Graph Basic Concepts* Yannis Kotidis

*slides adapted from I. Filippidou's original presentation

Outline

- History of Graphs
- Graph Definitions
- Graph Representations
- Graph Topology Metrics
- Walks, Trails and Paths
- Shortest Paths
- Centrality Metrics

Seven Bridges of Königsberg (solved by Leonhard Euler in 1736)

- Königsberg (now Kaliningrad) is a city on the Pregel river in Prussia
- The city occupied two islands plus areas in both river banks
- Problem: Walk through all parts of the city and cross each bridge only once?

Euler's idea

- Path inside each land mass is irrelevant.
 - The only important feature is the sequence of bridges crossed.
- Thus, remove all features from consideration except the list of land masses and the bridges connecting them.
- Abstraction: model your input as:
 - Vertices: island, river bank
 - Edges: bridge

Graph abstraction

- Map city to graph elements
 - City parts \rightarrow graph nodes
 - City bridges \rightarrow graph edges
- Cross every edge (bridge) exactly once in a walk?
- Observation: sequence of bridges crossed is important to solving this problem

Key observation 1

- Intermediate nodes in the route need an even number of edges (bridges)
 - Because you arrive and leave from these parts of the city

Key observation 2

- Assume start and end nodes are different (otherwise previous observation holds for these nodes as well)
- Start node must have an odd number of bridges
 - Otherwise you will get stuck in that part of the city if you ever visit it again

Seven Bridges of Konigsberg

Euler's Conjecture:

- Graph nodes must have even number of edges
- There can be zero or two nodes with odd number of edges
- All parts of the city have odd number of bridges connecting them with the rest of the city
- Thus, no Eulerian trail exists

Graph Definitions

What is a Graph

- An undirected graph G is defined as G = (V, E)
- V is a set of all vertices or nodes
- E is a set of all edges or relationships with endpoints from set V

What is a Graph

- Special edges: **loops** and **multiple** edges
- Loop: An edge whose endpoints are equal
- Multiple edges: Edges that have the same pair of endpoints

It is a simple graph.

- Graphs without loops and multiple edges: simple graphs
- Graphs with multiple edges: multigraphs

Directed Graphs

- A directed graph G is defined as G = (V, E)
- V is a set of all vertices
- E is a set of all directed edges (u,v), a directed edge (u,v) is an outgoing edge of u, and an incoming edge of v.

Weighted Graphs

- A weighted graph is a graph whose edges have been **labeled** with some **weights** (numbers).
- The length of a path in a weighted graph is the sum of the weights of all the edges in the path.

• The length of the path a -> b -> c -> d -> e -> g, is 5 + 4 + 5 + 6 + 5 = 25

Connected-Disconnected Graphs

- **Connected**: Exists at least one path between any two vertices
- **Disconnected**: Otherwise
- Example:
 - H1 and H2 are connected
 - H3 is disconnected

Complete Graph

- Complete Graph: A simple graph in which every pair of vertices are adjacent
- If number of vertices=n, then there are
 - n(n-1)/2 edges for undirected graphs
 - n(n-1) edges for directed graphs
- **Sparse** Graph: If |E|≈|V|
- **Dense** Graph: if $|E| \approx |V|^2$

Complete undirected graphs of increasing size (n)

Subgraphs

- A subgraph of a graph G is a graph H such that:
 - $V(H) \subseteq V(G)$
 - $E(H) \subseteq E(G)$

•
$$(v_1, v_2) \in E(H) \rightarrow v_1, v_2 \in G(H)$$

(you cannot pick an edge without selecting its endpoints)

- If the subgraph contains every possible edge between the nodes in V(H) it is an induced subgraph
- H1, H2, H3 are subgraphs of G

Clique – Independent Set

- Clique: A set of pairwise adjacent vertices (a complete subgraph of a graph G)
- Independent set: A set of pairwise nonadjacent vertices
- Example:
 - {x,y,u} is a clique in G
 - {u,w} is an independent set

Bipartite Graphs

 A bipartite graph is a graph whose vertices can be divided into two disjoint and independent sets U and V, such that every edge connects a vertex in U to one in V

Cyclic - Acyclic Graphs

- A path from a vertex to itself is called a cycle
- A graph is called **cyclic** if it contains a cycle
 - Otherwise it is called acyclic

Graph Representations

Graph Descriptions (1): Incidence Matrix

- One row per edge
- One column per vertex
- Value=1 if edge and vertex are **incident**
- Used mainly for simple undirected graphs
 - Can be extended for more general graphs (hypergraphs, directed, with loops)
 -but becomes ugly

