
Graph Data Management

AT HEN S UN I VERS I TY OF ECON OM ICS A N D BUS I N ESS DEPA RT M ENT OF I N FOR M AT ICS

Outline
•Graph Databases

•What is Neo4j

•Neo4j Property Graph Model

•Cypher Query Language

•Complaint Database example

•Centrality Metrics Examples

Graph Databases

What is a Graph
A graph is connected data

What is a Graph
Transport Networks

What is a Graph
Social Networks

What is a Graph
Citation Networks

What is a Graph
Web Graph

What is a Graph
Chess Game Graph

What is a Graph
•Data structures that model structural relationships among objects.

•Widely used in application domains for which identifying and
exploring relationship patterns, rules, and anomalies is useful.

Graph Databases
•Data Model:
•Nodes with properties
•Named Relationships with properties

•Manage:
• Highly connected data
• Efficiently explore a node’s neighborhood

•Examples:
•Neo4J, InfiniteGraph, OrientDB, AllegroGraph

Graph Database Use cases
Social Media and Social Network Graphs

•Leverage social connections or infer relationships based on activity

Queries:
Community Cluster Analysis
Friend-of-Friend Recommendations
Influencer Analysis
Sharing & Collaboration
Social Recommendations

Graph Database Use cases
Fraud Detection

•Real-time analysis of data relationships to uncovering fraud rings and scams

Queries:
Anti Money Laundering (AML)
Ecommerce Fraud
First-Party Bank Fraud
Insurance Fraud
Link Analysis

Graph Database Use cases
Knowledge Graph

•Graph-based search tools for better digital asset management

Queries:
Asset Management
Cataloging
Content Management
Inventory
Work Flow Processes

Graph Database Use cases
Network and Database Monitoring

•Graph databases are more suitable for making sense of complex
interdependencies central to managing networks and IT infrastructure

Queries:
Asset Management
Cybersecurity
Impact Analysis
Quality-of-Service Mapping
Root Cause Analysis

Graph Database Use cases
Recommendation Engines

•Graph-powered recommendation engines help companies personalize products,
content and services by leveraging a multitude of connections in real time

Queries:
Content & Media Recommendations
Graph-Aided Search Engine
Product Recommendations
Professional Networks
Social Recommendations

Why Graph Databases?

Good for:

•Well understood data structure that don’t
change frequently

•Known problems involving discrete parts of the
data, or minimal connectivity

Good for:

•Dynamic systems where the data topology is
difficult to predict

•Dynamic requirements: evolving data

•Problems where the relationships in data
contribute meaning & value

Why Graph Databases?
Schema Flexibility

•Relationships – join tables

•Join tables represent edges

•A lot of table joins (join
bomb)-reduced query
performance

Why Graph Databases?
Schema Flexibility

•Named Nodes and Relationships

•Instead of table joins - traversals

•Can add any kind of nodes and relations without schema change

•Can add any number of different relationships between nodes (multigraph)

Why Graph Databases?
Whiteboard friendly

•Easily describe the domain with nodes and relationships

•Consider if the domain is appropriate for graph representation:
• Draw the domain on a whiteboard

• If your domain entities have relationships to other entities

• If your queries rely on exploring relationships

• Graph Database is a great fit

Why Graph Databases?
Express Queries as Traversals
• We store: companies, employers and employment period

• Query: find all people that work at Google

• 3 index lookups in relational DB

Why Graph Databases?
Express Queries as Traversals
• We store: companies, employers and employment period

• Query: find all people that work at Google

• 1 index lookup, traverse relationships

Why Graph Databases?
Very natural to express graph related problems with traversals
• Find shortest path, centrality, node degree…

Find the friends of “John”
(node a) traversal
Easy: index scan

Why Graph Databases?
Very natural to express graph related problems with traversals

• Find the friends-
of-friends of John

• Harder to
compute: self-join

• How do we find
the k-hop
neighbors of John?

