Graph Data Management

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS DEPARTMENT OF INFORMATICS

Outline

*Graph Databases
*What is Neo4j
*Neodj Property Graph Model

*Cypher Query Language
*Complaint Database example

*Centrality Metrics Examples

Graph Databases

What is a Graph

A graph is connected data

What is a Graph

Transport Networks

it

pre. . =

s
-

3 s o
— — mrceanos 33T

What is a Graph

Social Networks

What is a Graph

Citation Networks

What is a Graph
Web Graph

What is a Graph
Chess Game Graph

Opening: Pirc, Ausfrian Attack

Name: Almasi. Zoltan Color- White Codi: BOO
Player Plays Opening
Round: 0 Site: Austria
TournamentiD: 199577 27AUT-chT 9596
(| Event: AUT-chT 9596
EventDate: 1995.72.77
BlackElo: 2595
Result: Draw Include Tournament
WhiteFlo: 2650
Date 1006 GamelD: 1 GamelD: 1
m1 Number: 1 Number: 2
HalfMoves 19 Move ed Move d6
Move [J Position Move H Position FEN: 5874148077732365000
Material: 5941996
Player —Plays
FEN: -3628835668853448700 . [y Yl Y i —
Color: Black Material: 5941996
Name: Chernin, Alexander
Name: ri9 Bitboard
PositionlDs:

[80380,30378,80379,80377,122470,59288,122471,..]

What is a Graph

*Data structures that model structural relationships among objects.

*Widely used in application domains for which identifying and
exploring relationship patterns, rules, and anomalies is useful.

Today we see graph-projects in virtually every industry

8 afs & ke i @

Finance Social networks HR & Manufacturing Health Care Telco Retail
Recruiting & Logistics

Graph Databases

*Data Model:
* Nodes with properties
* Named Relationships with properties

*Manage:
* Highly connected data
* Efficiently explore a node’s neighborhood

*Examples:
* Neod), InfiniteGraph, OrientDB, AllegroGraph

Graph Database Use cases

Social Media and Social Network Graphs

*Leverage social connections or infer relationships based on activity

Queries:

Community Cluster Analysis
Friend-of-Friend Recommendations
Influencer Analysis

Sharing & Collaboration

@

O’%} 5
e
T >

%,

S
AL)~
O

Social Recommendations

Graph Database Use cases

Fraud Detection

*Real-time analysis of data relationships to uncovering fraud rings and scams

. . . . Queries:

onsecueo RSN’ Anti Money Laundering (AML)
P 0 . . Ecommerce Fraud
. - 0 First-Party Bank Fraud

PHOMNE

. . . Insurance Fraud

ACCOUNT ADDRESS ACCOUNT Li n k A n a Iys i S

l HOLDER 2 l l HOLDER 3 l
BANK

CREDIT BANK UNSECURED
CARD ACCOUNT ACCOUNT LOAN

S5M 2

Graph Database Use cases
Knowledge Graph

*Graph-based search tools for better digital asset management

a | @ ¢ = Queries:
& : ¥ ¢ ‘® Asset Management
- D—ew W—@ = : Cataloging
T @ %> o) N Content Management
o - -) i @' R Inventory
g = Work Flow Processes

Graph Database Use cases

Network and Database Monitoring

*Graph databases are more suitable for making sense of complex
interdependencies central to managing networks and IT infrastructure

To Internet

with Gareway EY-====="""=""""" . o, Queries:
| = Mo Moo (D Asset Management
o i Router \\\ e mc/,z’ .
“ ‘ Cybersecurity
,Qh—;;u(cr with ' & ‘ ImpaCt AnalySiS

// Bridge/Gateway

Quality-of-Service Mapping
Root Cause Analysis

Cellular Network

Graph Database Use cases

Recommendation Engines

*Graph-powered recommendation engines help companies personalize products,
content and services by leveraging a multitude of connections in real time

M Lounge * LIKES e LIKES > §.3§1 Queries:
are . .
- Content & Media Recommendations

X Graph-Aided Search Engine
. N Product Recommendations

The_ .
e Professional Networks
Chili's Too Social Recommendations

b
4

LIKES

g
w
%
<

Why Graph Databases?

® e e e | S ’
® e e e A D 0 | N 4
® e oo — =R '. ,.’
® oo e N ® @ v @
A . . ’ Relstional Database Oat:zhsa .

Good for: Good for:

*Dynamic systems where the data topology is
difficult to predict

*Well understood data structure that don’t

change frequently *Dynamic requirements: evolving data

*Problems where the relationships in data

*Known problems involving discrete parts of the contribute meaning & value

data, or minimal connectivity

Why Graph Databases?

Schema Flexibility
*Relationships — join tables
*Join tables represent edges

*A lot of table joins (join
bomb)-reduced query
performance

Person

+ person_id
+ name

+ age

+ company

Webpage_Join

A
1

A 4

+ person_id
+ webpage_id

al

Company_Join

+ person_id

« | + company_id

i

Knows_Join

+ personA_id
+ personB_id

l

Company

+ com pany_id

+ name

Webpage

+ webpage_id

+ url

Why Graph Databases?

Schema Flexibility

*Named Nodes and Relationships
*Instead of table joins - traversals
*Can add any kind of nodes and relations without schema change

*Can add any number of different relationships between nodes (multigraph)

name: String Webpage

Why Graph Databases?

Whiteboard friendly

*Easily describe the domain with nodes and relationships

*Consider if the domain is appropriate for graph representation:
* Draw the domain on a whiteboard

* If your domain entities have relationships to other entities
* If your queries rely on exploring relationships
* Graph Database is a great fit

Why Graph Databases?

