
Deep learning techniques
for Graph Embeddings

Yannis Kotidis

Acknowledgements

• Some of the presented material adapted from the following sources:
• ISMB 2018 Tutorial on Deep Learning for Network Biology

(http://snap.stanford.edu/deepnetbio-ismb/)

• DeepWalk: Online Learning of Social Representations, Bryan Perozzi, Rami Al-
Rfou, Steven Skiena, Stony Brook University KDD 2014

• https://towardsdatascience.com/overview-of-deep-learning-on-graph-
embeddings-4305c10ad4a4

• http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-
model/

http://snap.stanford.edu/deepnetbio-ismb/
https://towardsdatascience.com/overview-of-deep-learning-on-graph-embeddings-4305c10ad4a4

Motivation

Pre-processing step in order to turn
a graph into a computationally
digestible format.

Many Data Mining and Machine
learning algorithms are tuned for
continuous data mapped in a d-
dimensional space.

Visualization, outlier detection, etc.

Node embeddings: intuition

Deep Learning for Network Biology --
snap.stanford.edu/deepnetbio-ismb -- ISMB 2018

4

Map nodes to d-dimensional space such that similar

nodes in the graph are embedded close together

OutputInput

Embedding methods

• Several existing methods:
• node2vec, DeepWalk, LINE, struc2vec

• These techniques extract topological features in the form of common
neighbors, paths, random walks, rooted trees, etc in order capture
different notions of node similarity

• They utilize these features in order to embed graph nodes in a d-
dimensional space

5

Simple Idea: two nodes are similar if they are
connected
• Let A be the adjacency matrix for the graph

• Then Au,v=1 iff there is an edge between nodes u,v

• Let zu, zv be the n-dim vector representations of
these nodes, respectively
• Let zu

Tzv denote their similarity (inner product)

• We seek representations such that:

u

v

zu
T.zv ≈ Au,v

Simple Idea: two nodes are similar if they are
connected
• Let A be the adjacency matrix for the graph

• Then Au,v=1 iff there is an edge between nodes u,v

• Let zu, zv be the n-dim vector representations of
these nodes, respectively
• Let zu

Tzv denote their similarity (inner product)

• We seek representations such that:

u

v

zu
T.zv ≈ Au,v

Trivial for two nodes:
Zu=(0,1,0)
Zv=(0,1,0)

Simple Idea: two nodes are similar if they are
connected
• Let A be the adjacency matrix for the graph

• Then Au,v=1 iff there is an edge between nodes u,v

• May use edge-weight for weighted graphs

• Let zu, zv be the n-dim vector representations of
these nodes, respectively
• Let zu

Tzv denote their similarity (inner product)

• We seek representations such that:

u

v

zu
T.zv ≈ Au,v

Zu=(0,1,0)
Zv=(0,1,0)

Now what?

w

x

Adjacency-based Similarity

9

▪ Similarity function is the edge weight between u and v
in the network

▪ Intuition: Dot products between node zu
T.zv embeddings

approximate edge existence

(weighted)

adjacency matrix

for the graph

loss (what we want

to minimize)
sum over all

node pairs

embedding

similarity

Can be solved using Stochastic gradient descent (SGD)

Adjacency-based Similarity Shortcomings

• Complexity: must consider all node pairs →O(|V|2) runtime

• Only considers direct connections (example bellow)

10

Also, we expect red nodes be more similar to

Green nodes compared to Orange nodes,

despite none being directly connected

These two nodes are dissimilar
per our definition of similarity

Multi-Hop Similarity

11

Idea: Define node similarity function based on
higher-order neighborhoods

▪ Red: Target node

▪ k=1: 1-hop neighbors

▪ i.e., adjacency matrix A
▪ k=2: 2-hop neighbors

▪ k=3: 3-hop neighbors

How to stochastically define

these higher-order

neighborhoods?