Why Graph Databases?
Very natural to express graph related problems with traversals

When are Graph Databases NOT a Good Fit
•Where data is disconnected and relationships do not matter

•Where data model stay consistent and data structure is fixed and tabular

•Where queries execute bulk data scans or do not start from a known data point

• Where you will use it as a key-value store

•Where large amounts of text need to be stored as properties

Neo4j Graph Database

What is Neo4j?
•Open source NoSQL graph database

•Implemented in Java and Scala

•Most popular Graph Database

•Implements the Property Graph Model down to the storage model
• constant time traversal for relationships

•ACID transaction compliance
• atomicity, consistency, isolation, durability

• guarantee: database transactions are processed reliably

Neo4j Usage

Neo4j Property Graph Model
Nodes: can have properties and labels

Creating Nodes
CREATE (john:Person {name: ‘John’, age: 35})

• General syntax CREATE (n:Label1:…:Labeln { attr1:val1,
attr2:val2, …attrk:valk})
– n is a variable that you can use to refer to that node in the same

script

Creating Nodes
• Unlike relational databases, there is no restriction on the number

and type of properties on a node

– E.g. nodes may have different properties, or same properties of different
types

– Recall Person is just a label. It does not restrict the schema of the
corresponding nodes

Creating Nodes
• Assert that each Person has a name (Existential

constraints)

• CREATE CONSTRAINT ON (person:Person) ASSERT
exists(person.name)

:Person
name: ‘John’

age: 35

Creating Nodes
• Assert that no two books in the database can have the

same isbn (Unique constraints)

• CREATE CONSTRAINT ON (book:Book) ASSERT book.isbn IS
UNIQUE

:Book
title: ‘Graph Databases’
isbn: ‘978-1449356262’

Neo4j Property Graph Model
Relationships: connect two nodes, have direction, have properties,
have relationship type

Create Relationships
• CREATE (john)-[:Knows {since: ’14/9/2015’}]->(sally)

• In this example Knows is a relationship type, since is an attribute
for that particular instance, john & sally are variables that refer to
previously created nodes

Neo4j Property Graph Model
Properties: key-value pairs, key is a String, values can be primitives or
an array of primitives

Neo4j Property Graph Model
Labels: allow to assign roles or types to nodes, a node can have any
number of labels.

Neo4j Property Graph Model

Installing and Running Neo4j
•Go to http://neo4j.com/download

•Download Community Edition for your OS

•For Windows run the exe file to install, then use the installed
application to manage neo4j server

•For Linux/Mac un-compress the downloaded file and run the
“./neo4j start” command from within the included bin directory

http://neo4j.com/download

How to use Neo4j
•Cypher
• command line (neo4j-shell)
• web interface (defaults at http://localhost:7474)

•Neo4j Language Drivers
• java
• .NET
• JavaScript
• Python
• Ruby
• PHP
and more!

Cypher Query Language
•Declarative, SQL-inspired language

•Used to describe patterns in graphs

•User describes what she wants to
• select
• insert
• update
• delete

•Without describing how to do it

•Cypher Documentation: http://neo4j.com/docs/stable/cypher-query-lang.html

•Cypher Reference Card: http://neo4j.com/docs/stable/cypher-refcard/

http://neo4j.com/docs/stable/cypher-query-lang.html
http://neo4j.com/docs/stable/cypher-refcard/

Cypher Nodes Representation
•Cypher uses ASCII-Art to represent patterns

•Surround nodes with parentheses so it looks like a circle
• e.g. (person), (movie)

•A node can have properties
• e.g. (bob {age: 28, name: ‘Bob’})

•In the above examples bob, person, movie are variables names

•A relationship among nodes is represented with an arrow as:

•e.g. (bob) --> (mary), or (bob)--(mary) bidirectional

Cypher Relationships Representation
•A relationship has a type, e.g. :LIKES

•Surround relationships with square brackets
• e.g. [:LIKES]

• :LIKES is the type of the relationship

•Relationships are declared as:
• (bob)-[:LIKES]->(mary)

•Relationships can also have properties:
• (bob)-[:GRADUATED {year: 2015}]->(aueb)

Cypher Labels Representation
•Labels allow us to assign roles or types to nodes
• e.g. (bob:Person)

•Can have more than one label per node
• e.g. (bob:Person:Student:Actor)

•In the relational world the label would most probably be the name
of a table

MATCH & RETURN
•MATCH: used to match patterns of nodes and relationships in the
graph

•RETURN: declare what information you want returned from the
query

•Describe a pattern and ask the database to return the desired info

•A very basic example is:

MATCH (p1:Person)-[:Friend]->(p2:Person)
RETURN p1.name, p2.name

WHERE, ORDER BY, LIMIT
•WHERE: filter results by properties values

•ORDER BY: ask for a specific order of results

•LIMIT: how many results to show

MATCH (p:Person)-[r:Acted]->(m:Movie)
WHERE m.year = 1995
RETURN m.title AS title, p.name, r.role
ORDER BY title ASC LIMIT 10;