Express Queries as Traversals
* We store: companies, employers and employment period

* Query: find all people that work at Google
* 3 index lookups in relational DB

Index lookup on Person.id Index lookup on Companyld Index lookup on Company.name
! Person I I
' Company
: Id | Name Works In : T
1 i Id | Name 1
1 1~q. 1_a|_r__r"-,.r Page Personld Coqf;npanvld Since i
! —— e —= —-1 | Google 1
1 2# Joshua Bloch == 1 1 .(.—--4998-—""_: :::::: L
! — t —— -7 2 | oracle !
: 3 Brian Goetz - 2 11 <& =T 2001 !
1 1
1 1
W 3 2 1 2010
A N N 1',,

Select Person. MName

from Person, Company, Worksin

where Caompany name="Google’

and Worksin.Companvid = Company. Id
and Woarksin Personld = Person id

Why Graph Databases?

Express Queries as Traversals
* We store: companies, employers and employment period
* Query: find all people that work at Google
* 1 index lookup, traverse relationships

Index lookup to find root Node

Person 1 Traverse relation Company 1)

FPerson 3

Why Graph Databases?

Very natural to express graph related problems with traversals
* Find shortest path, centrality, node degree...

Find the friends of “John”
(node a) traversal
Easy: index scan

FriendOf

 PersonID | FriendID |
a b

SRR

PersonID="a"”

0

Why Graph Databases?

Very natural to express graph related problems with traversals

 Find the friends-
of-friends of John

* Harder to
compute: self-join FriendOf
: - “PersonID | FriendID
How do we find ———— EriendOf
the k-hop < Q) PersoniD | FriendID

neighbors of John?
e

Why Graph Databases?

Very natural to express graph related problems with traversals

Performance of RDBMs
on path queries

Complexity/Time

A

1 2 3 4 Hhops

When are Graph Databases NOT a Good Fit

*Where data is disconnected and relationships do not matter

‘Where data model stay consistent and data structure is fixed and tabular
*Where queries execute bulk data scans or do not start from a known data point

* Where you will use it as a key-value store

*‘Where large amounts of text need to be stored as properties

Neo4dj Graph Database

What is Neo4j?

*Open source NoSQL graph database

‘Implemented in Java and Scala
*Most popular Graph Database

‘Implements the Property Graph Model down to the storage model
* constant time traversal for relationships

*ACID transaction compliance
* atomicity, consistency, isolation, durability
* guarantee: database transactions are processed reliably

Neo4d| Usage

How do you use Neo4?

CREATE MODEL LOAD DATA QUERY DATA

Neo4j Property Graph Model

Nodes: can have properties and labels

Creating Nodes
CREATE (john:Person {name: ‘John’, age: 35})

:Person
name: ‘John’
age: 35

attr,:val,, ...attr,:val,})

— nis a variable that you can use to refer to that node in the same
script

Creating Nodes

® Unlike relational databases, there is no restriction on the number
and type of properties on a node
— E.g. nodes may have different properties, or same properties of different
types

— Recall Person is just a label. It does not restrict the schema of the
corresponding nodes

:Person :Person:Gamer
name: ‘John’ fname: ‘Jim’
age: 35 byear: 1997

weight: 85 weight: ‘87kg’

Creating Nodes

® Assert that each Person has a name (Existential
constraints)

‘Person

name: ‘John’
age: 35

® CREATE CONSTRAINT ON (person:Person) ASSERT
exists(person.name)

Creating Nodes

® Assert that no two books in the database can have the
same isbn (Unique constraints)

:Book

title: *Graph Databases’
isbn: '978-1449356262’

® CREATE CONSTRAINT ON (book:Book) ASSERT book.isbn IS
UNIQUE

Neo4j Property Graph Model

Relationships: connect two nodes, have direction, have properties,
have relationship type

M)

uniquely identified by

Create Relationships

® CREATE (john)-[:Knows {since: '14/9/2015"}]->(sally)

:Knows
john:Person since: 14/9/2015 [sally:Person
name: ‘John’ name: ‘Sally

age: 35 age: 26

® |n this example Knows is a relationship type, since is an attribute
for that particular instance, john & sally are variables that refer to
previously created nodes

Neo4j Property Graph Model

Properties: key-value pairs, key is a String, values can be primitives or
an array of primitives

Neodj Property Graph Model

Labels: allow to assign roles or types to nodes, a node can have any
number of labels.

Neo4j Property Graph Model

Person

Author

title: Tinker

Tailor. Soldier. ‘_PURCHASED
Spy date:03-02-2011

name: lan

PURCHASED
date:08-08-2011

PURCHASED
date:05-07-2011

title: Our Man

in Havana name: Alan

Installing and Running Neo4;

*Go to http://neodj.com/download

*Download Community Edition for your OS

*For Windows run the exe file to install, then use the installed
application to manage neodj server

*For Linux/Mac un-compress the downloaded file and run the
“./neodj start” command from within the included bin directory

http://neo4j.com/download

How to use Neo4
*Cypher

* command line (neo4j-shell)
* web interface (defaults at http://localhost:7474)

*Neo4j Language Drivers
* java
* .NET
* JavaScript
* Python
* Ruby
* PHP
and more!

Cypher Query Language

*Declarative, SQL-inspired language

*Used to describe patterns in graphs

*User describes what she wants to
* select

* insert
* update
* delete

*Without describing how to do it
*Cypher Documentation: http://neo4j.com/docs/stable/cypher-query-lang.html

*Cypher Reference Card: http://neo4j.com/docs/stable/cypher-refcard/

http://neo4j.com/docs/stable/cypher-query-lang.html
http://neo4j.com/docs/stable/cypher-refcard/

Cypher Nodes Representation

*Cypher uses ASCII-Art to represent patterns

*Surround nodes with parentheses so it looks like a circle
* e.g. (person), (movie)

*A node can have properties
* e.g. (bob {age: 28, name: ‘Bob’})

°In the above examples bob, person, movie are variables names
*A relationship among nodes is represented with an arrow as:

*e.g. (bob) --> (mary), or (bob)--(mary) bidirectional

Cypher Relationships Representation
*A relationship has a type, e.g. :LIKES

*Surround relationships with square brackets
> e.g. [:LIKES]
* :LIKES is the type of the relationship

