Graph Basic Concepts* Yannis Kotidis

*slides adapted from I. Filippidou's original presentation

OIKONOMIKO ПANEMIETHMIO AOHN』N

ATHENS UNIVERSITY

OF ECONOMICS
AND BUSINESS

Outline

- History of Graphs
- Graph Definitions
- Graph Representations
- Graph Topology Metrics
- Walks, Trails and Paths
- Shortest Paths
- Centrality Metrics

Seven Bridges of Königsberg (solved by Leonhard Euler in 1736)

- Königsberg (now Kaliningrad) is a city on the Pregel river in Prussia
- The city occupied two islands plus areas in both river banks
- Problem: Walk through all parts of the city and cross each bridge only once?

Euler's idea

- Path inside each land mass is irrelevant.
- The only important feature is the sequence of bridges crossed.
- Thus, remove all features from consideration except the list of land masses and the bridges connecting them.
- Abstraction: model your input as:
- Vertices: island, river bank
- Edges: bridge

Graph abstraction

- Map city to graph elements
- City parts \rightarrow graph nodes
- City bridges \rightarrow graph edges
- Cross every edge (bridge) exactly once in a walk?
- Observation: sequence of bridges crossed is important to solving this problem

Key observation 1

- Intermediate nodes in the route need an even number of edges (bridges)
- Because you arrive and leave from these parts of the city

Key observation 2

- Assume start and end nodes are different (otherwise previous observation holds for these nodes as well)
- Start node must have an odd number of bridges
- Otherwise you will get stuck in that part of the city if you ever visit it again

- Same argument for ending node:

Seven Bridges of Konigsberg

Euler's Conjecture:

- Graph nodes must have even number of edges
- There can be zero or two nodes with odd number of edges
- All parts of the city have odd number of bridges connecting them with the rest of the city
- Thus, no Eulerian trail exists

Graph Definitions

What is a Graph

- An undirected graph G is defined as $G=(V, E)$
- \mathbf{V} is a set of all vertices or nodes
- E is a set of all edges or relationships with endpoints from set V

What is a Graph

- Special edges: loops and multiple edges
- Loop: An edge whose endpoints are equal
- Multiple edges: Edges that have the same pair of endpoints

It is not simple.

It is a simple graph.

- Graphs without loops and multiple edges: simple graphs
- Graphs with multiple edges: multigraphs

Directed Graphs

- A directed graph G is defined as $G=(V, E)$
- \mathbf{V} is a set of all vertices
- \mathbf{E} is a set of all directed edges (\mathbf{u}, \mathbf{v}), a directed edge (\mathbf{u}, \mathbf{v}) is an outgoing edge of u, and an incoming edge of v.

Weighted Graphs

- A weighted graph is a graph whose edges have been labeled with some weights (numbers).
- The length of a path in a weighted graph is the sum of the weights of all the edges in the path.

- The length of the path $\mathrm{a}->\mathrm{b}$-> $\mathrm{c}->\mathrm{d}$-> $\mathrm{e}->\mathrm{g}$, is $5+4+5+6+5=25$

Connected-Disconnected Graphs

- Connected: Exists at least one path between any two vertices
- Disconnected: Otherwise
- Example:
- H 1 and H 2 are connected
- H3 is disconnected

Complete Graph

- Complete Graph: A simple graph in which every pair of vertices are adjacent
- If number of vertices=n, then there are
- $n(n-1) / 2$ edges for undirected graphs
- $n(n-1)$ edges for directed graphs
- Sparse Graph: If $|\mathrm{E}| \approx|\mathrm{V}|$
- Dense Graph: if $|\mathrm{E}| \approx|\mathrm{V}|^{2}$

Subgraphs

- A subgraph of a graph G is a graph H such that:
- $\mathrm{V}(\mathrm{H}) \subseteq \mathrm{V}(\mathrm{G})$
- $\mathrm{E}(\mathrm{H}) \subseteq \mathrm{E}(\mathrm{G})$
- $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \in \mathrm{E}(\mathrm{H}) \rightarrow \mathrm{v}_{1}, \mathrm{v}_{2} \in \mathrm{G}(\mathrm{H})$
(you cannot pick an edge without selecting its endpoints)
- If the subgraph contains every possible edge between the nodes
 in $\mathrm{V}(\mathrm{H})$ it is an induced subgraph