Describing Paths
•(a)-[*2]->(b)
• all paths of length 2

•(a)-[*3..5]->(b)
• all paths of length 3 to 5

•(a)-[*]->(b)
• all paths of any length

•shortestPath((a)-[*..5]->(b))
• shortest path of max length 5

Aggregation
•MATCH (n:Person) RETURN count(n)

•MATCH (n:Person) RETURN collect(n.name)

•MATCH (p:Person{name:’bob’})-[:OWNS]->(n:BankAccount) RETURN sum
(n.amount)

•Other available aggregate functions:
• avg
• min
• max
• percentileDisc
• stdev

Mathematical Functions
•abs

•rand

•round

•sqrt

•sign

•sin

•log

•log10

and more!

CREATE
CREATE: create new nodes and relationships

CREATE (a:Person{name:’Bob’})-[:Likes]->(b:Person{name:’Mary’})

MATCH (x:Person {name:’Bob’})
CREATE (x)-[:WorksAt]->(c:Company{name:’1B Dollars’})

Querying the graph database
• Queries are also graphs!

“Find the titles of all books that a person named John has
read and report his ratings”

MATCH (n:Person {name:’John’})-[r:Read]->(b:Book)
RETURN b.title, r.rating

Querying the graph database
• Friend-of-friend pairs in a social network

• MATCH (x:Person)-[:Knows]->(someone),(someone)-[:Knows]-
>(y:Person)

RETURN x.name, y.name

OR (simpler)

• MATCH (x:Person)-[:Knows]->()-[:Knows]->(y:Person)

RETURN x.name, y.name

Import Data
Can use a number of methods:

•Multiple CREATE statements
• http://neo4j.com/docs/stable/query-create.html

•LOAD CSV FROM ‘path_to_file’ command
• http://neo4j.com/docs/stable/cypherdoc-importing-csv-files-with-cypher.html

•LOAD JSON (apoc.load.json)
• https://neo4j.com/docs/labs/apoc/current/import/load-json/

•Neo4j Import Tool
• http://neo4j.com/docs/stable/import-tool.html

http://neo4j.com/docs/stable/query-create.html
http://neo4j.com/docs/stable/cypherdoc-importing-csv-files-with-cypher.html
https://neo4j.com/docs/labs/apoc/current/import/load-json/
http://neo4j.com/docs/stable/import-tool.html

Import Data

Load CSV From path
•Direct mapping of input data into complex graph/domain structure

•Create or merge data, relationships and structure

•All data from CSV is read as a string, use (toInteger, toFloat, split)

•Separate node creation from relationship creation into different
statements

•Create indexes after insertion for the required properties

Consumer Complaints Example

Consumer Complaints Example
•Model Description:

•7 nodes: Company, Response, Product, SubProduct, Issue, SubIssue, Complaint

•6 relationships: TO, AGAINST, ABOUT, WITH, IN_ISSUE_CATEGORY, IN_PRODUCT_CATEGORY

•1 CSV file:

Consumer Complaints Example

Consumer Complaints Example
{name: Bank of America} {name: In progress}

{id: 123}
{year: 2014}
{month: 1}

{day: 3}

{name: depit}
{name: carLoan}

{name: loan service}

{name: loan}

Consumer Complaints Example
•Read the first line of the CSV-Cypher (check for required properties)

LOAD CSV WITH HEADERS FROM
"file:///Consumer_Complaints.csv" AS LINE
RETURN LINE
limit 1

Consumer Complaints Load CSV
•Create: All Nodes Indexes (unique constraint)

// Uniqueness constraints.
CREATE CONSTRAINT FOR (c:Complaint) REQUIRE c.id IS UNIQUE;
CREATE CONSTRAINT FOR (c:Company) REQUIRE c.name IS UNIQUE;
CREATE CONSTRAINT FOR (r:Response) REQUIRE r.name IS UNIQUE;
CREATE CONSTRAINT FOR (p:Product) REQUIRE p.name IS UNIQUE;
CREATE CONSTRAINT FOR (i:Issue) REQUIRE i.name IS UNIQUE;
CREATE CONSTRAINT FOR (s:SubProduct) REQUIRE s.name IS UNIQUE;
CREATE CONSTRAINT FOR (s:SubIssue) REQUIRE s.name IS UNIQUE;

Consumer Complaints Load CSV
•Create: Complaint nodes with properties (split date)