*Relationships are declared as:
* (bob)-[:LIKES]->(mary)

*Relationships can also have properties:
> (bob)-[:GRADUATED {year: 2015}]->(aueb)

Cypher Labels Representation

*Labels allow us to assign roles or types to nodes
* e.g. (bob:Person)

*Can have more than one label per node
* e.g. (bob:Person:Student:Actor)

°In the relational world the label would most probably be the name
of a table

MATCH & RETURN

MATCH: used to match patterns of nodes and relationships in the
graph

RETURN: declare what information you want returned from the
query

Describe a pattern and ask the database to return the desired info

A very basic example is:

MATCH (p1:Person)-[:Friend]->(p2:Person)
RETURN pl.name, p2.name

WHERE, ORDER BY, LIMIT

*WHERE: filter results by properties values

*ORDER BY: ask for a specific order of results

*LIMIT: how many results to show

MATCH (p:Person)-[r:Acted]->(m:Movie)
WHERE m.year =

RETURN m.title AS title, p.name, r.role
ORDER BY title ASC LIMIT 10;

Describing Paths

“(a)-[*2]->(b)
* all paths of length 2

*(a)-[*3..5]->(b)
* all paths of length 3to 5

“(a)-[*]->(b)

* all paths of any length

shortestPath((a)-[..5]->(b))
* shortest path of max length 5

Aggregation
*MATCH (n:Person) RETURN count(n)

*MATCH (n:Person) RETURN collect(n.name)

*MATCH (p:Person{name:’bob’})-[:OWNS]->(n:BankAccount) RETURN sum
(n.amount)

*Other available aggregate functions:
° avg
*min
°* max
* percentileDisc
* stdev

Mathematical Functions

*abs

*rand
‘round
*sqrt
°sign

°sin

*log
*log10
and more!

CREATE

CREATE: create new nodes and relationships

CREATE (a:Person{name:'Bob’})-[:Likes]->(b:Person{name:’"Mary’})

MATCH (x:Person {name:'Bob’})
CREATE (x)-[:WorksAt]->(c:Company{name:’1B Dollars’})

Querying the graph database

® Queries are also graphs!

“Find the titles of all books that a person named John has
read and report his ratings”

:Person

name: “John’ MATCH (n:Person {name:'John"})-[r:Read]->(b:Book)
RETURN b.title, r.rating

Querying the graph database

® Friend-of-friend pairs in a social network

) 4 ™ ("

:Person :Person
name:? name:?

\ v \

® MATCH (x:Person)-[:Knows]->(someone),(someone)-[:Knows]-
>(y:Person)

RETURN x.name, y.name

OR (simpler)

® MATCH (x:Person)-[:Knows]->()-[:Knows]->(y:Person)
RETURN x.name, y.name

Import Data

Can use a number of methods:

Multiple CREATE statements
http://neo4dj.com/docs/stable/query-create.html

LOAD CSV FROM ‘path_to file’ command
http://neodj.com/docs/stable/cypherdoc-importing-csv-files-with-cypher.html

LOAD JSON (apoc.load.json)
https://neodj.com/docs/labs/apoc/current/import/load-json/

Neo4j Import Tool
http://neo4dj.com/docs/stable/import-tool.html

http://neo4j.com/docs/stable/query-create.html
http://neo4j.com/docs/stable/cypherdoc-importing-csv-files-with-cypher.html
https://neo4j.com/docs/labs/apoc/current/import/load-json/
http://neo4j.com/docs/stable/import-tool.html

Import Data

3 Steps to Creating the Graph

o ==

IMPORT NODES CREATE INDEXES IMPORT RELATIONSHIPS

Load CSV From path

*Direct mapping of input data into complex graph/domain structure

*Create or merge data, relationships and structure
*All data from CSV is read as a string, use (tolnteger, toFloat, split)

*Separate node creation from relationship creation into different
statements

*Create indexes after insertion for the required properties

Consumer Complaints Example

Consumer Complaints Example

Model Description:

7 nodes: Company, Response, Product, SubProduct, Issue, Sublssue, Complaint

6 relationships: TO, AGAINST, ABOUT, WITH, IN_ISSUE_CATEGORY, IN_PRODUCT_CATEGORY
1 CSV file:

Date received |Product Sub-product Issue Sub-issue Consumer complain Company ‘Company response to consumer Timely response? ~ Consumer disputed? Complaint ID |
7/29/2013 Consumer Loan Vehicle loan Managing the loan or lease Wells Fargo & Company Closed with explanation Yes No 468882
7/29/2013 Bank account or s Checking acco Using a debit or ATM card Wells Fargo & Company Closed with explanation Yes No 468889
7/29/2013 Bank account or s Checking acco Account opening, closing, or management Santander Bank US Closed Yes No 468879
7/29/2013 Bank account or s Checking acco Deposits and withdrawals Wells Fargo & Company Closed with explanation Yes No 468949
7/29/2013 Mortgage Conventional - Loan servicing, payments, escrow account Franklin Credit Managemer Closed with explanation Yes No 475823
7/29/2013 Bank account or < Checking acco Deposits and withdrawals Bank of America Closed with explanation Yes No 468981

Consumer Complaints Example

|’ {name: Bank of Amerlca}]

__../,.- ~, N {name: in progress} |
Company | — \/]
~— / Response

S

- {disputed: true}
m {timely: false}){name: [oan sen.nce}}

Produ ct""'j - ABOUT Complai nt-."'-. — : I:f - -.-il
{id: 123}
{year: 2014}
{month: 1}
{day: 31}
e \ I.-"'SubISSu e'...-|
| SubProduct | r

‘ — - epl
[{name: carLoan} f

Consumer Complaints Example

[{name: Bank of America} k /.4 {name: In progress}]
§ a8
g e
| S
ABOUT ITH

{id: 123}
{year: 2014}
{month: 1}
{day: 3}

| {name: loan} |

4 {name: depit}]

Consumer Complaints Example
*Read the first line of the CSV-Cypher (check for required properties)

LOAD CSV WITH HEADERS FROM
"file:///Consumer_Complaints.csv" AS LINE
RETURN LINE

limit 1

Consumer Complaints Load CSV

Create: All Nodes Indexes (unique constraint)

// Uniqueness constraints.