- H1, H2, H3 are subgraphs of G

Clique - Independent Set

- Clique: A set of pairwise adjacent vertices (a complete subgraph of a graph G)
- Independent set: A set of pairwise nonadjacent vertices
- Example:
- $\{x, y, u\}$ is a clique in G
- $\{u, w\}$ is an independent set

Bipartite Graphs

- A bipartite graph is a graph whose vertices can be divided into two disjoint and independent sets U and V , such that every edge connects a vertex in U to one in V

Cyclic - Acyclic Graphs

- A path from a vertex to itself is called a cycle
- A graph is called cyclic if it contains a cycle
- Otherwise it is called acyclic

cyclic

Graph Representations

Graph Descriptions (1): Incidence Matrix

- One row per edge
- One column per vertex
- Value=1 if edge and vertex are incident
- Used mainly for simple undirected graphs
- Can be extended for more general graphs (hypergraphs, directed, with loops)
-but becomes ugly
nodes
edgelvertex abcdefgh
e1 11000000
e2 110000000
e3 011100000
e4 0010001000
e5 010001000
e6 0001001000
e7 0000100000
e8 $\quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 011$

Graph Descriptions (2): Adjacency Matrix

- One row per vertex
- One column per vertex
- Value=1 if vertices are connected via an edge
- Diagonal: self loops
- Pros:
- Easier to implement and follow
- Removing an edge takes O(1) time
- Queries like whether there is an edge from vertex u to vertex v are efficient and can be done $O(1)$.
- Cons:
- Can't represent multi-edges
- Inefficient storage $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$ (many empty cells especially for sparse graphs)

Graph Descriptions (2): Adjacency Matrix

- Adjacency Matrix undirected graph:
- Matrix must be symmetric.
- We can optimize storage by maintaining e.g. only the lower triangle

Example 3.

$e_{1} e^{e_{3}} e_{5}^{v_{4}}$| | v_{1} | v_{2} | v_{3} | v_{4} | v_{5} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| v_{1} | 0 | 1 | 1 | 1 | 1 |
| v_{2} | 1 | 0 | 0 | 0 | 0 |
| v_{3} | 1 | 0 | 0 | 0 | 0 |
| v_{4} | 1 | 0 | 0 | 0 | 1 |
| v_{5} | 1 | 0 | 0 | 1 | 0 |

- Matrix may not be symmetric.

Example 4.

e_{7}

	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}
v_{1}	0	1	0	1	0
v_{2}	0	0	0	0	0
v_{3}	1	0	1	0	0
v_{4}	0	0	0	0	1
v_{5}	1	0	0	1	0

Graph Descriptions (3): Adjacency List

- A list of out-going vertices is associated to each vertex
- Example: in a social network, keep list of friends for each user (node)
- Compact representation
- Optionally, a list of in-going vertices can be added for reverse traversal (directed graphs)

Vertex	Out	
a	(b, b)	()
b	(c, e)	(a, a, e)
c	()	(b, e)
d	(d)	(d)
e	(b, c)	(b)
f	()	()
g	(h)	()
h	()	(g)

Graph Descriptions (3): Adjacency List

- Adjacency list undirected graph:
- Space $=0(|V|+|E|)$
- Assume edges denote friendships in FB
- Query 1: Who are the friends of user v_{4}
- Adjacency list directed graph:
- Space $=O(|V|+|E|)$
- Assume edges denote links among web pages
- Query 2: Find all links emanating from page v_{1}

Example 1.

Example 2.