Random Walks

Random Walk Example

• Start from source node v4 and walk for a while following graph edges

• Collected path: v4→ v3 → v1→ v5 → v1 → v46 → v51 → v89

12

▪ Intuition: nodes are similar

if they are “close” in the

network topology

▪ Such nodes frequently co-

occur in a random walk
▪ We will learn embeddings

that will boost the similarity

between such nodes

v4

v3

v1

v5
v46

v51

v89

Word2vec

• Popular technique for creating vector representations of words
• Intuition: Two words are similar if the frequently appear in the same context

• Same context ≈ within small distance in the same sentence

• Is believed to capture both syntactic and semantic relationships between
words:
• Let Φ(x) be the learnt representation (vector) of word x

• Φ("King") - Φ("Man") + Φ("Woman") ≈ Φ(“Queen“)

More examples (from product descriptions in online catalogs):
(https://medium.com/arvind-internet/applying-word2vec-on-our-catalog-data-2d74dfee419d)

• shirt — buttons ≈ sweater
• suit — shirt — bow — waistcoat ≈ jeans
• party + weekend + clothing ≈ holiday

https://medium.com/arvind-internet/applying-word2vec-on-our-catalog-data-2d74dfee419d

The Skip-gram model

• Given an input word try to predict
the previous w and following w
words (w = window size)

• In the last training sample for
input = fox try to predict quick,
brow, jumps, over

fox

quick

brown

jumps

over

Neural
Network

input

prediction

P[“quick” |Φ(“fox”)]
P[“brown” |Φ(“fox”)]
P[“jumps” |Φ(“fox”)]
P[“over” |Φ(“fox”)]Learn a representation Φ(“fox”) that maximizes these probabilities: for this training input

(window=2)

Neat Idea (Deep Walk)

• In the previous discussion replace
• Words with graph nodes
• Sentences with node sequences from short random words

• Observation
• Words frequency in a natural language corpus follows a power law
• Vertex frequency in random walks on scale free graphs also follows a power

law

• Advantages
• Flexibility: captures local and higher-order neighborhoods
• Efficiency: Do not need to consider all node pairs when training

• Consider only node pairs that co-occur in random walks

16

Deep Walk Framework

17

v4→ v3 → v1→ v5 → v1 → v46 → v51 → v89

window =1

node2vec: Biased Walks
Two classic strategies to define a neighborhood 𝑁𝑅 𝑢 of
a given node 𝑢:

21

𝑁𝐵𝐹𝑆 𝑢 = { 𝑠1, 𝑠2, 𝑠3}

𝑁𝐷𝐹𝑆 𝑢 = { 𝑠4, 𝑠5, 𝑠6}

Local microscopic view

Global macroscopic view

node2vec: Scalable Feature Learning for Networks

Aditya Grover
Stanford University

adityag@cs.stanford.edu

Jure Leskovec
Stanford University

jure@cs.stanford.edu

ABSTRACT

Prediction tasks over nodes and edges in networks require careful
effort in engineering features for learning algorithms. Recent re-

search in thebroader field of representation learning has led to sig-
nificant progress in automating prediction by learning the features

themselves. However, present approaches are largely insensitive to
local patterns unique to networks.

Herewepropose node2vec, an algorithmic framework for learn-
ing feature representations for nodes in networks. In node2vec, we

learn a mapping of nodes to a low-dimensional space of features
that maximizes the likelihood of preserving distances between net-

work neighborhoods of nodes. Wedefineaflexiblenotion of node’s
network neighborhood and design a biased random walk proce-

dure, which efficiently exploresdiverseneighborhoods and leadsto
rich feature representations. Our algorithm generalizes prior work
which is based on rigid notions of network neighborhoods and we

demonstrate that the added flexibility in exploring neighborhoods
is the key to learning richer representations.

We demonstrate the efficacy of node2vec over existing state-
of-the-art techniques on multi-label classification and link predic-

tion in several real-world networks from diverse domains. Taken
together, our work represents a new way for efficiently learning

state-of-the-art task-independent node representations in complex
networks.

Categor ies and Subject Descr iptors: H.2.8 [Database Manage-

ment]: Database applications—Data mining; I.2.6 [Ar tificial In-
telligence]: Learning

General Terms: Algorithms; Experimentation.

Keywords: Information networks, Feature learning, Node embed-

dings.

1. INTRODUCTION
Many important tasks in network analysis involve some kind of

prediction over nodes and edges. In a typical node classification
task, we are interested in predicting the most probable labels of

nodes in a network [9, 38]. For example, in a social network, we
might be interested in predicting interests of users, or in a protein-

protein interaction network we might be interested in predicting
functional labels of proteins [29, 43]. Similarly, in link prediction,
we wish to predict whether a pair of nodes in a network should

have an edge connecting them [20]. Link prediction is useful in
a wide variety of domains, for instance, in genomics, it helps us

discover novel interactions between genes and in social networks,
it can identify real-world friends [2, 39].