// Load Complaint Nodes.
LOAD CSV WITH HEADERS
FROM "file:///Consumer_Complaints.csv" AS line
WITH DISTINCT line, SPLIT(line.`Date received`, '/') AS date

CREATE (complaint:Complaint { id: TOINTEGER(line.`Complaint ID`) })
SET complaint.year = TOINTEGER(date[2]),

complaint.month = TOINTEGER(date[0]),
complaint.day = TOINTEGER(date[1])

Consumer Complaints Load CSV
•Create: Company, Response nodes with MERGE (find or create)

// Load Company, Response Nodes.
LOAD CSV WITH HEADERS
FROM "file:///Consumer_Complaints.csv" AS line

MERGE (company:Company { name: TOUPPER(line.Company) })
MERGE (response:Response { name: TOUPPER(line.`Company response to consumer`) })

Consumer Complaints Load CSV
•Create: AGAINST, TO relationships between nodes (with properties)

// Load AGAINST, TO relationships.
LOAD CSV WITH HEADERS
FROM "file:///Consumer_Complaints.csv" AS line
MATCH (complaint:Complaint { id: TOINTEGER(line.`Complaint ID`) })
MATCH (response:Response { name: TOUPPER(line.`Company response to consumer`) })
MATCH(company:Company { name: TOUPPER(line.Company) })
CREATE (complaint)-[:AGAINST]->(company)
CREATE (response)-[r:TO]->(complaint)
SET r.timely = CASE line.`Timely response?` WHEN 'Yes' THEN true ELSE false END,

r.disputed = CASE line.`Consumer disputed?` WHEN 'Yes' THEN true ELSE false END;

Consumer Complaints Load CSV
•Create: Product, Issue nodes and ABOUT, WITH relationships
(MATCH on Complaint ID)

// Load Product, Issue nodes, ABOUT, WITH relations.
LOAD CSV WITH HEADERS
FROM "file:///Consumer_Complaints.csv" AS line
MATCH (complaint:Complaint { id: TOINTEGER(line.`Complaint ID`) })
MERGE (product:Product { name: TOUPPER(line.Product) })
MERGE (issue:Issue {name: TOUPPER(line.Issue) })
CREATE (complaint)-[:ABOUT]->(product)
CREATE (complaint)-[:WITH]->(issue);

Consumer Complaints Load CSV
•Create: Sub-issue node and its relationships (remove empty nodes)

// Load Sub-issue nodes and relations.
LOAD CSV WITH HEADERS
FROM "file:///Consumer_Complaints.csv" AS line WITH line
WHERE line.`Sub-issue` <> '' AND line.`Sub-issue` IS NOT NULL
MATCH (complaint:Complaint { id: TOINTEGER(line.`Complaint ID`) })
MATCH (complaint)-[:WITH]->(issue:Issue)
MERGE (subIssue:SubIssue { name: TOUPPER(line.`Sub-issue`) })
MERGE (subIssue)-[:IN_ISSUE_CATEGORY]->(issue)
CREATE (complaint)-[:WITH]->(subIssue);

Consumer Complaints Load CSV
•Create: Sub-product node and its relationships (remove empty nodes)

// Load Sub-product nodes and relations.
LOAD CSV WITH HEADERS
FROM "file:///Consumer_Complaints.csv" AS line WITH line
WHERE line.`Sub-product` <> '' AND line.`Sub-product` IS NOT NULL
MATCH (complaint:Complaint { id: TOINTEGER(line.`Complaint ID`) })
MATCH (complaint)-[:ABOUT]->(product:Product)
MERGE (subProduct:SubProduct { name: TOUPPER(line.`Sub-product`) })
MERGE (subProduct)-[:IN_PRODUCT_CATEGORY]->(product)
CREATE (complaint)-[:ABOUT]->(subProduct);

Querying the Database
1. Top types of responses that are disputed

MATCH (r:Response)-[:TO {disputed:true}]->(:Complaint)
RETURN r.name AS response, COUNT(*) AS count
ORDER BY count DESC;

2. Companies with the most disputed responses
MATCH (:Response)-[:TO {disputed:true}]->(complaint:Complaint)
MATCH (complaint)-[:AGAINST]->(company:Company)
RETURN company.name AS company, COUNT(*) AS count
ORDER BY count DESC
LIMIT 10;

Querying the Database
3. All issues

MATCH (i:Issue)

