Stream Analytics

Yannis Kotidis

http://pages.cs.aueb.gr/~kotidis/

Stream Data Challenges

- Conventional (static) algorithms assume that data is available when we want it
- In a (pure) stream processing scenario, data arrives in streams and if not processed immediately or stored, then it is lost forever
- Main challenges: number of streams * velocity
- Data arrives so rapidly that it is not feasible to store it all in memory or in a database to query it in real time
- Even if a single stream is slow, there can be thousands of such steams in a large-scale application

Example: Gas Turbines Monitoring [Optique FP7]

- 950 power generating turbines located across the globe
- 100K sensors installed
- Hundreds of TB worth of readings
- Detect in real-time undesirable patterns
- Single-stream processing
- Multi-stream processing
- Live stream + archived stream correlation

Turbine monitoring

- Each Correlation query:
- Intercepts two streams
- Groups measurements over specified windows
- Joins streams, computes Pearson coefficient:

$$
\operatorname{Pearson}\left(u_{i}, u_{j}\right)=\operatorname{cov}\left(u_{i}, u_{j}\right) /\left(\sigma_{u_{i}}^{*} \sigma_{u_{j}}\right)
$$

Throughput on a 256-core Exareme* cluster

Speed-up via LSH

- Corr. between current window and 100K archived ones [ISWC 2016, BigData 2016]
\rightarrow with RHP \rightarrow without RHP

Data Stream Processing

Static and stream data processing

- E.g. compute correlation between the current state of a stream and its past states stored in archive storage

Ad-hoc query example

spark

- Queries on a search engine
- Stream of tuples <user, term, time>
- Simplification (for the shake of this running example): a user may ask the same query (term) once or twice
- Want to compute the fraction of duplicate queries issued by a typical user

Sampling from a data stream

- Keep a 10% sample of the stream
- E.g. draw a random integer x in range (0..9). Then keep tuple if $x=0$
- For a typical user, we want to compute the fraction of duplicate queries from the sample
- Assume a user make s one-time searches and d duplicate searches
- Correct answer is $\mathrm{d} /(\mathrm{s}+\mathrm{d})$

Using the sample

- Look at the sample to determine duplicates
- Let s' be the number of unique queries, for a user
- Let d' be the number of duplicates found, for a user
- Report $d^{\prime} /\left(s^{\prime}+d^{\prime}\right)$
- Is this correct?

Sampling unique queries

- Let s be the number of unique searches a user makes
- These appear s/10 times in the sample

Sampling duplicate queries

- Let d be the number of duplicate searches a user makes
- A duplicate search appears twice in the sample with probability $1 / 10 * 1 / 10=1 / 100$

Sampling duplicate queries

- A duplicate search appears once in the sample with probability $1 / 10 * 9 / 10+9 / 10 * 1 / 10$

Sample only $1^{\text {st }}$ occurrence Sample only $2^{\text {nd }}$ occurrence

- A duplicate search does not appear in the sample with probability 9/10 * 9/10

In conclusion

- One-time queries in the sample
$-s^{\prime}=s / 10+18 d / 100=(10 s+18 d) / 100$
- Duplicate queries in the sample
$-d^{\prime}=d / 100$
- Our estimate is $d^{\prime} /\left(s^{\prime}+d^{\prime}\right)=d /(10 s+18 d)$
- Notice that this is different that $\mathrm{d} /(\mathrm{s}+\mathrm{d})$

Under-estimation

s	d	Fraction $d /(s+d)$	Estimate $d /(10 s+18 d)$
95	5	5%	0.5%
90	10	10%	0.9%
85	15	15%	1.3%
80	20	20%	1.7%
75	25	25%	2.1%
.	\vdots	\vdots	\vdots
5	95	95%	5.4%

Obtaining a Representative Sample

- As shown a random sample from all users is not representative of the average behavior
- Alternative idea: select 10% of the users and keep all their queries
- Select these users at random
- Do not store searches from users not in the sample

User selection

- Incoming stream tuple <user, term, time>
- Let $h(x)$ be a hash function returning values in the range (0..9)
- Keep tuple if h(user) $=0$

Maintaining fixed sample size

- In the previous example we keep about 10% of the searches
- Recall that stream is (in theory) infinite
- Thus, the sample keeps growing
- Also recall that we do not have control over the input stream. System may exhibit bursts of heavy usage
- How to keep the sample size memory bound?