Graph Descriptions (2): Adjacency Matrix

nodes

- One row per vertex
- One column per vertex
- Value=1 if vertices are connected via an edge
- Diagonal: self loops

• Pros:

- Easier to implement and follow
- Removing an edge takes O(1) time
- Queries like whether there is an edge from vertex u to vertex v are efficient and can be done O(1).
- Cons:
- Can't represent multi-edges
- Inefficient storage $O(|V|^2)$ (many empty cells especially for sparse graphs)

from\to	а	b	C	d	e	f	g	h
a	0	1	0	0	0	0	0	0
b	0	0	1	0	1	0	0	0
C	0	0	0	0	0	0	0	0
d	0	0	0	1	0	0	0	0
е	0	1	1	0	0	0	0	0
f	0	0	0	0	0	0	0	0
g	0	0	0	0	0	0	0	1
h	0	0	0	0	0	0	0	0

nodes

Graph Descriptions (2): Adjacency Matrix

- Adjacency Matrix undirected graph:
- Matrix **must** be symmetric.
 - We can optimize storage by maintaining e.g. only the lower triangle

- Adjacency Matrix directed graph:
- Matrix may not be symmetric.

Graph Descriptions (3): Adjacency List

- A list of out-going vertices is associated to each vertex
 - Example: in a social network, keep list of friends for each user (node)
- Compact representation
- Optionally, a list of in-going vertices can be added for reverse traversal (directed graphs)

Vertex	Out	In
а	(b,b)	()
b	(c,e)	(a,a,e)
С	()	(b,e)
d	(d)	(d)
е	(b,c)	(b)
f	()	()
g	(h)	()
h	()	(g)

Graph Descriptions (3): Adjacency List

- Adjacency list undirected graph:
- Space =O(|V|+|E|)
- Assume edges denote friendships in FB
 - Query 1: Who are the friends of user v₄
- Adjacency list directed graph:
- Space =O(|V|+|E|)
- Assume edges denote links among web pages
 - Query 2: Find all links emanating from page v₁

Graph Descriptions (4): Edge List

- One row per edge
- One column for starting node (heads)
- One column for ending node (tails)
- Optional columns for edge attributes (label, weight, color,...)

head	tail	label
а	b	e1
а	b	e2
b	С	e3
b	е	e4
е	b	e5
е	С	e6
d	d	e7
g	h	e8

- Straightforward to store in a relational table or a dataframe
- Traversals require costly operators (self-joins)

Graph Topology Metrics

Degree – Undirected Graphs

- In an undirected graph the degree (k) of a node is the number of edges for which it is an endpoint.
- Examples:
 - The degree of node v_3 is 1
 - The degree of node v₁ is 4
- Minimum degree: $\delta(G) = \min_{u \in V} d(u)$
- Maximum degree: $\Delta(G) = \max_{u \in V} d(u)$
- Quiz: what is $\Sigma_{u \in V} d(u)$?

Degree – Directed Graphs

- The **in-degree** (**k**_{in}) of a node is the number of edges for which it is the tail
- The out-degree (k_{out}) of a node is the number of edges for which it is the head
- The **total degree (k)** of a node is the sum of in-degree and out-degree
 - k=k_{in}+k_{out}
- Examples:
 - The in-degree of v_3 is 1
 - The out-degree of v_3 is 2
 - The total degree of node v₁ = 2+2

Local Clustering Coefficient

• The Local clustering coefficient **C(i)** of a node i, quantifies how close its neighbors (k) are to being a clique

- Assume nodes depict users in a social network and edges their relationships
 - The clustering coefficient C(A) of node A is defined as the probability that two randomly selected friends of A are friends themselves
 - i.e. the fraction of all pairs of A's friends who are also friends
- Defined only if A has at least two friends (otherwise 0)
- The clustering coefficient is always between 0 and 1

Detect Fake Users In Social Networks

• Assumption: fake accounts add friends at random

 $TC_B = 1$

 $TC_A = 5$

Local Clustering Coefficient (Simple undirected graph)

- Node A has k=4 friends
- Among the four friends, there are $k \times (k-1)/2 = (4 \times 3)/2 = 6$ possible friendships
- But only four of them are actually present
- Two are missing
- Thus, the clustering coefficient of **node A** is C(A)=4/6=0.6666, or about 67%