Graph Descriptions (4): Edge List

- One row per edge
- One column for starting node (heads)
- One column for ending node (tails)
- Optional columns for edge attributes (label, weight, color,...)

head	tail	label
a	b	e 1
a	b	e 2
b	c	e 3
b	e	e 4
e	b	e 5
e	c	e 6
d	d	e 7
g	h	e 8
	\downarrow	

- Straightforward to store in a relational table or a dataframe
- Traversals require costly operators (self-joins)

Graph Topology Metrics

Degree - Undirected Graphs

- In an undirected graph the degree (k) of a node is the number of edges for which it is an endpoint.
- Examples:
- The degree of node v_{3} is 1
- The degree of node v_{1} is 4
- Minimum degree: $\delta(\mathrm{G})=\min _{\mathrm{u} \in \mathrm{V}} \mathrm{d}(\mathrm{u})$
- Maximum degree: $\Delta(\mathrm{G})=\max _{\mathrm{u} \in \mathrm{V}} \mathrm{d}(\mathrm{u})$

- Quiz: what is $\Sigma_{u \in V} d(u)$?

Degree - Directed Graphs

- The in-degree ($\mathbf{k}_{\text {in }}$) of a node is the number of edges for which it is the tail
- The out-degree ($\mathbf{k}_{\text {out }}$) of a node is the number of edges for which it is the head
- The total degree (k) of a node is the sum of in-degree and out-degree
- $k=k_{\text {in }}+k_{\text {out }}$
- Examples:
- The in-degree of v_{3} is 1
- The out-degree of v_{3} is 2
- The total degree of node $v_{1}=2+2$

Local Clustering Coefficient

- The Local clustering coefficient $\mathbf{C}(\mathbf{i})$ of a node i, quantifies how close its neighbors (k) are to being a clique
- Assume nodes depict users in a social network and edges their relationships
- The clustering coefficient $C(A)$ of node A is defined as the probability that two randomly selected friends of A are friends themselves
- i.e. the fraction of all pairs of A's friends who are also friends
- Defined only if A has at least two friends (otherwise 0)
- The clustering coefficient is always between 0 and 1

Detect Fake Users In Social Networks

- Assumption: fake accounts add friends at random

$T C_{A}=5$

$\mathrm{TC}_{\mathrm{B}}=1$

Local Clustering Coefficient (Simple undirected graph)

- Node A has k=4 friends
- Among the four friends, there are $k \times(k-1) / 2=(4 \times 3) / 2=6$ possible friendships
- But only four of them are actually present
- Two are missing
- Thus, the clustering coefficient of node A is $C(A)=4 / 6=0.6666$, or about 67%

Local Clustering Coefficient general formula

- Local clustering coefficient $\mathrm{C}(\mathrm{i})$ of a node i is computed as the ratio between the number of edges (n) among its k_{i} neighbors divided by the number of links (M) that could possibly exist among them:

$$
C_{i}=\frac{\mathbf{n}}{M}
$$

- Note that the maximal number of edges (M) depends on the graph type
- Directed or undirected
- With or without self-loops

Local Clustering Coefficient

- Undirected, without self-loops:

$$
C_{i}=\frac{n}{M}=\frac{n}{k_{i}\left(k_{i}-1\right) / 2}
$$

-Undirected, with self-loops:

$$
C_{i}=\frac{n}{M}=\frac{n}{\frac{k_{i}\left(k_{i}-1\right)}{2}+k_{i}}
$$

- Directed, without self-loops:

$$
C_{i}=\frac{n}{k_{i}\left(k_{i}-1\right)}
$$

- Directed, with self-loops:

$$
\mathrm{C}_{\mathrm{i}}=\frac{\mathbf{n}}{k_{i}^{2}}
$$

Average Clustering Coefficient

- Average Clustering Coefficient CC of a graph \mathbf{G} is the average of the clustering coefficients of all nodes in G

Average Clustering Coefficient

- All nodes are identical and have 4 neighbors
- Possible edges between pairs of neighbors is $4 \times 3 / 2=6$
- How many pairs of neighbors are actually connected? 3
- Clustering coefficient of any node: $3 / 6=0.5$
- Clustering coefficient of the entire graph: $\mathrm{CC}=0.5$