Hashing to the rescue

- Let $\mathrm{h}(\mathrm{x})$ return values in the range (0..B-1) for some very large value B
- Keep <user,term,time> in the sample if $h(u s e r) \leq$ k, for some constant $k \leq B$,
- Store <h(user),user,term,time> in memory
- Possibly index by h(user)
- If memory is full, reduce value of k
- discard samples with h(user)>k

STREAM FILTERING

Applying filters on streams

- Often the selection criterion can be calculated from the stream tuple
- Does the query term contain > 5 characters?
- Easy to compute: length(term) > 5
- In other cases the selection criterion involves lookup for membership in a set
- Problem becomes hard when this set is very large
- Is the query term a "bad" word

Membership Test: Motivational Example

- Have 1 billion bad URLs you would like to block ($\mathrm{n}=10^{9}$)
- each URL is ~ 50 characters long
- Need >50GB to keep all in main memory
- Would like to block a URL request in real time if it belongs to the black list

Membership test: Bloom Filters

- Be able to quickly test where key value x is part of a set S
- Application: spam filtering
- Have a set S of one billion valid email addresses (white list) for spam filtering
- Assume 20 bytes per email address. S does not fit in memory
- Want a memory resident data structure that will tell us whether an incoming email is spam or not

Spam Filtering

- Bloom filter will check whether an incoming email is from a valid email address in the white list
- If the answer is no then the email is guaranteed to be spam and is thus rejected
- If the answer is yes, the email is with high probability in the list
- Cases where the filter says "yes" while the true answer is "no" are termed false positives

More applications of Bloom Filters

- Web-crawler: avoid visiting same page twice
- High-traffic on-line music store with millions of titles
- only fetch song information when you know the song exists in your collection (minimize \#queries to your db).

Problem Statement

- Have a very large set S
- Membership test: is x part of S?
- Want a data structure that
- Is small (can fit in memory, when S cannot)
- Requires a (small) constant time for look-ups
- Guarantees no false negatives
- Introduces a limited number of false positives
- For those cases you can optionally look up x in S in a second step
- This works only if answering "yes" happens infrequently

Bloom Filter

- Use bitmap of length m and k hash functions
- Each $\mathrm{h}_{\mathrm{i}}(\mathrm{x})$ maps x to [0..m-1]
- Initially, all bits are zero

Initially Empty Bloom Filter ($m=12$)

0	0	0	0	0	0	0	0	0	0	0	0
0	1	2	3	4	5	6	7	8	9	10	11
(position)											

Training (using 3 hash functions)

Insert "apples"

$\left.\begin{array}{l}-h_{1}(\text { "apples") }=3 \\ -h_{2}(\text { "apples" })=11 \\ -h_{3}(\text { "apples" })=10\end{array}\right\}$ set corresponding bits

BITMAP (after insertion of "apples")

Train with more data

BITMAP (apples)

0	0	0	1	0	0	0	0	0	0	1	1
0	1	2	3	4	5	6	7	8	9	10	11

(position)
Now insert "oranges"
$-h_{1}($ "oranges ") = 10
$-h_{2}($ "oranges ") = 1

- $h_{3}($ "oranges ") $=5$

									collision		
0	1	0	1	0	1	0	0	0	0	1	1
	1	2	3	4	5	6	7	8	9	10	11

Querying: Membership test

- All bits indicated by $\mathrm{h}_{\mathrm{i}}(\mathrm{x})$ must be set
$-h_{1}$ ("bananas") $=10$
$-h_{2}$ ("bananas") $=5$
Is "bananas" part of my data?
$-h_{3}($ "bananas" $)=7$
BITMAP

0	1	0	1	0	1	0	0	0	0	1	1
0	1	2	3	4	5	6	7	8	9	10	11
(position)											

What can we guarantee?

