled with some 
weights (numbers). 

• The length of a path in a weighted graph is the sum of the weights of all 
the edges in the path. 

• The length of the path a -> b -> c -> d -> e -> g, is 5 + 4 + 5 + 6 + 5 = 25



Connected-Disconnected Graphs

• Connected: Exists at least one path between any two vertices

• Disconnected: Otherwise

• Example:
• H1 and H2 are connected

• H3 is disconnected



Complete Graph

• Complete Graph: A simple graph in 
which every pair of vertices are 
adjacent 

• If number of vertices=n, then there 
are 
• n(n-1)/2 edges for undirected graphs

• n(n-1) edges for directed graphs

• Sparse Graph: If |E|≈|V|

• Dense Graph: if |E|≈|V|2 Complete undirected graphs of increasing size (n)



Subgraphs

• A subgraph of a graph G is a graph 
H such that:
• V H ⊆ V G

• E(H) ⊆ E(G)

• (v1, v2)  E(H) → v1, v2  G(H)
(you cannot pick an edge without selecting its endpoints)

• If the subgraph contains every 
possible edge between the nodes 
in V(H) it is an induced subgraph

• H1, H2, H3 are subgraphs of G



Clique – Independent Set

• Clique: A set of pairwise adjacent 
vertices (a complete subgraph of a 
graph G)

• Independent set: A set of pairwise 
nonadjacent vertices 

• Example:
• {x,y,u} is a clique in G

• {u,w} is an independent set



Bipartite Graphs

• A bipartite graph is a graph whose vertices can be divided into 
two disjoint and independent sets U and V, such that every edge 
connects a vertex in U to one in V



Cyclic - Acyclic Graphs

• A path from a vertex to itself is called a cycle

• A graph is called cyclic if it contains a cycle
• Otherwise it is called acyclic



Graph Representations



Graph Descriptions (1): Incidence Matrix

• One row per edge
• One column per vertex
• Value=1 if edge and vertex are incident
• Used mainly for simple undirected graphs
• Can be extended for more general graphs 

(hypergraphs, directed, with loops)
• ….but becomes ugly

nodes

ed
ge

s

1  0



Graph Descriptions (2): Adjacency Matrix

• One row per vertex
• One column per vertex
• Value=1 if vertices are connected via an edge
• Diagonal: self loops

• Pros:
• Easier to implement and follow
• Removing an edge takes O(1) time
• Queries like whether there is an edge from 

vertex u to vertex v are efficient and can be 
done O(1).

• Cons:
• Can't represent multi-edges
• Inefficient storage O(|V|2) (many empty cells 

especially for sparse graphs)

nodes

nodes



Graph Descriptions (2): Adjacency Matrix

• Adjacency Matrix undirected graph:
• Matrix must be symmetric.
• We can optimize storage by maintaining 

e.g. only the lower triangle

• Adjacency Matrix directed graph:
• Matrix may not be symmetric.



Graph Descriptions (3): Adjacency List

• A list of out-going vertices is associated to each vertex
• Example: in a social network, keep list of friends for each user (node)

• Compact representation
• Optionally, a list of in-going vertices can be added for reverse traversal 
(directed graphs) 

Vertex Out In

a (b,b) ()

b (c,e) (a,a,e)

c () (b,e)

d (d) (d)

e (b,c) (b)

f () ()

g (h) ()

h () (g)



Graph Descriptions (3): Adjacency List

• Adjacency list undirected graph:
• Space =O(|V|+|E|)

• Assume edges denote friendships in FB
• Query 1: Who are the friends of user v4

• Adjacency list directed graph:
• Space =O(|V|+|E|)

• Assume edges denote links among web pages
• Query 2: Find all links emanating from page v1



Graph Descriptions (4): Edge List

• One row per edge
• One column for starting node (heads)
• One column for ending node (tails)
• Optional columns for edge attributes (label, 
weight, color,…)

• Straightforward to store in a relational table or a dataframe
• Traversals require costly operators (self-joins)



Graph Topology Metrics



Degree – Undirected Graphs

• In an undirected graph the degree (k) of a 
node is the number of edges for which it is 
an endpoint.

• Examples:
• The degree of node v3 is 1
• The degree of node v1 is 4

• Minimum degree: δ G = minu∈Vd u

• Maximum degree:  Δ G = maxu∈Vd u

• Quiz: what is Σu∈Vd u ?