CREATE CONSTRAINT FOR (c:Complaint) REQUIRE c.id IS UNIQUE;
CREATE CONSTRAINT FOR (c:Company) REQUIRE c.name IS UNIQUE;
CREATE CONSTRAINT FOR (r:Response) REQUIRE r.name IS UNIQUE;
CREATE CONSTRAINT FOR (p:Product) REQUIRE p.name IS UNIQUE;
CREATE CONSTRAINT FOR (i:Issue) REQUIRE i.name IS UNIQUE;
CREATE CONSTRAINT FOR (s:SubProduct) REQUIRE s.name IS UNIQUE;
CREATE CONSTRAINT FOR (s:Sublssue) REQUIRE s.name IS UNIQUE;

Consumer Complaints Load CSV

Create: Complaint nodes with properties (split date)

// Load Complaint Nodes.

LOAD CSV WITH HEADERS

FROM "file:///Consumer_Complaints.csv" AS line

WITH DISTINCT line, SPLIT(line."Date received’, '/') AS date

CREATE (complaint:Complaint { id: TOINTEGER(line."Complaint ID") })
SET complaint.year = TOINTEGER(date[2]),

complaint.month = TOINTEGER(date[0]),

complaint.day = TOINTEGER(date[1])

Consumer Complaints Load CSV

Create: Company, Response nodes with MERGE (find or create)

// Load Company, Response Nodes.
LOAD CSV WITH HEADERS

FROM "file:///Consumer_Complaints.csv" AS line

MERGE (company:Company { name: TOUPPER(line.Company) })
MERGE (response:Response { name: TOUPPER(line."Company response to consumer’) })

Consumer Complaints Load CSV

Create: AGAINST, TO relationships between nodes (with properties)

// Load AGAINST, TO relationships.

LOAD CSV WITH HEADERS

FROM "file:///Consumer_Complaints.csv" AS line

MATCH (complaint:Complaint { id: TOINTEGER(line."Complaint ID) })

MATCH (response:Response { name: TOUPPER(line."Company response to consumer?) })

MATCH(company:Company { name: TOUPPER(line.Company) })

CREATE (complaint)-[:AGAINST]->(company)

CREATE (response)-[r:TO]->(complaint)

SET r.timely = CASE line. Timely response?” WHEN 'Yes' THEN true ELSE false END,
r.disputed = CASE line. " Consumer disputed?” WHEN 'Yes' THEN true ELSE false END;

Consumer Complaints Load CSV

Create: Product, Issue nodes and ABOUT, WITH relationships
(MATCH on Complaint ID)

// Load Product, Issue nodes, ABOUT, WITH relations.

LOAD CSV WITH HEADERS

FROM "file:///Consumer_Complaints.csv" AS line

MATCH (complaint:Complaint { id: TOINTEGER(line."Complaint ID) })
MERGE (product:Product { name: TOUPPER(line.Product) })

MERGE (issue:lssue {name: TOUPPER(line.lssue) })

CREATE (complaint)-[:ABOUT]->(product)

CREATE (complaint)-[:WITH]->(issue);

Consumer Complaints Load CSV

Create: Sub-issue node and its relationships (remove empty nodes)

// Load Sub-issue nodes and relations.

LOAD CSV WITH HEADERS

FROM "file:///Consumer_Complaints.csv" AS line WITH line
WHERE line. Sub-issue” <> " AND line. Sub-issue IS NOT NULL
MATCH (complaint:Complaint { id: TOINTEGER(line."Complaint ID) })
MATCH (complaint)-[:WITH]->(issue:lssue)

MERGE (sublssue:Sublssue { name: TOUPPER(line. Sub-issue’) })
MERGE (sublssue)-[:IN_ISSUE_CATEGORY]->(issue)

CREATE (complaint)-[:WITH]->(sublssue);

Consumer Complaints Load CSV

Create: Sub-product node and its relationships (remove empty nodes)

// Load Sub-product nodes and relations.

LOAD CSV WITH HEADERS

FROM "file:///Consumer_Complaints.csv" AS line WITH line

WHERE line. Sub-product™ <> " AND line. Sub-product’ IS NOT NULL
MATCH (complaint:Complaint { id: TOINTEGER(line."Complaint ID) })
MATCH (complaint)-[:ABOUT]->(product:Product)

MERGE (subProduct:SubProduct { name: TOUPPER(line. Sub-product’) })
MERGE (subProduct)-[:IN_PRODUCT_CATEGORY]->(product)

CREATE (complaint)-[:ABOUT]->(subProduct);

Querying the Database

1. Top types of responses that are disputed
MATCH (r:Response)-[:TO {disputed:true}]->(:Complaint)
RETURN r.name AS response, COUNT(*) AS count
ORDER BY count DESC;

2. Companies with the most disputed responses
MATCH (:Response)-[:TO {disputed:true}]->(complaint:Complaint)
MATCH (complaint)-[:AGAINST]->(company:Company)

RETURN company.name AS company, COUNT(*) AS count
ORDER BY count DESC
LIMIT 10;

Querying the Database

3. Allissues
MATCH (i:Issue)
RETURN i.name AS issue
ORDER BY issue;

4. All sub-issues within the 'communication tactics' issue
MATCH (i:Issue {name:'COMMUNICATION TACTICS'})
MATCH (sub:Sublssue)-[:IN_ISSUE_CATEGORY]->(i)
RETURN sub.name AS subissue
ORDER BY subissue;

Querying the Database

5. Top products and sub-products associated with the obscene /

abusive language sub-issue

MATCH (sublssue:Sublssue {name:'USED OBSCENE/PROFANE/ABUSIVE LANGUAGE'})
MATCH (complaint:Complaint)-[:WITH]->(sublssue)