- No false negatives (why?)
- Small probability of false positives

$$
\left(1-(1-1 / m)^{\mathrm{kn}}\right)^{\mathrm{k}}
$$

- False positive when all k bits are set for an item we have not seen
- A bit is set with probability $1 / \mathrm{m}$ assuming ideal hash function
$-(1-1 / m)^{k}=$ probability a bit is not set after one insertion
$-(1-1 / m)^{k n}=$ probability that a bit is not set after n insertions

Running Example

- Have 1 billion bad URLs you
 would like to block ($\mathrm{n}=10^{9}$)
- each URL is ~ 50 characters long
- Need >50GB to keep all in main memory
- Use a bitmap of 8 billion entries ($\mathrm{m}=8^{*} 10^{9}$)
- hash table takes 1GB of memory
- For $\mathrm{k}=6$, probability of false positives $=(1-(1-$ $\left.\left.1 /\left(8^{*} 10^{9}\right)\right)^{6^{*} 10^{9}}\right)^{6}=2.1 \%$

Dependency on k

	k	False positives Probability
	1	12\%
	2	5\%
.으	3	3\%
戈	4	2.4\%
$\frac{5}{n}$	5	2.2\%
¢	6	2.1\%
$\overline{\mathrm{O}}$	7	2.3\%
	8	2.5\%
	9	3\%

Bloom Filters in Distributed Databases

- Suppose we want to join two tables $R(A, \ldots)$ and $S(A, \ldots)$ that reside on two distant locations
- Join result can be computed at either location

Idea 1: Ship smallest relation to the other side

- Suppose S is smaller
- Communication Cost = size(S)
- Can we do better?

Idea 2: Step 1

- Build BF on the values of R.A
- Ship BF to location 2
- Recall that size(BF) << size(R)

Idea 2: Step 2

- For each S.A value a test using BF whether a exists in R.A column
- Ship to Location 1 those records that pass the BF test
- If a value S.A does not pass the BF test, then S.A does not join for sure (why?)
- But we may ship a few records that will not join (false positives)
- Final result is always correct!

Extensions

- Support insertions/deletions/multi-set semantics
- Have a grocery store and the following list of transactions
- Buy apple from supplier
- Buy apple from supplier
- Sell apple to buyer
- Buy apple from supplier
- Sell apple to buyer
- Do I have apples left in my store?

Intuition: maintain counters within buckets

BITMAP (after insertion of 1 apple)

0	0	0	1	0	0	0	0	0	0	1	1
0	1	2	3	4	5	6	7	8	9	10	11
(position)											

BITMAP (after insertion of 2 oranges)

Neat Implementation: Count-Min sketch

APPROXIMATE COUNTING

Applications of Count-Distinct

- Suppose stream elements are chosen from some universal set
- We would like to know how many different elements have appeared in the stream
- Number of distinct (src,dest) pairs in traffic that flows through my routers?
- How many different users visited Facebook/Twitter this week?
- Also useful when data is locally available for quick approximate answers
- How many customers with at least one purchase?
- How many people have visited my web-site?

Document Crawling

- While crawling documents from a web-site we count the number of different words that appear in them
- Too low or too large may indicate artificial pages/spam

Distinct Value Counting: Flajolet-Martin Sketch

- Problem: Estimate the number of distinct items in a stream of values from $[0, \ldots, n-1]$

Data stream:

$$
\begin{array}{|lllllllllllll}
\hline 3 & 0 & 5 & 3 & 0 & 1 & 7 & 5 & 1 & 0 & 3 & 7
\end{array}
$$

Number of distinct values: ?

Number of Distinct Values?

5336374141607384582215332936273739265654196521879036305 3324666183714597912548672277834956168090237025576455925 25368192160733356436969711469581912639289309951784636512 51968057604634228295575495523460652426599467713055457535 82522742737793365010880874855769126993204514085719985649 885814843515928521406611596512108833926570108948880691492 13657594816042353154144414860322847898161841877194648951 6369831575358391564357792878571329260513917605934772670 91206850933938552738953155393482813659773184365126727644 75361860791485136634142513972177225499621946295227578060 7648924733237854567593117154144514140161354149516442111 8545818227980243117748086496078903979431637989764004972 34954332897167861199256897644210288237924255185823521545 7161328411372485237279898489635647837554272436769669927 2075609523188747714426751151831181463228158317703192802 76224059166188469788025699893316295749194252165573771138 96213943561185457947723547402614197685971291737209516369 8315753583915643577928785713292605139176059347726709120 686519405381652264306267287745149571532624723576087623148 54785134974024689888521603847718487827459679731332747136 68755363681864985990235366287882848986979013497721252962 925643070196716289614523256329125454939435638

How hard is it?