1
2

3
4



Degree – Directed Graphs

• The in-degree (kin) of a node is the number of 
edges for which it is the tail
• The out-degree (kout) of a node is the number of 
edges for which it is the head

• The total degree (k) of a node is the sum of 
in-degree and out-degree 

• k=kin+kout

• Examples:
• The in-degree of v3 is 1
• The out-degree of v3 is 2
• The total degree of node v1 = 2+2



Local Clustering Coefficient

• The Local clustering coefficient C(i) of a node i, quantifies how close its 
neighbors (k) are to being a clique

• Assume nodes depict users in a social network and edges their relationships
• The clustering coefficient C(A) of node A is defined as the probability that two randomly 

selected friends of A are friends themselves
• i.e. the fraction of all pairs of A’s friends who are also friends

• Defined only if A has at least two friends (otherwise 0)

• The clustering coefficient is always between 0 and 1



Detect Fake Users In Social Networks

• Assumption: fake accounts add friends at random

A
B

TCA = 5 TCB = 1 



Local Clustering Coefficient
(Simple undirected graph)

• Node A has k=4 friends
• Among the four friends, there are k×(k-1)/2 = (4×3)/2 = 6 possible friendships
• But only four of them are actually present
• Two are missing 
• Thus, the clustering coefficient of node A is C(A)=4/6=0.6666, or about 67%



Local Clustering Coefficient general formula

• Local clustering coefficient C(i) of a node i is computed as the ratio between 
the number of edges (n) among its ki neighbors divided by the number of links 
(M) that could possibly exist among them:

𝐂𝐢 =
𝐧

𝐌

• Note that the maximal number of edges (M) depends on the graph type
• Directed or undirected
• With or without self-loops



Local Clustering Coefficient

• Undirected, without self-loops:

𝐂𝐢 =
𝐧

𝐌
=

𝐧

𝐤𝐢(𝐤𝐢 − 𝟏)/𝟐
•Undirected, with self-loops:

𝐂𝐢 =
𝐧

𝐌
=

𝐧

𝒌𝒊(𝒌𝒊 − 𝟏)
𝟐

+ 𝐤𝐢
• Directed, without self-loops:

𝐂𝐢 =
𝐧

𝐤𝐢(𝐤𝐢 − 𝟏)
• Directed, with self-loops:

𝐂𝐢 =
𝐧

𝒌𝒊
𝟐

Existing edge

Missing edge

Undirected, no self-loops

Undirected, with self-loops



Average Clustering Coefficient

• Average Clustering Coefficient CC of a graph G is the average of the clustering 
coefficients of all nodes in G



Average Clustering Coefficient

• All nodes are identical and have 4 neighbors
• Possible edges between pairs of neighbors is 4×3/2 = 6
• How many pairs of neighbors are actually connected? 3
• Clustering coefficient of any node: 3/6 = 0.5
• Clustering coefficient of the entire graph: CC = 0.5



Edge Density

• Edge density of a graph is the actual number of edges m in proportion to the 
maximum possible number of edges
• E.g. for undirected simple graphs

𝛒 =
𝐦

𝐧(𝐧 − 𝟏)/𝟐
=

𝟐𝐦

𝐧(𝐧 − 𝟏)

• The edge density takes values between 0 and 1
• Suppose we pick two nodes of a graph at random without regard to the graph 

structure (e.g., whether the two nodes share a common neighbor or not)
• What is the probability p that the two nodes are connected?

• It is given exactly by the edge density of the graph, probability p=ρ
• Density captures the general degree of cohesion (=συνοχή) in a graph



Sparse and Dense Graphs

• If ρ is “small”, then graph is sparse

• If ρ is “large”, then the graph is dense



Highly Clustered Graphs 

• A graph may contain dense “clusters” even if it is sparse
• Compare the average clustering coefficient CC of a graph to its edge density
• We consider a graph to be highly clustered if CC ≫ ρ

Local clustering 
coefficient

Average clustering coefficient

density



Walks, trails and paths



Walk

• A walk is defined as a finite length 
alternating sequence of vertices and 
edges

• The total number of edges covered in a 
walk is called as Length of the Walk

• Remarks:
• A walk can be described unequivocally 

by the sequence of edges (e.g.: d, e, a, d, 
n, p, h, t, t, t)

• An edge or a vertex can appear 
repeatedly in the same walk (e.g.: edges 
d and t , and vertices A, E, X)



Open – Closed Walks

• Open walk: The vertices at which the 
walk starts and ends are different

• (d, e, a, d, n, p, h, t, t, t)

• Closed Walk: The vertices at which the 
walk starts and ends are same

• (d, e, a, d, n, p, h, t, t, t, b, a) 



Trail

• A trail is a walk with no repeated edges 
• (d, e, a, c, l, q, h, t)