Edge Density

- Edge density of a graph is the actual number of edges m in proportion to the maximum possible number of edges
- E.g. for undirected simple graphs

$$
\rho=\frac{m}{n(n-1) / 2}=\frac{2 m}{n(n-1)}
$$

- The edge density takes values between 0 and 1
- Suppose we pick two nodes of a graph at random without regard to the graph structure (e.g., whether the two nodes share a common neighbor or not)
- What is the probability p that the two nodes are connected?
- It is given exactly by the edge density of the graph, probability $p=\rho$
- Density captures the general degree of cohesion (=бuvoxń) in a graph

Sparse and Dense Graphs

- If ρ is "small", then graph is sparse
- If ρ is "large", then the graph is dense

Sparse $(\rho=3 /(8 \times 7 / 2)=3 / 28=0.1071$)

Denser ($\rho=11 / 28=0.3928$)

Highly Clustered Graphs

- A graph may contain dense "clusters" even if it is sparse
- Compare the average clustering coefficient CC of a graph to its edge density
- We consider a graph to be highly clustered if CC >> ρ

Walks, trails and paths

Walk

- A walk is defined as a finite length alternating sequence of vertices and edges
- The total number of edges covered in a walk is called as Length of the Walk
- Remarks:
- A walk can be described unequivocally by the sequence of edges (e.g.: d, e, a, d, $\mathrm{n}, \mathrm{p}, \mathrm{h}, \mathrm{t}, \mathrm{t}, \mathrm{t}$)
- An edge or a vertex can appear repeatedly in the same walk (e.g.: edges
 d and t , and vertices $\mathrm{A}, \mathrm{E}, \mathrm{X}$)

Open - Closed Walks

- Open walk: The vertices at which the walk starts and ends are different
- (d, e, a, d, n, p, h, t, t, t)
- Closed Walk: The vertices at which the walk starts and ends are same - (d, e, a, d, n, p, h, t, t, t, b, a)

Trail

- A trail is a walk with no repeated edges - (d, e, a, c, l, q, h, t)
- Remark: a vertex can appear repeatedly in the same trail
- (e.g.: A and X)

Path

- A path is a trail with no repeated vertices, except possibly the initial and final vertex (nor edges are allowed to repeat)
- (c, I, q, h)

Cycle

- A cycle is a closed path with at least one edge
- (c, I, q, h, b, a)

Walks - Paths - Trails

Length - Distance

- The length of a path in a graph is the number of steps it contains from beginning to end (number of edges)

- The distance between two nodes in a graph is the length of the shortest path between them
- Distance between C and G is 2
- Distance between A and B is 1
- Distance between A and C is infinite (or undefined)

Diameter

- Diameter of a graph is the longest of the distances between all pairs of nodes (the longest shortest path)

Diameter 2

Diameter 3

Diameter ∞

Shortest Paths

Unweighted Graphs: Shortest Path

Unweighted graphs:

- Input: an unweighted graph (all edges are of equal weight)
- Goal:
- Single-source shortest path: Given a graph G and a source vertex s, find the path with smallest number of hops to every other vertex in G
- Point to Point SP problem: Given G and two vertices A and B, find a shortest path from A (source) to B (destination)
- All Pairs Shortest Path Problem: Given G find a shortest path between all pairs of vertices

Unweighted Graphs: Shortest Path

Unweighted graphs:

- Goal:
- Single-source shortest path: Given a graph G and a source vertex s, find the path with smallest number of hops to every other vertex in G
- Solution:
- Use BFS Algorithm starting with source vertex s
- Time: O(|E|)

Unweighted Graphs: Shortest Path

Unweighted graphs:

- Goal:
- Point to Point SP problem: Given G and two vertices A and B, find a shortest path from A (source) to B (destination)
- Solution:
- Run BFS using source as A
- Stop algorithm when B is reached.
- Time: O(|E|)

Unweighted Graphs: Shortest Path

Unweighted graphs:

- Goal:
- All Pairs Shortest Path Problem: Given G find a shortest path between all pairs of vertices
- Solution:
- Solve Single Source Shortest Path for each vertex as source
- Time: O(|V||E|)

BFS Algorithm

For each vertex, keep track of:

- Whether we have visited it (known)
- Its distance from the start vertex (d_{v})
- Its predecessor vertex along the shortest path from the start vertex $\left(p_{v}\right)$