RETURN i.name AS issue

ORDER BY issue;

4. All sub-issues within the 'communication tactics' issue
MATCH (i:Issue {name:'COMMUNICATION TACTICS'})

MATCH (sub:SubIssue)-[:IN_ISSUE_CATEGORY]->(i)

RETURN sub.name AS subissue

ORDER BY subissue;

Querying the Database
5. Top products and sub-products associated with the obscene /

abusive language sub-issue
MATCH (subIssue:SubIssue {name:'USED OBSCENE/PROFANE/ABUSIVE LANGUAGE'})

MATCH (complaint:Complaint)-[:WITH]->(subIssue)

MATCH (complaint)-[:ABOUT]->(p:Product)

OPTIONAL MATCH (complaint)-[:ABOUT]->(sub:SubProduct)

RETURN p.name AS product, sub.name AS subproduct, COUNT(*) AS count

ORDER BY count DESC;

Querying the Database
6. Top company associated with the obscene / abusive language

sub-issue
MATCH (subIssue:SubIssue {name:'USED OBSCENE/PROFANE/ABUSIVE LANGUAGE'})

MATCH (complaint:Complaint)-[:WITH]->(subIssue)

MATCH (complaint)-[:AGAINST]->(company:Company)

RETURN company.name AS company, COUNT(*) AS count

ORDER BY count DESC

LIMIT 10;

Querying the Database
7. Sub-products that belong to multiple product categories

MATCH (sub:SubProduct)-[:IN_PRODUCT_CATEGORY]->(p:Product)

WITH sub, COLLECT(p) AS products

WHERE SIZE(products) > 1

RETURN sub, products;

Web Interface Query 1

Web Interface Query 7

Centrality Metrics Examples

Create Graph
CREATE (alice:User {name: 'Alice'}),

(bridget:User {name: 'Bridget'}),
(charles:User {name: 'Charles'}),
(doug:User {name: 'Doug'}),
(mark:User {name: 'Mark'}),
(michael:User {name: 'Michael'}),
(alice)-[:FOLLOWS]->(doug),
(alice)-[:FOLLOWS]->(bridget),
(alice)-[:FOLLOWS]->(charles),
(mark)-[:FOLLOWS]->(doug),
(mark)-[:FOLLOWS]->(michael),
(bridget)-[:FOLLOWS]->(doug),
(charles)-[:FOLLOWS]->(doug),
(michael)-[:FOLLOWS]->(doug)

Degree Centrality Directed Graphs
•The following query calculates the number of people that each user
follows and is followed by (in-out degree)

MATCH (u:User)
OPTIONAL MATCH (u)-[:FOLLOWS]->(f:User)
OPTIONAL MATCH (u)<-[:FOLLOWS]-(follower:User)
RETURN u.name AS name,

COUNT(DISTINCT f) AS follows,
COUNT(DISTINCT follower) AS followers

Degree Centrality Directed Graphs
•Doug is the most popular user (in-
degree)

•All other users follow Doug but he
doesn’t follow anybody back

•In real social networks celebrities
have high follower counts but tend
to follow few people

Degree Centrality Weighted Graphs
•This algorithm is a variant of the Degree Centrality algorithm, that measures the
sum of the weights of incoming and outgoing relationships

CREATE (alice:User {name:'Alice'}),
(bridget:User {name:'Bridget'}),
(charles:User {name:'Charles'}),
(doug:User {name:'Doug'}),
(mark:User {name:'Mark'}),
(michael:User {name:'Michael'}),
(alice)-[:FOLLOWS {score: 1}]->(doug),
(alice)-[:FOLLOWS {score: 2}]->(bridget),
(alice)-[:FOLLOWS {score: 5}]->(charles),
(mark)-[:FOLLOWS {score: 1.5}]->(doug),
(mark)-[:FOLLOWS {score: 4.5}]->(michael),
(bridget)-[:FOLLOWS {score: 1.5}]->(doug),
(charles)-[:FOLLOWS {score: 2}]->(doug),
(michael)-[:FOLLOWS {score: 1.5}]->(doug)

4,5

25

1,5

1

1,52

1,5

Degree Centrality Weighted Graphs
•The following will run the algorithm and stream results, showing which users
have the most weighted followers (in degree):

CALL gds.graph.project(
'userGraph',
'User',
{

FOLLOWS: {
properties: 'score'

}
}

);