• Remark: a vertex can appear repeatedly 
in the same trail
• (e.g.: A and X)



Path

• A path is a trail with no repeated 
vertices, except possibly the initial and 
final vertex (nor edges are allowed to
repeat) 
• (c, l, q, h) 



Cycle

• A cycle is a closed path with at least one 
edge
• (c, l, q, h, b, a) 



Walks - Paths - Trails



Length - Distance

• The length of a path in a graph is the number of steps it contains from 
beginning to end (number of edges)

• The distance between two nodes in a graph is the length of the shortest path 
between them
• Distance between C and G is 2
• Distance between A and B is 1 
• Distance between A and C is infinite (or undefined)



Diameter

• Diameter of a graph is the longest of the distances between all pairs of nodes 
(the longest shortest path)



Shortest Paths



Unweighted Graphs: Shortest Path

Unweighted graphs:
• Input: an unweighted graph (all edges are of equal weight)
• Goal: 
• Single-source shortest path: Given a graph G and a source vertex s, find the 

path with smallest number of hops to every other vertex in G
• Point to Point SP problem: Given G and two vertices A and B, find a shortest 

path from A (source) to B (destination)
• All Pairs Shortest Path Problem: Given G find a shortest path between all 

pairs of vertices



Unweighted Graphs: Shortest Path

Unweighted graphs:
• Goal: 
• Single-source shortest path: Given a graph G and a source vertex s, find the 

path with smallest number of hops to every other vertex in G
• Solution:
• Use BFS Algorithm starting with source vertex s
• Time: O(|E|)



Unweighted Graphs: Shortest Path

Unweighted graphs:
• Goal: 
• Point to Point SP problem: Given G and two vertices A and B, find a shortest 

path from A (source) to B (destination)
• Solution:
• Run BFS using source as A
• Stop algorithm when B is reached.
• Time: O(|E|)



Unweighted Graphs: Shortest Path

Unweighted graphs:
• Goal: 
• All Pairs Shortest Path Problem: Given G find a shortest path between all 

pairs of vertices
• Solution:
• Solve Single Source Shortest Path for each vertex as source
• Time: O(|V||E|)



BFS Algorithm

For each vertex, keep track of:
• Whether we have visited it (known)
• Its distance from the start vertex (dv)
• Its predecessor vertex along the shortest path from the start vertex (pv)



BFS Algorithm

• Ignore vertices that have already been visited by keeping only unvisited 
vertices (distance = ∞) on the queue



BFS Algorithm



BFS Algorithm



BFS Algorithm



BFS Algorithm

Given (undirected or directed) graph G = (V, E) and source node s ∈ V
BFS(s) 
Mark all vertices as unvisited
Initialize search tree T to be empty
Mark vertex s as visited
Set Q to be the empty queue
Enq(s) (Adds an element to the end of the list)
while Q is nonempty do

u = deq(Q) (Removes an element from the front of the list)
for each vertex v ∈ Adj(u)

if v is not visited then
add edge (u, v) to T
mark v as visited and enq(v) 



Weighted Graphs: Shortest Path

What if edges have weights?
• Breadth First Search does not 
work anymore -› minimum cost 
path may have more edges than 
minimum length path

• Shortest path (length) from C to 
A: C->A (cost = 9)
• Minimum Cost Path = C->E->D->A 
(cost = 8)



Weighted Graphs: Shortest Path

Weighted graphs:
• Input: a weighted graph where each edge (vi, vj) has cost ci,j to traverse the 

edge

• Cost of a path v1, v2, … , vN is σi=1
N−1 ci,i+1

• Goal: to find a smallest cost path
• Single-source shortest path: Given a weighted graph G (V,E) and a source 

vertex s, find the minimum weighted path from s to every other vertex in G
• Point to Point SP problem: Given a weighted graph G and two vertices A and 

B, find a shortest path from A (source) to B (destination)
• All Pairs Shortest Path Problem: Given a weighted graph G find a shortest 

path between all pairs of vertices



Weighted Graphs: Shortest Path

Weighted graphs:
• Goal: 
• Single-source shortest path: Given a weighted graph G (V,E) and a source 

vertex s, find the minimum weighted path from s to every other vertex in G
• Solution:
• Use Dijkstra’s algorithm starting with source vertex s
• Time: O((n + m) log n) 
• Does not work with negative weights



Weighted Graphs: Shortest Path

Weighted graphs:
• Goal: 
• Point to Point SP problem: Given a weighted graph G and two vertices A and 