	Initial State		
v	known	d_{v}	p_{v}
v_{1}	F	∞	0
v_{2}	F	∞	0
v_{3}	F	0	0
v_{4}	F	∞	0
v_{5}	F	∞	0
v_{6}	F	∞	0
v_{7}	F	∞	0

BFS Algorithm

- Ignore vertices that have already been visited by keeping only unvisited vertices (distance $=\infty$) on the queue

	Initial State				v_{3} Dequeued		
v	known	d_{v}	p_{v}		known	d_{v}	p_{v}
v_{1}	F	∞	0		F	1	v_{3}
v_{2}	F	∞	0		F	∞	0
v_{3}	F	0	0		T	0	0
v_{4}	F	∞	0		F	∞	0
v_{5}	F	∞	0		F	∞	0
v_{6}	F	∞	0		F	1	v_{3}
v_{7}	F	∞	0		F	∞	0
$\mathrm{Q}:$		v_{3}				v_{1}, v_{6}	

BFS Algorithm

v	v_{1} Dequeued			v_{6} Dequeued		
	known	d_{v}	p	known	d_{v}	p_{v}
v_{1}	T	1	v_{3}	T	1	v_{3}
v_{2}	F	2	v_{1}	F	2	v_{1}
v_{3}	T	0	0	T	0	0
v_{4}	F	2	v_{1}	F	2	v_{1}
v_{5}	F	∞	0	F	∞	0
v_{6}	F	1	v_{3}	T	1	v_{3}
v_{7}	F	∞	0	F	∞	0
Q:		v_{2}, v_{4}			v_{4}	

BFS Algorithm

	v_{2} Dequeued				v_{4} Dequeued		
v	known	d_{v}	p_{v}		known	d_{v}	p_{v}
v_{1}	T	1	v_{3}		T	1	v_{3}
v_{2}	T	2	v_{1}		T	2	v_{1}
v_{3}	T	0	0		T	0	0
v_{4}	F	2	v_{1}		T	2	v_{1}
v_{5}	F	3	v_{2}		F	3	v_{2}
v_{6}	T	1	v_{3}		T	1	v_{3}
v_{7}	F	∞	0		F	3	v_{4}
$\mathrm{Q}:$		v_{4}, v_{5}				v_{5}, v_{7}	

BFS Algorithm

	v_{5} Dequeued				v_{7} Dequeued			
	known	d_{v}	p_{v}		known	d_{v}	p_{v}	
v_{1}	T	1	v_{3}		T	1	v_{3}	
v_{2}	T	2	v_{1}		T	2	v_{1}	
v_{3}	T	0	0		T	0	0	
v_{4}	T	2	v_{1}		T	2	v_{1}	
v_{5}	T	3	v_{2}		T	3	v_{2}	
v_{6}	T	1	v_{3}		T	1	v_{3}	
v_{7}	F	3	v_{4}		T	3	v_{4}	
$\mathrm{Q}:$		v_{7}					empty	

BFS Algorithm

```
Given (undirected or directed) graph G = (V, E) and source node s E V
BFS(s)
Mark all vertices as unvisited
Initialize search tree T to be empty
Mark vertex s as visited
Set Q to be the empty queue
Enq(s) (Adds an element to the end of the list)
while Q is nonempty do
        u= deq(Q) (Removes an element from the front of the list)
        for each vertex v \in Adj(u)
            if v}\mathrm{ is not visited then
                add edge (u,v) to T
                    mark v as visited and enq(v)
```


Weighted Graphs: Shortest Path

What if edges have weights?