MATCH (complaint)-[:ABOUT]->(p:Product)

OPTIONAL MATCH (complaint)-[:ABOUT]->(sub:SubProduct)

RETURN p.name AS product, sub.name AS subproduct, COUNT(*) AS count

ORDER BY count DESC;

Querying the Database

6. Top company associated with the obscene / abusive language

sub-issue
MATCH (sublssue:Sublssue {name:'USED OBSCENE/PROFANE/ABUSIVE LANGUAGE'})

MATCH (complaint:Complaint)-[:WITH]->(sublssue)
MATCH (complaint)-[:AGAINST]->(company:Company)
RETURN company.name AS company, COUNT(*) AS count
ORDER BY count DESC

LIMIT 10;

Querying the Database

7. Sub-products that belong to multiple product categories
MATCH (sub:SubProduct)-[:IN_PRODUCT_CATEGORY]->(p:Product)

WITH sub, COLLECT(p) AS products
WHERE SIZE(products) > 1

RETURN sub, products;

Web Interface Query 1

' ® Neodj X
B & 3 (i) | localhost.7474/browser/ el d - o o9 =
MATCH (r:Response)-[:TO {disputed:true}]->(:Complaint) @ ® @

RETURN r.name AS response, COUNT(*) AS count
ORDER BY count DESC;

MATCH (r:Response)-[:TO {disputed:true}]->(:Complaint) RETURN r.name AS response, COUNT (%) AS count ORDER BY count DESC; =)? zﬂ ><
ﬂ response count
"M CLOSED WITH EXPLANATION 96929
A CLOSED WITH NON-MONETARY RELIEF 9476
= CLOSED WITHOUT RELIEF 4851
¢/s ~ CLOSED WITH MONETARY RELIEF 4426
coss CLOSED 3061
CLOSED WITH RELIEF 714
UNTIMELY RESPONSE 2

Returned 7 rows in 965 ms.

Web Interface Query 7

x
a8 & 3 (1) localhost:7474/browser/ cld @ & 9 =
MATCH (sub:SubProduct)-[:IN CATEGORY]->(p:Product) (:) (:) (:)

WITH sub, COLLECT (p) AS products
WHERE LENGTH (products) > 1
RETURN sub, products:;

D«
%,
X

MATCH (sub:SubProduct)-[:IN CATEGORY]->(p:Product) WITH sub, COLLECT(p) AS products WHERE LENGTH (products) > 1 RETURN sub, preoducts;
t»)) D
a4 | IN_CATEGORY(4)
Rows
Text IN_CATEGORY
~

/> o
< -

o

Code

o
,»‘*"
-
~

e IN_CATEGORY — —— IN_CATEGORY —

Centrality Metrics Examples

Create Graph

CREATE (alice:User {name: 'Alice'}),
(bridget:User {name: 'Bridget'}),
(charles:User {name: 'Charles'}),
(doug:User {name: 'Doug'}),
(mark:User {name: 'Mark'}),
(michael:User {name: 'Michael'}),
(alice)-[:FOLLOWS]->(doug),
(alice)-[:FOLLOWS]->(bridget),
(alice)-[:FOLLOWS]->(charles),
(mark)-[:FOLLOWS]->(doug),
(mark)-[:FOLLOWS]->(michael),
(bridget)-[:FOLLOWS]->(doug),
(charles)-[:FOLLOWS]->(doug),
(michael)-[:FOLLOWS]->(doug)

Degree Centrality Directed Graphs

The following query calculates the number of people that each user
follows and is followed by (in-out degree)

name follows followers

MATCH (u:User)
OPTIONAL MATCH (u)-[:FOLLOWS]->(f:User)
OPTIONAL MATCH (u)<-[:FOLLOWS]-(follower:User) ‘sridget’ 1 1
RETURN u.name AS name, o
COUNT(DISTINCT f) AS follows, Fhares ‘ 1
COUNT(DISTINCT follower) AS followers "Doug’” 0 5

"Alice" 3 0

"Mark" 2 0

"Michael" 1 1

Degree Centrality Directed Graphs

*Doug is the most popular user (in-
degree)

Bridget
*All other users follow Doug but he

doesn’t follow anybody back \ "

. .. Alice ¢ A%
°In real social networks celebrities i

have high follower counts but tend Doug\‘/
to follow few people .

Charles

Degree Centrality Weighted Graphs

*This algorithm is a variant of the Degree Centrality algorithm, that measures the
sum of the weights of incoming and outgoing relationships

CREATE (alice:User {name:'Alice'}),
(bridget:User {name:'Bridget'}),

4giows (charles:User {name:'Charles'}),
&-————*F (doug:User {name:'Doug'}),
.15 VQ«\‘” (mark:User {name:'Mark'}),
OQO ((o\,

(michael:User {name:'Michael'}),
(alice)-[:FOLLOWS {score: 1}]->(doug),
(alice)-[:FOLLOWS {score: 2}]->(bridget),
(alice)-[:FOLLOWS {score: 5}]->(charles),
(mark)-[:FOLLOWS {score: 1.5}]->(doug),
(mark)-[:FOLLOWS {score: 4.5}]->(michael),
(bridget)-[:FOLLOWS {score: 1.5}]->(doug),
(charles)-[:FOLLOWS {score: 2}]->(doug),
(michael)-[:FOLLOWS {score: 1.5}]->(doug)

s

Degree Centrality Weighted Graphs

The following will run the algorithm and stream results, showing which users
have the most weighted followers (in degree):

user weightedFocllowers

YIELD nodeld, score
RETURN gds.util.asNode(nodeld).name AS user, score AS weightedFollowers
ORDER BY score DESC

| | |

l l l

|”Douq“ |T.5 |

CALL gds.graph.project(| | |
'userGraph’, | "Charles"|5.0 |
'User’, | | |
FOLLOWS: { ! "Michael™ ! 4.5 !
properties: 'score’ | ! |