CALL gds.degree.stream('userGraph', {relationshipWeightProperty: 'score', orientation: 'REVERSE'})
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS user, score AS weightedFollowers
ORDER BY score DESC

Degree Centrality Weighted Graphs
•The following will run the algorithm and stream results, showing which
users have the most weighted follows (out degree):

CALL gds.graph.project(
'userGraph',
'User',
{

FOLLOWS: {
properties: 'score'

}
}

);

CALL gds.degree.stream('userGraph', {relationshipWeightProperty: 'score', orientation: ‘NATURAL'})
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS user, score AS weightedFollows
ORDER BY score DESC

Local Clustering Coefficient
CREATE

(alice:Person {name: 'Alice'}),
(michael:Person {name: 'Michael'}),
(karin:Person {name: 'Karin'}),
(chris:Person {name: 'Chris'}),
(will:Person {name: 'Will'}),
(mark:Person {name: 'Mark'}),
(michael)-[:KNOWS]->(karin),
(michael)-[:KNOWS]->(chris),
(will)-[:KNOWS]->(michael),
(mark)-[:KNOWS]->(michael),
(mark)-[:KNOWS]->(will),
(alice)-[:KNOWS]->(michael),
(will)-[:KNOWS]->(chris),
(chris)-[:KNOWS]->(karin)

Local Clustering Coefficient
•The following statement will project the graph to undirected and store it in the
graph catalog under the name 'myGraph‘

•Neo4j computes local clustering coefficient only for undirected graphs

CALL gds.graph.project(
'myGraph',
'Person',
{
KNOWS: {

orientation: 'UNDIRECTED'
}

}
)

Local Clustering Coefficient

•The following will run the local clustering coefficient
for each node

CALL gds.localClusteringCoefficient.stream('myGraph')
YIELD nodeId, localClusteringCoefficient
RETURN gds.util.asNode(nodeId).name AS name,
localClusteringCoefficient
ORDER BY localClusteringCoefficient DESC

Global Clustering Coefficient

•The following will calculate the global clustering coefficient of the graph

CALL gds.localClusteringCoefficient.stats('myGraph')
YIELD averageClusteringCoefficient, nodeCount

Closeness Centrality
CREATE

(alice:Person {name: 'Alice'}),
(michael:Person {name: 'Michael'}),
(karin:Person {name: 'Karin'}),
(chris:Person {name: 'Chris'}),
(will:Person {name: 'Will'}),
(mark:Person {name: 'Mark'}),
(michael)-[:KNOWS]->(karin),
(michael)-[:KNOWS]->(chris),
(will)-[:KNOWS]->(michael),
(mark)-[:KNOWS]->(michael),
(mark)-[:KNOWS]->(will),
(alice)-[:KNOWS]->(michael),
(will)-[:KNOWS]->(chris),
(chris)-[:KNOWS]->(karin)

Closeness Centrality
•The following will run closeness centrality for each node(treat edges
as undirected)

CALL gds.graph.project(
'personGraph',
'Person',
{

KNOWS: {
orientation: 'UNDIRECTED'

}
}

)

CALL gds.closeness.stream('personGraph')
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS user, score AS centrality
ORDER BY score DESC;

Betweenness Centrality
•The following will run betweenness centrality for each node(directed
edges)

CALL gds.graph.project(
'personGraph1',
'Person',
{

KNOWS: { orientation: 'NATURAL' }

}
)

CALL gds.betweenness.stream('personGraph1')
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS user, score AS centrality
ORDER BY centrality DESC;

Shortest Paths Examples

Create Graph Unweighted
MERGE(a:Loc{name:"A"})
MERGE(b:Loc{name:"B"})
MERGE (c:Loc{name:"C"})
MERGE (d:Loc {name:"D"})
MERGE (e:Loc {name:"E"})
MERGE (f:Loc {name:"F"})
MERGE (a)-[:ROAD]->(b)
MERGE (a)-[:ROAD]->(c)
MERGE (a)-[:ROAD]->(d)
MERGE (b)-[:ROAD]->(d)
MERGE (c)-[:ROAD]->(d)
MERGE (c)-[:ROAD]->(e)
MERGE (d)-[:ROAD]->(e)
MERGE (d)-[:ROAD]->(f)
MERGE (e)-[:ROAD]->(f)

Shortest Path Unweighted Graphs (BFS)
•The following query calculates the point to point shortest path from
A to F using BFS (unweighted graph)

MATCH (a:Loc{name:'A'}),(f:Loc{name:'F'}),
p = shortestPath((a)-[*]-(f))
RETURN p

Shortest Path Unweighted Graphs (BFS)
•The following query calculates the point to point shortest path from
C to F and outputs the results

MATCH p = shortestPath((c:Loc{name:'C'})-[*]-(f:Loc{name:'F'}))
RETURN [n in nodes(p) | n.name] AS ShortestPath, length(p) as Length

Shortest Path Unweighted Graphs (BFS)
•The following query finds all the point to point shortest paths
between node C and F (exist more than 1 shortest path) and outputs
the results.