Local Clustering Coefficient general formula

 Local clustering coefficient C(i) of a node i is computed as the ratio between the number of edges (n) among its k_i neighbors divided by the number of links (M) that could possibly exist among them:

$$C_i = \frac{n}{M}$$

- Note that the maximal number of edges (M) depends on the graph type
 - Directed or undirected
 - With or without self-loops

Local Clustering Coefficient

 $C_i = \frac{n}{k_i^2}$

Existing edgeMissing edge

• Undirected, without self-loops: $C_{i} = \frac{n}{M} = \frac{n}{k_{i}(k_{i} - 1)/2}$ •Undirected, with self-loops: $C_{i} = \frac{n}{M} = \frac{n}{\frac{k_{i}(k_{i} - 1)}{2} + k_{i}}$ • Directed, without self-loops: $C_{i} = \frac{n}{k_{i}(k_{i} - 1)}$

• Directed, with self-loops:

Average Clustering Coefficient

• Average Clustering Coefficient CC of a graph G is the average of the clustering coefficients of all nodes in G

CC = (1+2/3+2/3+1+1/2)/5 = 0.7666

Average Clustering Coefficient

- All nodes are identical and have 4 neighbors
- Possible edges between pairs of neighbors is $4 \times 3/2 = 6$
- How many pairs of neighbors are actually connected? 3
- Clustering coefficient of any node: 3/6 = 0.5
- Clustering coefficient of the entire graph: CC = 0.5
Edge Density

- Edge density of a graph is the actual number of edges m in proportion to the maximum possible number of edges
- E.g. for undirected simple graphs

$$\rho=\frac{m}{n(n-1)/2}=\frac{2m}{n(n-1)}$$

- The edge density takes values between 0 and 1
- Suppose we pick two nodes of a graph at random without regard to the graph structure (e.g., whether the two nodes share a common neighbor or not)
- What is the probability p that the two nodes are connected?
 - It is given exactly by the edge density of the graph, probability p=p
 - Density captures the general degree of cohesion (= $\sigma \nu \nu \alpha \chi \dot{\eta}$) in a graph

Sparse and Dense Graphs

- If ρ is "small", then graph is sparse
- If ρ is "large", then the graph is dense

Sparse (p=3/(8×7/2)=3/28=0.1071)

Denser (p=11/28=0.3928)

Highly Clustered Graphs

- A graph may contain dense "clusters" even if it is sparse
- Compare the average clustering coefficient CC of a graph to its edge density

2/3

2/3

• We consider a graph to be highly clustered if $CC \gg \rho$

Walks, trails and paths

Walk

- A **walk** is defined as a finite length alternating sequence of vertices and edges
- The total number of edges covered in a walk is called as Length of the Walk
- Remarks:
 - A walk can be described unequivocally by the sequence of edges (e.g.: d, e, a, d, n, p, h, t, t, t)
 - An edge or a vertex can appear repeatedly in the same walk (e.g.: edges d and t , and vertices A, E, X)

Open – Closed Walks

- **Open walk**: The vertices at which the walk starts and ends are different
 - (d, e, a, d, n, p, h, t, t, t)
- Closed Walk: The vertices at which the walk starts and ends are same
 - (d, e, a, d, n, p, h, t, t, t, b, a)

Trail

- A trail is a walk with no repeated edges
 - (d, e, a, c, l, q, h, t)
- Remark: a vertex can appear repeatedly in the same trail
 - (e.g.: A and X)

Path

- A path is a trail with no repeated vertices, except possibly the initial and final vertex (nor edges are allowed to repeat)
 - (c, l, q, h)

Cycle

- A cycle is a closed path with at least one edge
 - (c, l, q, h, b, a)

Walks - Paths - Trails

Length - Distance

• The **length** of a path in a graph is the number of steps it contains from beginning to end (number of edges)

- The **distance** between two nodes in a graph is the length of the shortest path between them
- Distance between C and G is 2
- Distance between A and B is 1
- Distance between A and C is infinite (or undefined)

Diameter

• **Diameter** of a graph is the longest of the distances between all pairs of nodes (the longest shortest path)

Shortest Paths

- Input: an unweighted graph (all edges are of equal weight)
- Goal:
- Single-source shortest path: Given a graph G and a source vertex s, find the path with smallest number of hops to every other vertex in G
- **Point to Point SP problem:** Given G and two vertices A and B, find a shortest path from A (source) to B (destination)
- All Pairs Shortest Path Problem: Given G find a shortest path between all pairs of vertices