} |”3ridget“|2.0 |

| | |

| 1 1

); |"alice” |o0.0 |
| | |

CALL gds.degree.stream('userGraph’, {relationshipWeightProperty: 'score', orientation: 'REVERSE'}) i o i s i
L l |

Degree Centrality Weighted Graphs

The following will run the algorithm and stream results, showing which
users have the most weighted follows (out degree):

user weightedFeollows

| | |

| | |

CALL gds.graph.project(|"alice” |2.0 |
'userGraph’, | | |
.Userl, | "Mark" | 6.0 |

| | |

FOLLOWS: { i "Charles" i 2.0 i
properties: 'score’ | | |
|”3ridget“|1.5 |

} | | |
); | "Michas1"|1.5 |
| | |

CALL gds.degree.stream('userGraph’, {relationshipWeightProperty: 'score’, orientation: ‘'NATURAL'}) i "Doug" iﬂ- 5 i
L l |

YIELD nodeld, score
RETURN gds.util.asNode(nodeld).name AS user, score AS weightedFollows
ORDER BY score DESC

Local Clustering Coefficient

omm ' x~ows—>° (michael)-[:KNOWS]->(karin),
(michael)-[:KNOWS]->(chris),

g (will)-[:KNOWS]->(michael),
‘ (mark)-[:KNOWS]->(michael),
° (mark)-[:KNOWS]->(will),

CREATE
(alice:Person {name: 'Alice'}),
(michael:Person {name: 'Michael'}),
(karin:Person {name: 'Karin'}),
(chris:Person {name: 'Chris'}),
(will:Person {name: 'Will'}),
(mark:Person {name: 'Mark'}),

(alice)-[:KNOWS]->(michael),
(will)-[:KNOWS]->(chris),
(chris)-[:KNOWS]->(karin)

Local Clustering Coefficient

*The following statement will project the graph to undirected and store it in the
graph catalog under the name 'myGraph’

*Neo4j computes local clustering coefficient only for undirected graphs

CALL gds.graph.project(
'myGraph’,
'Person’,
{
KNOWS: {
orientation: 'UNDIRECTED'

}
}
)

Local Clustering Coefficient

. . . L. name |_c alClusteringCeoefficient
The following will run the local clustering coefficient
for each node Karin’
"Mark"

I

|

:

CALL gds.localClusteringCoefficient.stream('myGraph’) !
YIELD nodeld, localClusteringCoefficient | "Chris"

I

!

:

|

I

0. EobEEEGECREDERE
RETURN gds.util.asNode(nodeld).name AS name,
localClusteringCoefficient "Will® o |0.eceeecbEscEEeeEE
ORDER BY localClusteringCoefficient DESC i ohael® |03
'alice" 0.0

Global Clustering Coefficient

*The following will calculate the global clustering coefficient of the graph

CALL gds.localClusteringCoefficient.stats('myGraph’')
YIELD averageClusteringCoefficient, nodeCount

| j |
averageClusteringCoefficient | nodeCount

0.60355553535353555 B
I I

Closeness Centrality

omm ' x~ows—>° (michael)-[:KNOWS]->(karin),
(michael)-[:KNOWS]->(chris),

g (will)-[:KNOWS]->(michael),
‘ (mark)-[:KNOWS]->(michael),
° (mark)-[:KNOWS]->(will),

CREATE
(alice:Person {name: 'Alice'}),
(michael:Person {name: 'Michael'}),
(karin:Person {name: 'Karin'}),
(chris:Person {name: 'Chris'}),
(will:Person {name: 'Will'}),
(mark:Person {name: 'Mark'}),

(alice)-[:KNOWS]->(michael),
(will)-[:KNOWS]->(chris),
(chris)-[:KNOWS]->(karin)

Closeness Centrality

*The following will run closeness centrality for each node(treat edges
as undirected)

CALL gds.graph.project("user” "centrality”
‘personGraph’,
'Person’, "Michael" [1.0
KNO_WS: { . "Chris" |0.7142857142857143
orientation: 'UNDIRECTED'
} } "Will" |0.7142857142857143
) "Karin" 0.625
CALL gds.closeness.stream('personGraph’)
YIELD nodeld, score "Mark" 0.625
RETURN gds.util.asNode(nodeld).name AS user, score AS centrality
ORDER BY score DESC; "Alice" |@.5555555555555556

Betweenness Centrality

*The following will run betweenness centrality for each node(directed

edges)
CALL gds.graph.project(‘user® |fcentrality”
‘personGraphl’, _
'Person" "Michael” |4.0
KNOWS: { orientation: ‘'NATURAL' } "Chris® 0.5
) } "will" |e.s
"Alice" 0.0
CALL gds.betweenness.stream('personGraphl')
YIELD nodeld, score . "karin® |0.0
RETURN gds.util.asNode(nodeld).name AS user, score AS centrality
ORDER BY centrality DESC; mark® lo.o

Shortest Paths Examples

Create Graph Unweighted

MERGE(a:Loc{name:"A"})
MERGE(b:Loc{name:"B"})
MERGE (c:Loc{name:"C"})
MERGE (d:Loc {name:"D"})
MERGE (e:Loc {name:"E"})
MERGE (f:Loc {name:"F"})
MERGE (a)-[:ROAD]->(b)
MERGE (a)-[:ROAD]->(c)
MERGE (a)-[:ROAD]->(d)
MERGE (b)-[:ROAD]->(d)
MERGE (c)-[:ROAD]->(d)
MERGE (c)-[:ROAD]->(e)
MERGE (d)-[:ROAD]->(e)
MERGE (d)-[:ROAD]->(f)
MERGE (e)-[:ROAD]->(f)

Shortest Path Unweighted Graphs (BFS)

*The following query calculates the point to point shortest path from
A to F using BFS (unweighted graph)

MATCH (a:Loc{name:'A'}),(f:Loc{name:'F'}),
p = shortestPath((a)-[*]-(f))
RETURN p

o

Shortest Path Unweighted Graphs (BFS)

*The following query calculates the point to point shortest path from
C to F and outputs the results

MATCH p = shortestPath((c:Loc{name:'C'})-[*]-(f:Loc{name:'F'}))
RETURN [n in nodes(p) | n.name] AS ShortestPath, length(p) as Length

| | |
ShortestPath Length

:Hcll; "EII; "FII] 2

Shortest Path Unweighted Graphs (BFS)

The following query finds all the point to point shortest paths
between node C and F (exist more than 1 shortest path) and outputs
the results.