- Breadth First Search does not work anymore -> minimum cost path may have more edges than minimum length path
- Shortest path (length) from C to A: C->A (cost = 9)
- Minimum Cost Path = C->E->D->A
 (cost =8)

Weighted Graphs: Shortest Path

Weighted graphs:

- Input: a weighted graph where each edge $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$ has cost $\mathrm{c}_{\mathrm{i}, \mathrm{j}}$ to traverse the edge
- Cost of a path $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{N}}$ is $\sum_{\mathrm{i}=1}^{\mathrm{N}-1} \mathrm{c}_{\mathrm{i}, \mathrm{i}+1}$
- Goal: to find a smallest cost path
- Single-source shortest path: Given a weighted graph G (V,E) and a source vertex s, find the minimum weighted path from s to every other vertex in G
- Point to Point SP problem: Given a weighted graph G and two vertices A and B, find a shortest path from A (source) to B (destination)
- All Pairs Shortest Path Problem: Given a weighted graph G find a shortest path between all pairs of vertices

Weighted Graphs: Shortest Path

Weighted graphs:

- Goal:
- Single-source shortest path: Given a weighted graph G (V,E) and a source vertex s, find the minimum weighted path from s to every other vertex in G
- Solution:
- Use Dijkstra's algorithm starting with source vertex s
- Time: O(($n+m) \log n)$
- Does not work with negative weights

Weighted Graphs: Shortest Path

Weighted graphs:

- Goal:
- Point to Point SP problem: Given a weighted graph G and two vertices A and B, find a shortest path from A (source) to B (destination)
- Solution:
- Run Dijkstra's algorithm using source as A
- Stop algorithm when B is reached.
- Time: O(($n+m) \log n)$
- Does not work with negative weights

Weighted Graphs: Shortest Path

Weighted graphs:

- Goal:
- All Pairs Shortest Path Problem: Given a weighted graph G find a shortest path between all pairs of vertices
- Solution:
- Run Dijkstra's algorithm for each vertex as source
- Time: $O\left(m n+n^{2} \log n\right)$
- Does not work with negative weights

Dijkstra's Algorithm

- Classic greedy algorithm for solving shortest path in weighted graphs (without negative weights)

Basic Idea:

- Find the vertex with smallest cost that has not been "marked" yet
- Mark it and compute the cost of its neighbors
- Do this until all vertices are marked
- Note that each step of the algorithm we are marking one vertex and we won't change our decision: hence the term "greedy" algorithm
- Works for directed and undirected graphs

Dijkstra's Algorithm

- Initialize the cost of s to 0 , and all the rest of the nodes to ∞
- Initialize set S to be \emptyset
- S is the set of nodes to which we have a shortest path
- While S is not all vertices
- Select the node A with the lowest cost that is not in S and identify the node as now being in S
- For each node B adjacent to A
- if $\operatorname{cost}(A)+\operatorname{cost}(A, B)<B^{\prime} s$ currently known cost $-\operatorname{set} \operatorname{cost}(B)=$ $\operatorname{cost}(\mathrm{A})+\operatorname{cost}(\mathrm{A}, \mathrm{B})$
- set previous $(B)=A$ so that we can remember the path

Dijkstra's Algorithm Example

Initialization:

- $S=[A]$
- $\operatorname{Cost}(A)=0$
- $\operatorname{Cost}(B)=\infty$
- $\operatorname{Cost}(C)=\infty$
- $\operatorname{Cost}(D)=\infty$
- $\operatorname{Cost}(E)=\infty$
- $\operatorname{Cost}(F)=\infty$
- $\operatorname{Cost}(G)=\infty$

Dijkstra's Algorithm Example

Update Cost neighbors:

- $\operatorname{Cost}(\mathrm{B})=2$
- $\operatorname{Cost}(C)=\infty$
- $\operatorname{Cost}(\mathrm{D})=1$
- $\operatorname{Cost}(\mathrm{E})=\infty$
- $\operatorname{Cost}(\mathrm{F})=\infty$
- $\operatorname{Cost}(\mathrm{G})=\infty$

Dijkstra's Algorithm Example

Pick vertex not in S with lowest cost and update neighbors

- $\mathrm{S}=[\mathrm{D}, \mathrm{A}]$
- $\operatorname{Cost}(B)=2$
- $\operatorname{Cost}(\mathrm{C})=1+2=3$
- $\operatorname{Cost}(\mathrm{E})=1+2=3$
- $\operatorname{Cost}(F)=1=8=9$
- $\operatorname{Cost}(G)=1+4=5$