B, find a shortest path from A (source) to B (destination)
• Solution:
• Run Dijkstra’s algorithm using source as A
• Stop algorithm when B is reached.
• Time: O((n + m) log n) 
• Does not work with negative weights



Weighted Graphs: Shortest Path

Weighted graphs:
• Goal: 
• All Pairs Shortest Path Problem: Given a weighted graph G find a shortest path 

between all pairs of vertices

• Solution:
• Run Dijkstra’s algorithm for each vertex as source
• Time: O(mn+n2 log n) 
• Does not work with negative weights



Dijkstra’s Algorithm

• Classic greedy algorithm for solving shortest path in weighted graphs (without 
negative weights)

Basic Idea:
• Find the vertex with smallest cost that has not been “marked” yet
• Mark it and compute the cost of its neighbors
• Do this until all vertices are marked
• Note that each step of the algorithm we are marking one vertex and we won’t 

change our decision: hence the term “greedy” algorithm
• Works for directed and undirected graphs



Dijkstra’s Algorithm

• Initialize the cost of s to 0, and all the rest of the nodes to ∞
• Initialize set S to be ∅

• S is the set of nodes to which we have a shortest path

• While S is not all vertices
• Select the node A with the lowest cost that is not in S and identify the 

node as now being in S
• For each node B adjacent to A

• if cost(A)+cost(A,B) < B’s currently known cost – set cost(B) = 
cost(A)+cost(A,B) 

• set previous(B) = A so that we can remember the path



Dijkstra’s Algorithm Example

Initialization:
• S=[A]
• Cost(A)=0
• Cost(B)=∞
• Cost(C)=∞
• Cost(D)=∞
• Cost(E)=∞
• Cost(F)=∞
• Cost(G)=∞



Dijkstra’s Algorithm Example

Update Cost neighbors:
• Cost(B)=2
• Cost(C)=∞
• Cost(D)=1
• Cost(E)=∞
• Cost(F)=∞
• Cost(G)=∞



Dijkstra’s Algorithm Example

Pick vertex not in S with lowest cost and update neighbors
• S=[D,A]
• Cost(B)=2
• Cost(C)=1+2=3
• Cost(E)=1+2=3
• Cost(F)=1=8=9
• Cost(G)=1+4=5



Dijkstra’s Algorithm Example

Pick vertex not in S with lowest cost and update neighbors
• S=[B,D,A]
• Cost(C)=3
• Cost(E)=3
• Cost(F)=9
• Cost(G)=5



Dijkstra’s Algorithm Example

Pick vertex not in S with lowest cost and update neighbors
• S=[C,B,D,A]
• Cost(E)=3
• Cost(F)=3+5=8
• Cost(G)=5



Dijkstra’s Algorithm Example

Pick vertex not in S with lowest cost and update neighbors
• S=[E,C,B,D,A]
• Cost(F)=8
• Cost(G)=5



Dijkstra’s Algorithm Example

Pick vertex not in S with lowest cost and update neighbors
• S=[G,E,C,B,D,A]
• Cost(F)=5+1=6



Dijkstra’s Algorithm Example

Pick vertex not in S with lowest cost and update neighbors
• S=[F,G,E,C,B,D,A]

• Shortest Paths from A:
• A->B=2
• A->C=3
• A->D=1
• A->E=3
• A->F=6
• A->G=5



Dijkstra’s Algorithm

• For sparse graphs, (i.e. graphs with much less than |V|2 edges) 
Dijkstra's is implemented most efficiently with a priority queue
• Initialization: O(|V|)

• while loop: O(|V|) times

• remove min-cost vertex from queue: O(log |V|)

• potentially perform |E| updates on cost/previous

• update costs in queue: O(log |V|)

• reconstruct path: O(|E|)

• Total runtime: O(|V| log |V| + |E| log |V|)
• = O(|E| log |V|), because |V| = O(|E|) if graph is connected

• if a list is used instead of a queue:  O(|V2| + |E|)  =  O(|V|2)



Dijkstra’s Algorithm

Why Dijkstra Works?
• Hypothesis (Optimal Substructure property): A least cost path from X to Y 

contains least-cost paths from X to every node on the path to Y

• E.g.: if X->C1->C2->C3->Y is the least-cost path from X to Y, then
• X->C1->C2->C3 is the least-cost path from X to C3
• X->C1->C2 is the least-cost path from X to C2
• X->C1 is the least-cost path from X to C1



Dijkstra’s Algorithm

Proof by Contradiction:

Assume hypothesis is false: Given a least-cost path P from X 
to Y that goes through C, there is a better path P’ from X to C 
than the one in P

Show a contradiction:
• But we could replace the subpath from X to C in P with this 

lesser-cost path P’
• The path cost from C to Y is the same
• Thus we now have a better path from X to Y
• But this violates the assumption that P is the least-cost path 

from X to Y

Therefore, the original hypothesis must be true!