MATCH p = allShortestPaths((c:Loc{name:'C'})-[*]-(f:Loc{name:'F'}))
RETURN [n in nodes(p) | n.name] AS AllSortestPaths, length(p) as Length

"AllSortestPaths"” |"Length"

["C"l"D","F"] 2

["C","E","F"] 2

Shortest Path Unweighted Graphs (BFS)

The following query finds all single source shortest paths between

node A and all other nodes of the graph.

MATCH (f:Loc), p = allShortestPaths((c:Loc{name:'A'})-[*]-(f:Loc)
Where f<>c

RETURN c.name as fromNode,

f.name as toNode,[n in nodes(p) | n.name] AS AllSortestPaths,
length(p) as Length

order by c.name

"fromNode"

"toNode"

"AllSortestPaths”

"Length"

"A"

|an

["A" , "B"]

"A"

"C"

[ern , "C"]

[IIAI! , nDu]

["A","C","E"]

["A","D","E"]

[HA"'"DH’HF"]

Shortest Path Unweighted Graphs (BFS)

The following query finds all pair shortest

paths between a |I nOdeS Of the gra ph] “fromNode" | "toNode" | "AllSortestPaths" | "Length"

A" "B" ["A","B"] 1
A" " ["A","c"] 1

MATCH (f:Loc),(c:Loc), p = allShortestPaths((c:Loc)-[*]-(f:Loc)) e N P .

Where f<>c o ST PO

RETURN c.name as fromNode,

f.name as toNode,[n in nodes(p) | n.name] AS AllSortestPaths, | R R

length(p) as Length ” o bamren el 2

order by c.name 8" |08, AT 1
"B" "c" ["B","A","C"] 2
"B" e ["B","D","C"] 2
"B" "D" ["B","D"] 1
“B" "E" ["B","D","E"] 2

Create Graph Weighted

MERGE (a:Loc {name:"A"})
MERGE (b:Loc {name:"B"})
MERGE (c:Loc {name:"C"})
MERGE (d:Loc {name:"D"})
MERGE (e:Loc {name:"E"})
MERGE (f:Loc {name:"F"})
MERGE (a)-[:ROAD {cost:50}]->(b)
MERGE (a)-[:ROAD {cost:50}]->(c)
MERGE (a)-[:ROAD {cost:100}]->(d)
MERGE (b)-[:ROAD {cost:40}]->(d)
MERGE (c)-[:ROAD {cost:40}]->(d)
MERGE (c)-[:ROAD {cost:80}]->(e)
MERGE (d)-[:ROAD {cost:30}]->(e)
MERGE (d)-[:ROAD {cost:80}]->(f)
MERGE (e)-[:ROAD {cost:40}]->(f)

Shortest Path Weighted Graphs (Dijkstra)

The following query calculates the point to point shortest path from A to F using Dijkstra
(weighted graph), using Graph Data Science Library

CALL gds.iraph.project(

:Ir_?)ych’ rap | name totalCost
ROAD: { ["A", "B", "D", "E", "F"] 160.0
type: 'ROAD’,
}properties: ‘cost’

}

YIELD graphName, nodeCount, relationshipCount;

MATCH (start:Loc {name: 'A'}), (end:Loc {name: 'F'}
CALL gds.shortestPath.dijkstra.stream('myGraph’,
sourceNode: id(start),
targetNode: id(end),
relationshipWeightProperty: 'cost'

KIEE%L[J)R‘ilr\]IdeX' sourceNode, targetNode, totalCost, nodelds, costs
[nodeld IN nodelds | gds.util.asNode(nodeld).name] AS name,
totalCost;

Shortest Path Weighted Graphs (Dijkstra)

The following query calculates the point to point shortest path from Ato F
using Dijkstra (weighted graph), using Graph Data Science Library

MATCH (source:Loc {name: 'A'}) // Set A as the source node e coet
CALL gds.shortestPath.dijkstra.stream('myGraph’, {
sourceNode: id(source), " 0.0
relationshipWeightProperty: 'cost’
1)
YIELD targetNode, totalCost = 00
WITH gds.util.asNode(targetNode).name AS target, totalCost
RETURN target, totalCost "D" 90.0

ORDER BY totalCost;

"E" 120.0

"F" 160.0

Shortest Path Weighted Graphs (Dijkstra)

The following query calculates single source shortest
paths from A to all other nodes using Dijkstra

startNode endNode distance

MATCH (start:Loc {name: 'A'}L N N
CALL gds.allShortestPaths.dijkstra.stream('myGraph’, { 8 : w0
sourceNode: id(start),
relationshipWeightProperty: 'cost’ " B’ 50.0
YIELD index, sourceNode, targetNode, totalCost " o 50.0
RETURN

gds.util.asNode{sourceNode).name AS startNode,
gds.util.asNode(targetNode).name AS endNode,
totalCost AS distance

ORDER BY distance; A e 120.0

npn "D 90.0

npn ngn 160.0

Shortest Path Weighted Graphs (Dijkstra)

The following query calculates all pair shortest paths for all node of
the graph using Dijkstra

source target distance

MATCH (source:Loc), (target:Loc) / Iterate over all node pairs
WHERE id(source) <> |tharget) Avoid self-loops w " 100
CALL gds.shortestPath.dijkstra.stream('myGraph’, {
sourceNode: id(source), " - oo
targetNode: id(target),
relationshipWeightProperty: 'cost’