Dijkstra's Algorithm Example

Pick vertex not in S with lowest cost and update neighbors

- $\mathrm{S}=[\mathrm{B}, \mathrm{D}, \mathrm{A}]$
- $\operatorname{Cost}(\mathrm{C})=3$
- $\operatorname{Cost}(\mathrm{E})=3$
- $\operatorname{Cost}(\mathrm{F})=9$
- $\operatorname{Cost}(\mathrm{G})=5$

Dijkstra's Algorithm Example

Pick vertex not in S with lowest cost and update neighbors

- $S=[C, B, D, A]$
- $\operatorname{Cost}(\mathrm{E})=3$
- $\operatorname{Cost}(F)=3+5=8$
- $\operatorname{Cost}(\mathrm{G})=5$

Dijkstra's Algorithm Example

Pick vertex not in S with lowest cost and update neighbors

- $\mathrm{S}=[\mathrm{E}, \mathrm{C}, \mathrm{B}, \mathrm{D}, \mathrm{A}]$
- $\operatorname{Cost}(F)=8$
- $\operatorname{Cost}(\mathrm{G})=5$

Dijkstra's Algorithm Example

Pick vertex not in S with lowest cost and update neighbors

- $\mathrm{S}=[\mathrm{G}, \mathrm{E}, \mathrm{C}, \mathrm{B}, \mathrm{D}, \mathrm{A}]$
- $\operatorname{Cost}(F)=5+1=6$

Dijkstra's Algorithm Example

Pick vertex not in S with lowest cost and update neighbors

- $S=[F, G, E, C, B, D, A]$
- Shortest Paths from A:
- $A->B=2$
- $A->C=3$
- $A->D=1$
- $A->E=3$
- $A->F=6$
- $A->G=5$

Dijkstra's Algorithm

- For sparse graphs, (i.e. graphs with much less than $|\mathrm{V}|^{2}$ edges) Dijkstra's is implemented most efficiently with a priority queue
- Initialization: O(|V|)
- while loop: O(|V|) times
- remove min-cost vertex from queue: $\mathrm{O}(\log |\mathrm{V}|)$
- potentially perform |E| updates on cost/previous
- update costs in queue: $\mathrm{O}(\log |\mathrm{V}|)$
- reconstruct path: O(|E|)
- Total runtime: O(|V| $\log |\mathrm{V}|+|E| \log |V|)$
- = $\mathbf{O}(|E| \log |V|)$, because $|V|=O(|E|)$ if graph is connected
- if a list is used instead of a queue: $\mathrm{O}\left(\left|\mathrm{V}^{2}\right|+|\mathrm{E}|\right)=\mathrm{O}\left(|\mathrm{V}|^{2}\right)$

Dijkstra's Algorithm

Why Dijkstra Works?

- Hypothesis (Optimal Substructure property): A least cost path from X to Y contains least-cost paths from X to every node on the path to Y
- E.g.: if $X->C 1->C 2->C 3->Y$ is the least-cost path from X to Y, then
- $\mathrm{X}->\mathrm{C} 1->\mathrm{C} 2->C 3$ is the least-cost path from X to C3
- $\mathrm{X}->\mathrm{C} 1->\mathrm{C} 2$ is the least-cost path from X to C 2
- $\mathrm{X}->\mathrm{C} 1$ is the least-cost path from X to C 1

Dijkstra's Algorithm

Proof by Contradiction:

Assume hypothesis is false: Given a least-cost path P from X to Y that goes through C, there is a better path P^{\prime} from X to C than the one in P

Show a contradiction:

- But we could replace the subpath from X to C in P with this lesser-cost path P^{\prime}

- The path cost from C to Y is the same
- Thus we now have a better path from X to Y
- But this violates the assumption that P is the least-cost path from X to Y
Therefore, the original hypothesis must be true!

Centrality Metrics

Centrality Metrics

- Measure which nodes are important, influential or popular in a network based on the topological structure

- Why were the Medici an important family in 15th century Florence?