MATCH p = allShortestPaths((c:Loc{name:'C'})-[*]-(f:Loc{name:'F'}))
RETURN [n in nodes(p) | n.name] AS AllSortestPaths, length(p) as Length

Shortest Path Unweighted Graphs (BFS)
•The following query finds all single source shortest paths between
node A and all other nodes of the graph.

MATCH (f:Loc), p = allShortestPaths((c:Loc{name:'A'})-[*]-(f:Loc))
Where f<>c
RETURN c.name as fromNode,
f.name as toNode,[n in nodes(p) | n.name] AS AllSortestPaths,
length(p) as Length
order by c.name

Shortest Path Unweighted Graphs (BFS)
•The following query finds all pair shortest
paths between all nodes of the graph.

MATCH (f:Loc),(c:Loc), p = allShortestPaths((c:Loc)-[*]-(f:Loc))
Where f<>c
RETURN c.name as fromNode,
f.name as toNode,[n in nodes(p) | n.name] AS AllSortestPaths,
length(p) as Length
order by c.name

Create Graph Weighted
MERGE (a:Loc {name:"A"})
MERGE (b:Loc {name:"B"})
MERGE (c:Loc {name:"C"})
MERGE (d:Loc {name:"D"})
MERGE (e:Loc {name:"E"})
MERGE (f:Loc {name:"F"})
MERGE (a)-[:ROAD {cost:50}]->(b)
MERGE (a)-[:ROAD {cost:50}]->(c)
MERGE (a)-[:ROAD {cost:100}]->(d)
MERGE (b)-[:ROAD {cost:40}]->(d)
MERGE (c)-[:ROAD {cost:40}]->(d)
MERGE (c)-[:ROAD {cost:80}]->(e)
MERGE (d)-[:ROAD {cost:30}]->(e)
MERGE (d)-[:ROAD {cost:80}]->(f)
MERGE (e)-[:ROAD {cost:40}]->(f)

Shortest Path Weighted Graphs (Dijkstra)

•The following query calculates the point to point shortest path from A to F using Dijkstra
(weighted graph), using Graph Data Science Library

CALL gds.graph.project(
'myGraph',
'Loc',
{
ROAD: {
type: 'ROAD',
properties: 'cost'

}
}

)
YIELD graphName, nodeCount, relationshipCount;

MATCH (start:Loc {name: 'A'}), (end:Loc {name: 'F'})
CALL gds.shortestPath.dijkstra.stream('myGraph', {
sourceNode: id(start),
targetNode: id(end),
relationshipWeightProperty: 'cost'

})
YIELD index, sourceNode, targetNode, totalCost, nodeIds, costs
RETURN
[nodeId IN nodeIds | gds.util.asNode(nodeId).name] AS name,
totalCost;

Shortest Path Weighted Graphs (Dijkstra)

•The following query calculates the point to point shortest path from A to F
using Dijkstra (weighted graph), using Graph Data Science Library

MATCH (source:Loc {name: 'A'}) // Set A as the source node
CALL gds.shortestPath.dijkstra.stream('myGraph', {

sourceNode: id(source),
relationshipWeightProperty: 'cost'

})
YIELD targetNode, totalCost
WITH gds.util.asNode(targetNode).name AS target, totalCost
RETURN target, totalCost
ORDER BY totalCost;

Shortest Path Weighted Graphs (Dijkstra)
•The following query calculates single source shortest
paths from A to all other nodes using Dijkstra

MATCH (start:Loc {name: 'A'})
CALL gds.allShortestPaths.dijkstra.stream('myGraph', {
sourceNode: id(start),
relationshipWeightProperty: 'cost'

})
YIELD index, sourceNode, targetNode, totalCost
RETURN
gds.util.asNode(sourceNode).name AS startNode,
gds.util.asNode(targetNode).name AS endNode,
totalCost AS distance

ORDER BY distance;