- Goal:
- Single-source shortest path: Given a graph G and a source vertex s, find the path with smallest number of hops to every other vertex in G
- Solution:
 - Use BFS Algorithm starting with source vertex s
 - Time: O(|E|)

- Goal:
- **Point to Point SP problem:** Given G and two vertices A and B, find a shortest path from A (source) to B (destination)
- Solution:
 - Run BFS using source as A
 - Stop algorithm when B is reached.
 - Time: O(|E|)

- Goal:
- All Pairs Shortest Path Problem: Given G find a shortest path between all pairs of vertices
- Solution:
 - Solve Single Source Shortest Path for each vertex as source
 - Time: O(|V||E|)

For each vertex, keep track of:

- Whether we have visited it (known)
- Its distance from the start vertex (d_v)
- Its predecessor vertex along the shortest path from the start vertex (p_v)

	Initial State				
ν	known	d_v	p_{ν}		
v1	F	∞	0		
v_2	F	∞	0		
v_3	F	0	0		
ν4	F	∞	0		
V5	F	∞	0		
v ₆	F	∞	0		
v_{7}	F	∞	0		

 Ignore vertices that have already been visited by keeping only unvisited vertices (distance = ∞) on the queue

	Initi	al State		v ₃ Dequeued			
ν	known	d_v	p_{ν}	known	d_{ν}	p_{ν}	
v ₁	F	∞	0	F	1	v ₃	
v ₂	F	∞	0	F	∞	0	
v ₃	F	0	0	Т	0	0	
ν ₄	F	∞	0	F	∞	0	
v5	F	∞	0	F	∞	0	
v ₆	F	∞	0	F	1	v ₃	
v7	F	∞	0	F	∞	0	
Q:	v ₃			v1, v6			

ν	v1 Dequeued			v6 Dequeued		
	known	d_v	p_{ν}	known	d_{ν}	pν
v1	т	1	v3	т	1	v3
v ₂	F	2	v_1	F	2	<i>v</i> ₁
V3	Т	0	0	Т	0	0
v4	F	2	v ₁	F	2	v ₁
V5	F	∞	0	F	∞	0
V6	F	1	v ₃	Т	1	٧3
v7	F	∞	0	F	∞	0
Q:	v6, v2, v4			v2, v4		

	v ₂ Dequeued			v ₄ Dequeued		
ν	known	d_{v}	p_{ν}	known	d_{ν}	p_{ν}
v_1	Т	1	v ₃	Т	1	v ₃
v_2	Т	2	ν_1	Т	2	\mathbf{v}_1
v ₃	Т	0	0	Т	0	0
v4	F	2	v_1	Т	2	\mathbf{v}_1
v_5	F	3	v_2	F	3	v ₂
v_6	Т	1	v ₃	Т	1	v ₃
v_7	F	∞	0	F	3	v_4
Q:	v ₄ , v ₅			v ₅ , v ₇		

	v ₅ De	equeue	d	v7 Dequeued			
ν	known	$d_{\rm v}$	p_{ν}	known	d_{ν}	p _v	
<i>v</i> ₁	Т	1	v ₃	Т	1	v ₃	
v ₂	Т	2	v_1	Т	2	v_1	
V3	Т	0	0	Т	0	0	
v ₄	Т	2	v ₁	Т	2	v_1	
V5	Т	3	v_2	Т	3	v ₂	
v ₆	Т	1	ν_3	Т	1	v ₃	
v ₇	F	3	v_4	Т	3	v4	
Q:		v ₇		er	npty		

Given (undirected or directed) graph G = (V, E) and source node $s \in V$ BFS(s) Mark all vertices as unvisited Initialize search tree **T** to be empty Mark vertex s as visited Set **Q** to be the empty queue **Eng(s)** (Adds an element to the end of the list) while Q is nonempty do **u** = **deq(Q)** (Removes an element from the front of the list) for each vertex $v \in Adj(u)$ **if v** is not visited **then** add edge (u, v) to T mark v as visited and enq(v)

What if edges have weights?