Any supervised machine learning algorithm requires a set of in-
put features. In prediction problems on networks this means that

one has to construct a feature vector representation for the nodes

u

s3

s2
s1

s4

s8

s9

s6

s7

s5

BFS

DFS

Figure1: BFS and DFS search strategies from node u (k = 3).

and edges. A typical solution involves hand-engineering domain-
specific features based on expert knowledge. Even if onediscounts

the tedious work of feature engineering, such features are usually
designed for specific tasks and do not generalize across different

prediction tasks.
An alternative approach is to use data to learn feature represen-

tations themselves [4]. The challenge in feature learning is defin-
ing an objective function, which involves a trade-off in balancing
computational efficiency and predictive accuracy. On one side of

thespectrum, onecould directly aim to findafeaturerepresentation
that optimizesperformanceof adownstream prediction task. While

this supervised procedure results in good accuracy, it comes at the
cost of high training timecomplexity dueto ablowup in thenumber

of parameters that need to be estimated. At the other extreme, the
objective function can be defined to be independent of the down-

stream prediction task and the representation can be learned in a
purely unsupervised way. This makes the optimization computa-

tionally efficient and with a carefully designed objective, it results
in task-independent features that match task-specific approaches in

predictiveaccuracy [25, 27].
However, current techniques fail to satisfactorily defineand opti-

mizeareasonable objectiverequired for scalableunsupervised fea-
ture learning in networks. Classic approaches based on linear and

non-linear dimensionality reduction techniques such as Principal
Component Analysis, Multi-Dimensional Scaling and their exten-

sions [3, 31, 35, 41] invariably involve eigendecomposition of a
representative data matrix which is expensive for large real-world

networks. Moreover, the resulting latent representations give poor
performance on various prediction tasks over networks.

Neural networksprovidean alternativeapproach to unsupervised
feature learning [15]. Recent attempts in this direction [28, 32]
propose efficient algorithms but are largely insensitive to patterns

unique to networks. Specifically, nodes in networks could be or-
ganized based on communities they belong to (i.e., homophily); in

other cases, the organization could be based on the structural roles
of nodes in the network (i.e., structural equivalence) [7, 11, 40,

42]. For instance, in Figure 1, we observe nodes u and s1 belong-
ing to thesamecommunity exhibit homophily, while thehub nodes

u and s6 in the two communities are structurally equivalent. Real-

Interpolate BFS and DFS
Biased random walk 𝑅 that given a node 𝑢 generates
neighborhood 𝑁𝑅 𝑢

• Two parameters:
• Return parameter 𝑝:

• Return back to the previous node

• In-out parameter 𝑞:
• Moving outwards (DFS) vs. inwards (BFS)

22

Biased Random Walks
Biased 2nd-order random walks explore network neighborhoods:

• Rnd. walk started at 𝑢 and is now at 𝑤

• Insight: Neighbors of 𝑤 can only be:

Idea: Remember where that walk came from

23

s1

s2

w

s3

u
Closer to 𝒖

Same distance to 𝒖

Farther from 𝒖

Biased Random Walks
• Walker is at w. Where to go next?

• 𝑝, 𝑞 model transition probabilities
• 𝑝 … “return” parameter (lower values are preferable)

• 𝑞 … ”walk away” parameter (lower values are preferable)

1

1/𝑞

1/𝑝

24

1/𝑝, 1/𝑞, 1 are

unnormalized

probabilitiess1

s2

w

s3

ustarted at u

currently at w

Biased Random Walks
• Walker is at w. Where to go next?

• BFS-like walk: Low value of 𝑝

• DFS-like walk: Low value of 𝑞

𝑁𝑆(𝑢) are the nodes visited by the walker

25

w →
s1

s2

s3

1/𝑝
1
1/𝑞

Unnormalized

transition prob.

1

1/𝑞

1/𝑝s1

s2

w

s3

u

BFS vs. DFS

BFS:

Micro-view of

neighbourhood

u

DFS:

Macro-view of

neighbourhood

26

u

Experiment: Micro vs. Macro

Interactions of characters in a novel:

Figure 3: Complementary visualizations of LesMisérables co-
appearance network generated by node2vec with label colors
reflectinghomophily (top) and structural equivalence(bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE
to incorporate information from network neighborhoods beyond 2-

hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart

from spectral clustering which has a slightly higher time complex-
ity since it involvesmatrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks

are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-

plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we

note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.