Shortest Path Weighted Graphs (Dijkstra)
•The following query calculates all pair shortest paths for all node of
the graph using Dijkstra

MATCH (source:Loc), (target:Loc) // Iterate over all node pairs
WHERE id(source) <> id(target) // Avoid self-loops
CALL gds.shortestPath.dijkstra.stream('myGraph', {

sourceNode: id(source),
targetNode: id(target),
relationshipWeightProperty: 'cost'

})
YIELD totalCost
RETURN

gds.util.asNode(id(source)).name AS source,
gds.util.asNode(id(target)).name AS target,
totalCost AS distance

ORDER BY distance desc ;

Page Rank Examples

Create Graph Weighted
CREATE (home:Page {name:'Home'})
CREATE (about:Page {name:'About'})
CREATE (product:Page {name:'Product'})
CREATE (links:Page {name:'Links'})
CREATE (a:Page {name:'Site A'})
CREATE (b:Page {name:'Site B'})
CREATE (c:Page {name:'Site C'})
CREATE (d:Page {name:'Site D'})

Create Graph Weighted MATCH (home:Page {name: 'Home'}), (about:Page {name: 'About'})
CREATE (home)-[:LINKS {weight: 0.2}]->(about);
MATCH (home:Page {name: 'Home'}), (links:Page {name: 'Links'})
CREATE (home)-[:LINKS {weight: 0.2}]->(links);
MATCH (home:Page {name: 'Home'}), (product:Page {name: 'Product'})
CREATE (home)-[:LINKS {weight: 0.6}]->(product);
MATCH (about:Page {name: 'About'}), (home:Page {name: 'Home'})
CREATE (about)-[:LINKS {weight: 1.0}]->(home);
MATCH (product:Page {name: 'Product'}), (home:Page {name: 'Home'})
CREATE (product)-[:LINKS {weight: 1.0}]->(home);
MATCH (a:Page {name: 'Site A'}), (home:Page {name: 'Home'})
CREATE (a)-[:LINKS {weight: 1.0}]->(home);
MATCH (b:Page {name: 'Site B'}), (home:Page {name: 'Home'})
CREATE (b)-[:LINKS {weight: 1.0}]->(home);
MATCH (c:Page {name: 'Site C'}), (home:Page {name: 'Home'})
CREATE (c)-[:LINKS {weight: 1.0}]->(home);
MATCH (d:Page {name: 'Site D'}), (home:Page {name: 'Home'})
CREATE (d)-[:LINKS {weight: 1.0}]->(home);
MATCH (links:Page {name: 'Links'}), (home:Page {name: 'Home'})
CREATE (links)-[:LINKS {weight: 0.8}]->(home);
MATCH (links:Page {name: 'Links'}), (a:Page {name: 'Site A'})
CREATE (links)-[:LINKS {weight: 0.05}]->(a);
MATCH (links:Page {name: 'Links'}), (b:Page {name: 'Site B'})
CREATE (links)-[:LINKS {weight: 0.05}]->(b);
MATCH (links:Page {name: 'Links'}), (c:Page {name: 'Site C'})
CREATE (links)-[:LINKS {weight: 0.05}]->(c);
MATCH (links:Page {name: 'Links'}), (d:Page {name: 'Site D'})
CREATE (links)-[:LINKS {weight: 0.05}]->(d);

Page Rank Unweighted
•The following statement will project the graph and store it in the
graph catalog.

CALL gds.graph.project(
'myGraph',
'Page',
{

LINKS: {
properties: 'weight'

}
}

)

Page Rank Unweighted
•The following will run PageRank algorithm and stream results on the
projected unweighted graph:

CALL gds.pageRank.stream(
'myGraph',
{ maxIterations: 20, dampingFactor: 0.85 }

)
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC, name ASC;

Page Rank Weighted
•The following will run PageRank algorithm and stream results on the
projected weighted graph:

CALL gds.pageRank.stream('myGraph', {
maxIterations: 20,
dampingFactor: 0.85,
relationshipWeightProperty: 'weight'

})
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC, name ASC

Personalized Page Rank
•Personalized Page Rank is a variation of Page Rank which is biased
towards a set of sourceNodes. The following show how to run Page
Rank centered around 'Site A'

MATCH (siteA:Page {name: 'Site A'})
CALL gds.pageRank.stream('myGraph', {
maxIterations: 20,
dampingFactor: 0.85,
sourceNodes: [siteA]

})
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC, name ASC