 Breadth First Search does not work anymore -> minimum cost
 path may have more edges than minimum length path

- Shortest path (length) from C to
 A: C->A (cost = 9)
- Minimum Cost Path = C->E->D->A
 (cost = 8)

Weighted graphs:

- Input: a weighted graph where each edge (v_i, v_j) has cost $c_{i,j}$ to traverse the edge
- Cost of a path v_1, v_2, \ldots, v_N is $\sum_{i=1}^{N-1} c_{i,i+1}$
- Goal: to find a smallest cost path
- **Single-source shortest path**: Given a weighted graph G (V,E) and a source vertex s, find the minimum weighted path from s to every other vertex in G
- Point to Point SP problem: Given a weighted graph G and two vertices A and B, find a shortest path from A (source) to B (destination)
- All Pairs Shortest Path Problem: Given a weighted graph G find a shortest path between all pairs of vertices

Weighted graphs:

- Goal:
- **Single-source shortest path**: Given a weighted graph G (V,E) and a source vertex s, find the minimum weighted path from s to every other vertex in G

• Solution:

- Use Dijkstra's algorithm starting with source vertex s
- Time: O((n + m) log n)
- Does not work with **negative** weights

Weighted graphs:

- Goal:
- **Point to Point SP problem:** Given a weighted graph G and two vertices A and B, find a shortest path from A (source) to B (destination)

• Solution:

- Run Dijkstra's algorithm using source as A
- Stop algorithm when B is reached.
- Time: O((n + m) log n)
- Does not work with **negative** weights

Weighted graphs:

- Goal:
- All Pairs Shortest Path Problem: Given a weighted graph G find a shortest path between all pairs of vertices
- Solution:
 - Run Dijkstra's algorithm for each vertex as source
 - Time: O(mn+n² log n)
 - Does not work with **negative** weights

Dijkstra's Algorithm

• Classic **greedy** algorithm for solving shortest path in weighted graphs (without negative weights)

Basic Idea:

- Find the vertex with smallest cost that has not been "marked" yet
- Mark it and compute the cost of its neighbors
- Do this until all vertices are marked
- Note that each step of the algorithm we are marking one vertex and we won't change our decision: hence the term "greedy" algorithm
- Works for directed and undirected graphs

Dijkstra's Algorithm

- Initialize the cost of s to 0, and all the rest of the nodes to ∞
- Initialize set S to be \emptyset
 - S is the set of nodes to which we have a shortest path
- While S is not all vertices
 - Select the node A with the lowest cost that is not in S and identify the node as now being in S
 - For each node B adjacent to A
 - if cost(A)+cost(A,B) < B's currently known cost set cost(B) = cost(A)+cost(A,B)
 - set previous(B) = A so that we can remember the path

Initialization:

- S=[A]
- Cost(A)=0
- Cost(B)=∞
- Cost(C)=∞
- Cost(D)=∞
- Cost(E)=∞
- Cost(F)=∞
- Cost(G)=∞

Update Cost neighbors:

- Cost(B)=2
- Cost(C)=∞
- Cost(D)=1
- Cost(E)=∞
- Cost(F)=∞
- Cost(G)=∞

- S=[D,A]
- Cost(B)=2
- Cost(C)=1+2=3
- Cost(E)=1+2=3
- Cost(F)=1=8=9
- Cost(G)=1+4=5

- S=[B,D,A]
- Cost(C)=3
- Cost(E)=3
- Cost(F)=9
- Cost(G)=5

- S=[C,B,D,A]
- Cost(E)=3
- Cost(F)=3+5=8
- Cost(G)=5

- S=[E,C,B,D,A]
- Cost(F)=8
- Cost(G)=5

Dijkstra's Algorithm Example

Pick vertex not in S with lowest cost and update neighbors

- S=[G,E,C,B,D,A]
- Cost(F)=5+1=6

Dijkstra's Algorithm Example

Pick vertex not in S with lowest cost and update neighbors

- S=[F,G,E,C,B,D,A]
- Shortest Paths from A:
- A->B=2
- A->C=3
- A->D=1
- A->E=3
- A->F=6
- A->G=5

Dijkstra's Algorithm

- For sparse graphs, (i.e. graphs with much less than |V|² edges) Dijkstra's is implemented most efficiently with a priority queue
 - Initialization: O(|V|)
 - while loop: O(|V|) times
 - remove min-cost vertex from queue: O(log |V|)
 - potentially perform |E| updates on cost/previous
 - update costs in queue: O(log |V|)
 - reconstruct path: O(|E|)
- Total runtime: O(|V| log |V| + |E| log |V|)
 - = O(|E| log |V|), because |V| = O(|E|) if graph is connected
 - if a list is used instead of a queue: $O(|V^2| + |E|) = O(|V|^2)$

Dijkstra's Algorithm

Why Dijkstra Works?