})

YIELD totalCost

RETURN
gds.util.asNode{id source)).name AS source,
gds.util.asNode(id(target)).name AS target,
totalCost AS distance A D" 90.0

ORDER BY distance desc;

g nEn 110.0

non npn 1100

g ngn 70.0

Page Rank Examples

Create Graph Weighted

CREATE (home:Page {name:'Home'})
CREATE (about:Page {name:'About'})
CREATE (product:Page {name:'Product'})
CREATE (links:Page {name:'Links'})
CREATE (a:Page {name:'Site A'})

CREATE (b:Page {name:'Site B'})

CREATE (c:Page {name:'Site C'})

CREATE (d:Page {name:'Site D'})

C re ate G ra p h We I g hte d MATCH (home:Page {name: 'Home'}), (about:Page {name: 'About'})

CREATE (home)-[:LINKS {weight: 0.2}]->(about);
MATCH (home:Page {name: 'Home'}), (links:Page {name: 'Links'})
CREATE (home)-[:LINKS {weight: 0.2}]->(links);
, MATCH (home:Page {name: 'Home'}), (product:Page {name: 'Product'})
CREATE (home)-[:LINKS {weight: 0.6}]->(product);
MATCH (about:Page {name: 'About'}), (home:Page {name: 'Home'})
CREATE (about)-[:LINKS {weight: 1.0}]->(home);
MATCH (product:Page {name: 'Product'}), (home:Page {name: 'Home'})
CREATE (product)-[:LINKS {weight: 1.0}]->(home);
MATCH (a:Page {name: 'Site A'}), (home:Page {name: 'Home'})
CREATE (a)-[:LINKS {weight: 1.0}]->(home);
MATCH (b:Page {name: 'Site B'}), (home:Page {name: '"Home'})
CREATE (b)-[:LINKS {weight: 1.0}]->(home);
MATCH (c:Page {name: 'Site C'}), (home:Page {name: 'Home'})
CREATE (c)-[:LINKS {weight: 1.0}]->(home);
MATCH (d:Page {name: 'Site D'}), (home:Page {name: 'Home'})
CREATE (d)-[:LINKS {weight: 1.0}]->(home);
B MATCH (links:Page {name: 'Links'}), (home:Page {name: 'Home'})
AN CREATE (links)-[:LINKS {weight: 0.8}]->(home);
i MATCH (links:Page {name: 'Links'}), (a:Page {name: 'Site A'})
CREATE (links)-[:LINKS {weight: 0.05}]->(a);
| MATCH (links:Page {name: 'Links'}), (b:Page {name: 'Site B'})
N 4 CREATE (links)-[:LINKS {weight: 0.05}]->(b);
MATCH (links:Page {name: 'Links'}), (c:Page {name: 'Site C'})
CREATE (links)-[:LINKS {weight: 0.05}]->(c);
MATCH (links:Page {name: 'Links'}), (d:Page {name: 'Site D'})
CREATE (links)-[:LINKS {weight: 0.05}]->(d);

el

Page Rank Unweighted

*The following statement will project the graph and store it in the
graph catalog.

CALL gds.graph.project(
'myGraph’,
'Page’,
{
LINKS: {
properties: 'weight'
}
}
)

Page Rank Unweighted

The following will run PageRank algorithm and stream results on the
projected unweighted graph:

|Z'LEIII.E |3C‘.C‘l [= |
| I I
| 'Home " |:> 2156E81595588445352 |
| | |
CALL gds.pageRank.stream(T
'myGraph’, | | |
{ maxiterations: 20, dampingFactor: 0.85 } | "anks™ - |1.0542700552146724 |
| I |
) | "Product™|1.0542700552146724|
YIELD nodeld, score | | |
RETURN gds.util.asNode(nodeld).name AS name, score | "siee av !” 27esTEcE ‘““"’39!
| I |
ORDER BY score DESC, name ASC; ["site B |0.327857206442853¢]
| | |
| I |
|“uite c" |0 3278 5'?5'3n4¢5:.;~3°|
| | |
| I |
|“uite n" |Cl 3278 5'?5'3n4¢5’:.33'3|
L l

Page Rank Weighted

The following will run PageRank algorithm and stream results on the
projected weighted graph:

|TLEIHE |3C‘.G 2 |

| I |

|”Home” |5 5375102839633907 |

| | |

| I 1

CALL gds.pageRank.stream('myGraph’, { !"Pmc‘mct ! .93578382916511 !
H . I T 1
maXIt.eratlons' 20, | "mbout™ |0.745261276388369% |
dampingFactor: 0.85, | | |
relationshipWeightProperty: 'weight' | "inks™ - |0.7452612763883609 |
| I 1

}) |"site A" |0.18152677135466103|
YIELD nodeld, score | I |
RETURN gds.util.asNode(nodeld).name AS name, score | "siee 3" |0.18152677135466103)|
ORDER BY score DESC, name ASC |"site v |0.18152677135466103)
| | |

| I 1

|"site D" |0.18152677135466103]

I I I

Personalized Page Rank

Personalized Page Rank is a variation of Page Rank which is biased
towards a set of sourceNodes. The following show how to run Page
Rank centered around 'Site A’

name

0.39902290442518784

MATCH (siteA:Page {name: 'Site A'})
CALL gds.pageRank.stream('myGraph’, {
maxlterations: 20,

" |0.168903253017266094

| | |
| l l
| "2 | |
| | |
s | |
sourceNodes: [siteA] !uin:cs" !9.1:22-3151?4?3743;1!	
I I 1	
I I 1	
I I 1	

"bhout 0.11220151747374331
dampingFactor: 0.85,
}) "Product™|0.11220151747374331
YIELD nodeld, score
RETURN gds.util.asNode(nodeld).name AS name, score Site B" |0.01890325301726691
ORDER BY score DESC, name ASC
Site C" |0.018903253017266591
Site D™ |0.018580325301726651