Centrality Metrics

- Different notions of node centrality:
- Degree - well connectedness
- Betweenness - criticality for connectedness
- Closeness - short distances to the rest of the graph
- Eigenvector - importance

Degree Centrality

- The node with the most connections is the most important according to this metric
- For a graph $G=(V, E)$, the degree centrality of a given node v is:

$$
C_{D}(v)=\operatorname{degree}(v)
$$

- For a directed network we have in- and out-degree centralities
- Appropriate for some settings:
- Social network example: a node (user) of high degree might be thought as influential
- Citation networks: choose papers with may citations (in-degree centrality) when doing literature surveys

Degree Centrality

- Problems with degree-based centrality:

- Node degree captures connectivity to adjacent nodes but ignores distances to other nodes in the graph

Degree Centrality Example

Closeness Centrality

- An important node in a central position, close to the rest of the graph
- Important nodes require fewer number of edges to transfer information to all other nodes
- Define closeness of node u as the inverse of the average of the shortest path lengths between node u and every other node in the graph

$$
\mathbf{C}_{\mathbf{C}}(\mathbf{u})=\frac{\mathbf{n}-\mathbf{1}}{\sum_{\mathbf{i}} \mathbf{d}(\mathbf{u}, \mathbf{i})}
$$

- where $d(u, i)=$ length of shortest path between nodes u and i

Closeness Centrality Example

- Lengths of shortest paths from Helen to all other nodes
- Helen->Mary : 2
- Helen->Sara: 1
- Helen->Jim: 1
- Helen->Tim: 1

AVG Length $=7 / 5=1.4$

- Helen->John: 2

[^0]
Closeness Centrality Example

- $\mathrm{C}_{\mathrm{C}}=$ inverse of avg distance
- Small avg distance \rightarrow high closeness centrality

Closeness Centrality Example

- Note that Jim \& Tim are more central than Sara
- However, removal of Sara bisects the graph

$$
C_{c}(\text { Sara })=0.56
$$

Betweenness Centrality

- Degree \& closeness-based centrality are not able to capture the ability of a node in a graph to act as a bridge between different components
- Calculate betweenness of node u based on the fraction of all pairwise shortest paths that go through u

$$
\mathrm{C}_{\mathrm{B}}(\mathbf{u})=\sum_{\text {all pairs } \mathrm{i}, \mathrm{j}} \frac{\mathrm{~g}_{\mathrm{ij}}(\mathrm{u})}{\mathrm{g}_{\mathrm{ij}}}
$$

- Where:
- $g_{i j}=$ total number of shortest paths between nodes i, j
- $g_{\mathrm{ij}}(\mathrm{u})=$ number of shortest paths between i, j that go through u

Betweenness Centrality Example

- BC want to capture importance of nodes in information passing
- CC measures inverse of avg path length to all other nodes
- Some of these paths are not as important if alternative routes exist

Betweenness Centrality Example

- Shortest path: fastest method to pass a message across
- Mary sends a message to Tim through Sara \& Helen
- Sara \& Helen are rewarded for their contribution

Betweenness Centrality Example

- BC = number of shortest paths from all vertices to all others that pass through that node

Note:

- Only consider paths with more than 2 nodes (no direct edges)

- When multiple shortest paths exist, split rewards

Betweenness Centrality Example

- Mary sends message to John

SP1: Mary \rightarrow Sara \rightarrow Helen \rightarrow Jim \rightarrow John SP2: Mary \rightarrow Sara \rightarrow Helen \rightarrow Tim \rightarrow John

Rewards:

- Sara: +. $5+.5$
- Helen: +. $5+.5$
- Jim: +. 5

- Tim: +. 5

Betweenness Centrality Example

Node	Betweenness Centrality
Mary	0
Sara	4
Helen	6
Jim	1.5
Tim	1.5
John	0

Centrality Metrics in Directed Graphs

- Degree, betweenness and closeness centrality definitions extend naturally to directed graphs
- Out-degree centrality (based on out-degree)
- In-degree centrality (based on in-degree)
- Betweenness centrality of a node considers the fraction of all pairwise shortest directed paths that go through it
- In-closeness (based on path lengths from all other nodes to the given node)
- Out-closeness (based on path lengths from the given node to all other nodes)

[^0]: A node is deemed "central" if this number is small