- Hypothesis (**Optimal Substructure property**): A least cost path from X to Y contains least-cost paths from X to every node on the path to Y
- E.g.: if X->C1->C2->C3->Y is the least-cost path from X to Y, then
 - X->C1->C2->C3 is the least-cost path from X to C3
 - X->C1->C2 is the least-cost path from X to C2
 - X->C1 is the least-cost path from X to C1

Dijkstra's Algorithm

Proof by Contradiction:

Assume hypothesis is false: Given a least-cost path P from X to Y that goes through C, there is a better path P' from X to C than the one in P

Show a contradiction:

- But we could replace the subpath from X to C in P with this lesser-cost path P'
- The path cost from C to Y is the same
- Thus we now have a better path from X to Y
- But this violates the assumption that P is the least-cost path from X to Y

Therefore, the original hypothesis must be true!

Centrality Metrics

Centrality Metrics

• Measure which nodes are **important**, **influential or popular** in a network based on the topological structure

• Why were the Medici an important family in 15th century Florence?

Centrality Metrics

- Different notions of node centrality:
- Degree well connectedness
- Betweenness criticality for connectedness
- Closeness short distances to the rest of the graph
- Eigenvector importance

Degree Centrality

- The node with the **most connections** is the most important according to this metric
- For a graph G = (V, E), the degree centrality of a given node v is:

 $C_D(v) = degree(v)$

- For a directed network we have in- and out-degree centralities
- Appropriate for some settings:
- Social network example: a node (user) of high degree might be thought as influential
- Citation networks: choose papers with may citations (in-degree centrality) when doing literature surveys

Degree Centrality

• Problems with degree-based centrality:

• Node degree captures connectivity to adjacent nodes but ignores distances to other nodes in the graph

Degree Centrality Example

Closeness Centrality

- An important node in a **central** position, close to the rest of the graph
 - Important nodes require fewer number of edges to transfer information to all other nodes
- Define closeness of node u as the inverse of the average of the shortest path lengths between node u and every other node in the graph

$$C_{C}(u) = \frac{n-1}{\sum_{i} d(u,i)}$$

• where d(u,i) = length of shortest path between nodes u and i

Closeness Centrality Example

• Helen->John: 2

A node is deemed "central" if this number is small

Closeness Centrality Example

- C_C = **inverse** of avg distance
- Small avg distance → high closeness centrality

Closeness Centrality Example

- Note that Jim & Tim are more central than Sara
- However, removal of Sara **bisects** the graph

Betweenness Centrality

- Degree & closeness-based centrality are not able to capture the ability of a node in a graph to act as a bridge between different components
- Calculate **betweenness** of node u based on the fraction of all pairwise shortest paths that go through u

$$C_B(\mathbf{u}) = \sum_{\text{all pairs i,j}} \frac{g_{ij}(\mathbf{u})}{g_{ij}}$$

- Where:
 - g_{ij} = total number of shortest paths between nodes i, j
 - $g_{ij}(u) =$ number of shortest paths between i, j that go through u

- BC want to capture importance of nodes in information passing
- CC measures inverse of avg path length to all other nodes
 - Some of these paths are not as important if alternative routes exist

- Shortest path: fastest method to pass a message across
- Mary sends a message to Tim through Sara & Helen
- Sara & Helen are **rewarded** for their contribution

 BC = number of shortest paths from all vertices to all others that pass through that node

Sara Jim Mary Helen John Tim

Note:

- Only consider paths with more than 2 nodes (no direct edges)
- When multiple shortest paths exist, split rewards

• Mary sends message to John

SP1: Mary \rightarrow Sara \rightarrow Helen \rightarrow Jim \rightarrow John SP2: Mary \rightarrow Sara \rightarrow Helen \rightarrow Tim \rightarrow John

Rewards:

- Sara: +.5 + .5
- Helen: +.5 + .5
- Jim: +.5
- Tim: +.5

Node	Betweenness Centrality
Mary	0
Sara	4
Helen	6
Jim	1.5
Tim	1.5
John	0

Centrality Metrics in Directed Graphs

- Degree, betweenness and closeness centrality definitions extend naturally to directed graphs
- Out-degree centrality (based on out-degree)
- In-degree centrality (based on in-degree)
- Betweenness centrality of a node considers the fraction of all pairwise shortest directed paths that go through it
- In-closeness (based on path lengths from all other nodes to the given node)
- Out-closeness (based on path lengths from the given node to all other nodes)