Centrality Metrics



Centrality Metrics

• Measure which nodes are important, influential or popular in a network 
based on the topological structure

• Why were the Medici an important family in 15th century Florence?



Centrality Metrics

• Different notions of node centrality:
• Degree — well connectedness
• Betweenness — criticality for connectedness
• Closeness — short distances to the rest of the graph
• Eigenvector — importance



Degree Centrality

• The node with the most connections is the most important according to this metric
• For a graph G = (V, E), the degree centrality of a given node v is:

𝐂𝐃 𝐯 = 𝐝𝐞𝐠𝐫𝐞𝐞(𝐯)

• For a directed network we have in- and out-degree centralities 
• Appropriate for some settings: 
• Social network example: a node (user) of high degree might be thought as influential
• Citation networks: choose papers with may citations (in-degree centrality) when doing 

literature surveys



Degree Centrality

• Problems with degree-based centrality:

• Node degree captures connectivity to adjacent nodes but ignores distances to 
other nodes in the graph

bridge?

Same degree but which is more central?

isolated subgraph?



Degree Centrality Example

who is more important?



Closeness Centrality

• An important node in a central position, close to the rest of the graph
• Important nodes require fewer number of edges to transfer information to all other nodes

• Define closeness of node u as the inverse of the average of the shortest path 
lengths between node u and every other node in the graph 

𝐂𝐂 𝐮 =
𝐧 − 𝟏

σ𝐢𝐝(𝐮, 𝐢)

• where d(u,i) = length of shortest path between nodes u and i



Closeness Centrality Example

• Lengths of shortest 
paths from Helen to all 
other nodes
• Helen->Mary : 2
• Helen->Sara: 1
• Helen->Jim: 1
• Helen->Tim: 1
• Helen->John: 2

AVG Length = 7/5 = 1.4

A node is deemed “central” if this number is small

Helen

Jim

Tim

John

Sara

Mary



Closeness Centrality Example

• CC = inverse of avg distance

• Small avg distance →high closeness centrality

CC(Helen)=5/7=0.71



Closeness Centrality Example

• Note that Jim & Tim are more central than Sara

• However, removal of Sara bisects the graph
CC(Sara)=0.56

CC (Jim)=0.63

CC(Mary)=0.38

CC (Helen)=0.71

CC (Tim)=0.63

CC (John)=0.45



Betweenness Centrality

• Degree & closeness-based centrality are not able to capture the 
ability of a node in a graph to act as a bridge between different 
components
• Calculate betweenness of node u based on the fraction of all 
pairwise shortest paths that go through u

𝐂𝐁 𝐮 = σ𝐚𝐥𝐥 𝐩𝐚𝐢𝐫𝐬 𝐢,𝐣
𝐠𝐢𝐣(𝐮)

𝐠𝐢𝐣

• Where:
• gij = total number of shortest paths between nodes i, j
• gij(u) = number of shortest paths between i, j that go through u



Betweenness Centrality Example

• BC want to capture importance of 
nodes in information passing

• CC measures inverse of avg path 
length to all other nodes
• Some of these paths are not as 

important if alternative routes exist



Betweenness Centrality Example

• Shortest path: fastest method to 
pass a message across

• Mary sends a message to Tim 
through Sara & Helen

• Sara & Helen are rewarded for their 
contribution

+1+1

+1



Betweenness Centrality Example

• BC = number of shortest paths from 
all vertices to all others that pass 
through that node

Note:
• Only consider paths with more than 

2 nodes (no direct edges)

• When multiple shortest paths exist, 
split rewards



Betweenness Centrality Example

• Mary sends message to John

SP1: Mary→Sara→Helen→Jim→John

SP2: Mary→Sara→Helen→Tim→John

Rewards:
• Sara: +.5 + .5
• Helen: +.5 + .5
• Jim: +.5
• Tim: +.5



Betweenness Centrality Example



Centrality Metrics in Directed Graphs

• Degree, betweenness and closeness centrality definitions extend naturally to 
directed graphs
• Out-degree centrality (based on out-degree)
• In-degree centrality (based on in-degree)
• Betweenness centrality of a node considers the fraction of all pairwise 
shortest directed paths that go through it
• In-closeness (based on path lengths from all other nodes to the given node)
• Out-closeness (based on path lengths from the given node to all other nodes)