Asanexample, if K istheoverall sampleconstraint, then thenode2vec
parameters satisfy K = r · l · |V |. In the optimization phase,

all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that wecorrect for. First, DeepWalk

useshierarchical sampling toapproximate thesoftmax probabilities
with an objective similar to the one use by node2vec in (2). How-

ever, hierarchical softmax is inefficient when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we

switch to negativesampling in DeepWalk which isalso thedefacto
approximation in node2vec and LINE. Second, both node2vec and

DeepWalk have a parameter (k) for the number of context neigh-
borhood nodesto optimize for and thegreater thenumber, themore

rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes asingle epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. Specifically, d = 128,

r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-

tral clustering.) All results for all tasks are statistically significant
with ap-valueof less than 0.01.The best in-out and return hyperpa-

rameters were learned using 10-fold cross-validation on just 10%

Algor ithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395

DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164

node2vec 0.2581 0.1791 0.1552

node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F1 scores for multilabel classification on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-

rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 { 0.25, 0.50, 1, 2, 4} .

Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label classification
In the multi-label classification setting, every node is assigned

oneor morelabelsfrom afiniteset L . During thetraining phase, we

observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label classification

on the following datasets:

• BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-

bels represent blogger interests inferred through the meta-
dataprovided by thebloggers. Thenetwork has10,312 nodes,

333,983 edges and 39 different labels.
• Protein-Protein Interactions (PPI) [5]: We use a subgraph

of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could

obtain labels from the hallmark gene sets [21] and represent
biological states. Thenetwork has3,890 nodes, 76,584 edges

and 50 different labels.
• Wikipedia Cooccurrences [23]: This is a cooccurrence net-

work of words appearing in the first million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech

(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777

nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-

ever, theremight also besome ‘ familiar strangers’ , that is, bloggers
that do not interact but share interests and hence are structurally

equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both typesof equivalences.

For example, they exhibit structural equivalencewhen proteinsper-
form functions complementary to those of neighboring proteins,

and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. Theword co-

occurence network is fairly dense, sinceedgesexist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,

wordshaving thesamePOStagsarenot hard to find, lending ahigh
degree of homophily. At the same time, we expect some structural

equivalence in thePOStagsdue to syntactic grammar rulessuch as
determiners following nouns, punctuations preceeding nouns etc.

Exper imental results. The learned node feature representations
are input to aone-vs-rest logistic regression using theLIBLINEAR

implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F1 scores

for comparing performance in Table2 and therelativeperformance

Figure 3: Complementary visualizations of LesMisérables co-
appearance network generated by node2vec with label colors
reflectinghomophily (top) and structural equivalence(bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE
to incorporate information from network neighborhoods beyond 2-

hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart

from spectral clustering which has a slightly higher time complex-
ity since it involvesmatrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks

are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-

plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we

note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.

Asanexample, if K istheoverall sampleconstraint, then thenode2vec
parameters satisfy K = r · l · |V |. In the optimization phase,

all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that wecorrect for. First, DeepWalk

useshierarchical sampling to approximatethesoftmax probabilities
with an objective similar to the one use by node2vec in (2). How-

ever, hierarchical softmax is inefficient when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we

switch to negativesampling in DeepWalk which isalso thedefacto
approximation in node2vec and LINE. Second, both node2vec and

DeepWalk have a parameter (k) for the number of context neigh-
borhood nodesto optimize for and thegreater thenumber, themore

rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes asingle epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. Specifically, d = 128,

r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-

tral clustering.) All results for all tasks are statistically significant
with ap-valueof less than 0.01.The best in-out and return hyperpa-

rameters were learned using 10-fold cross-validation on just 10%

Algor ithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395

DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164

node2vec 0.2581 0.1791 0.1552

node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F1 scores for multilabel classification on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-
rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 { 0.25, 0.50, 1, 2, 4} .

Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label classification
In the multi-label classification setting, every node is assigned

oneor morelabelsfrom afiniteset L . During thetraining phase, we

observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label classification

on the following datasets:

• BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-

bels represent blogger interests inferred through the meta-
dataprovided by thebloggers. Thenetwork has10,312 nodes,

333,983 edges and 39 different labels.
• Protein-Protein Interactions (PPI) [5]: We use a subgraph

of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could

obtain labels from the hallmark gene sets [21] and represent
biological states. Thenetwork has3,890 nodes, 76,584 edges

and 50 different labels.
• Wikipedia Cooccurrences [23]: This is a cooccurrence net-

work of words appearing in the first million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech

(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777

nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-

ever, theremight also besome ‘ familiar strangers’ , that is, bloggers
that do not interact but share interests and hence are structurally

equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both typesof equivalences.

For example, they exhibit structural equivalencewhen proteinsper-
form functions complementary to those of neighboring proteins,

and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. Theword co-

occurence network is fairly dense, sinceedgesexist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,

wordshaving thesamePOStagsarenot hard to find, lending ahigh
degree of homophily. At the same time, we expect some structural

equivalence in thePOStagsdue to syntactic grammar rulessuch as
determiners following nouns, punctuations preceeding nouns etc.

Exper imental results. The learned node feature representations
are input to aone-vs-rest logistic regression using theLIBLINEAR

implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F1 scores

for comparing performance in Table2 and therelativeperformance

p=1, q=2
Microscopic view of the

network neighbourhood

p=1, q=0.5
Macroscopic view of the

network neighbourhood

27

Node2vec example
Input network Clustering of resulting 2-dim vectors

(p=1,q=2,w=3) with k-Means (k=2)

Graph Convolutional
Networks

GCNs application

• Semi-supervised learning: Given a single network with partial nodes
being labelled and others remaining unlabelled, GCN’s model can
identify the class labels for the unlabelled nodes

• Graph node embedding: We can use GCNs to represent each node as
an aggregate of its neighbourhood and derive node embeddings

• For more details see https://arxiv.org/pdf/1609.02907.pdf

What is Convolution
(image processing)

• Try to learn from the provided image by
computing weighted averages of pixel values of the
red pixel along with its neighbours

• Pass the computed result to an activation function
that propagates the result to the next layer of the
CNN.

Image source
https://medium.com/@sunitachoudhary103/how-to-deal-the-graphs-data-in-deep-learning-with-graph-convolutional-networks-gcn-39f69db072ee

Convolution in graphs

• Derive a hidden representation of the red node,
by taking the average value of the available features
of the red node along with its neighbours

Image source
https://medium.com/@sunitachoudhary103/how-to-deal-the-graphs-data-in-deep-learning-with-graph-convolutional-networks-gcn-39f69db072ee

Let's see an example

Graph

Adjacency Matrix A

Note: in this example the graph is
undirected, thus A is symmetric

Let's see an example

Graph

Adjacency Matrix A

Note: in this example the graph is
undirected, thus A is symmetric

John

Encode two features using matrix X
(features don’t have to be exclusive)

Aggregate features

• Let X be a n*k matrix encoding k features
for each of the n nodes

• Question: what does A*X produce?
A X

Mary

AEK

Aggregate features

• Let X be a n*k matrix encoding k features
for each of the n nodes

• Question: what does A*X produce?
A X

Mary

AEK

Thus, for each node we
are aggregating the
feature values of their
neighbours!

Result for our running example

A*X

Issue #1

• Node’s own features are not taken into consideration in A*X
• This is because A[i,i]=0

Issue #1: Solution

• Trick: add a self-loop
• make A[i,i]=1

• equivalently add identity matrix I: I[i,i]=1

Issue #2

• A is not normalized. Thus, vertices with large degree will have large values
in their feature representation while nodes with small degrees will have
small values
• Solve by using the symmetrically normalized adjacency matrix 𝐷−0.5(𝐴 + 𝐼)𝐷−0.5

• D is a diagonal matrix with D[i,i] = degree of node i (computed on adjusted
matrix A+I)
• Lefthand side 𝐷−0.5 scales the aggregate feature on i based on the degree on node i

• Righthand side scales the aggregate feature on i based on the degree on node j

• Intuition: often low-degree neighbours provide more useful information than high-
degree neighbours

Recap (aggregation
step)

• Compute normalized sum of
neighboring nodes plus own
features: 𝐷−0.5(𝐴 + 𝐼)𝐷−0.5X

• Where
• A: Graph Adjacency matrix

• I: Identity matrix

• D: Degree matrix of A+I

• X: Node’s features

Graph Convolutional
Networks

• In supervised learning we will use
• 𝐻(𝑙+1) = 𝑓(𝐷−0.5 𝐴 + 𝐼 𝐷−0.5𝐻(𝑙)𝑊(𝑙))

Where

• 𝐻(𝑙) is the input to layer l (initially the node
features X we know from the dataset)

• 𝐻(𝑙+1) is the output to the next layer

• 𝑊(𝑙) are the weights to learn via training

• f is an non-linear function such as ReLU

Image source: https://towardsdatascience.com/designing-your-neural-networks-a5e4617027ed

Continue our example

• Initialize nodes using I as X

• Use three hidden layers with random initial
weights

• On the right see output with a single forward
pass (no learning)