- Naïve: bit array B of size n
- Upon seeing item i set $B[i]=1$
- Answer is \#1s in B[]
- Similar ideas: store items in a hash-table
- Does not work for large domains or for multiple instances
- Count number of distinct source/dest IPs seen in a router
- There are 2^{64} possible pairs. Impractical to maintain one bit of each one of them
- For each of my web-pages count the number of different users/IPaddresses that have visited that page
- Would also like to have an estimate for groups or pages and the web-site as a whole

Distinct Value Counting [FM85]

- BITMAP array of B of $L=O(\operatorname{logn})$ bits initialized to zero
- Hash function $\mathrm{h}(\mathrm{x})$ maps incoming values x in [0,n-1] uniformly across [0, 2 ${ }^{\text {L- }} 1$]
- Example:
- L=8 bits
- Domain of $h(x)$ is [0..255]

Distinct Value Counting [FM85]

- Let $\operatorname{Isb}(y)$ denote the position of the leastsignificant 1 bit in the binary representation of y
(i.e. rightmost bit set)
- A value x is mapped to $\operatorname{lsb}(h(x))$
- Example
$-\operatorname{lsb}(00100100)=2$
- Isb(01011101) = 0
- For each incoming value x
- set $\operatorname{BITMAP}[\operatorname{lsb}(\mathrm{h}(\mathrm{x}))]=1$

EXAMPLE

Data stream:

Number of distinct values: 5
$x=3 \longrightarrow h(3)=101110 \longrightarrow \operatorname{lsb}(h(3))=1$

ASSUME

$$
\begin{aligned}
& h(0)=011010 \\
& h(1)=101101 \\
& h(5)=100011 \\
& h(7)=001001
\end{aligned}
$$

FINAL BITMAP?

							BITMAP				
$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$						
0	0	0	0	1	1						

How do we use it?

- What is the probability that BITMAP[0]=1?
- Recall that x maps uniformly to $h(x)$
- Bit 0 is set to 1 if $h(x)=$........ 1
- This happens \sim half of the times (for the other half Is-bit is zero)
- BITMAP[0] is set d/2 times (on expectation)
(d is the number of distinct items that we are trying to figure out)

Next bit

- What is the probability that BITMAP[1]=1?
- Bit 1 is set to 1 if $h(x)=\ldots10$
- BITMAP[1] is set $\mathrm{d} / 4$ times during counting

Next bits

- With similar arguments
- $\mathrm{P}[\mathrm{BITMAP}[\mathrm{i}]=1]=\min \left(1, \mathrm{~d} / 2^{i}\right)$
- So we expect $\sim \log (\mathrm{d})$ rightmost bits in BITMAP to be set with high probability

Estimate

- Let $\mathrm{R}=$ position of rightmost zero in BITMAP
- FM show that $E[R]=\log (\phi d), \phi=0.7735$
- Thus, we estimate $d=\left(2^{R}\right) / \phi$

Back to our example

Data stream:

```
3
```

Number of distinct values: 5

	BITMAP				
$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
0	0	0	0	1	1

$R=2$
Estimate: $d=\left(2^{2}\right) / 0,7735=5.17$

WARNING

- This type of algorithms have good expected behavior
- But results may vary significantly between runs

What if

$$
h(1)=010100
$$

$\mathbf{5}$	$\mathbf{4}$			$\mathbf{3}$	$\mathbf{2}$			$\mathbf{1}$	$\mathbf{0}$
0	0	0	1	1	1				

New estimate $=2^{\wedge} 3 / 0.7735=10.3$

Work around:

- use multiple BITMAPS, each with a different hash function
- combine estimates

Multiple bitmaps

- Use k*I bitmaps, each with a different hash function
- Consider them as k groups of I bitmaps
- From each group of I bitmaps take the average of their estimates
- Occasionally, some of these averages will be affected by overestimation (previous example)
- Return the median of the produced k averages

Distributed Applications

- FM-sketches are composable
- How many distinct IPs transmit over our network?
- Compute FM sketch at each router
- Combine (by OR-ing) corresponding bitmaps

ESTIMATING MOMENTS

Generalized Counting Problem

- Computing "moments," involves the distribution of frequencies of different elements in the stream
- Let m_{i} be the number of occurrences of the $i^{\text {th }}$ element
- The $k^{\text {th }}$-order moment (or just $k^{\text {th }}$ moment) of the stream is the sum over all i of $\left(m_{i}\right)^{k}$

Examples

- Recall $k^{\text {th }}$ moment $=\Sigma_{i}\left(m_{i}\right)^{k}$
- $0^{\text {th }}$ moment $=\#$ distinct elements in the stream - Solved with FM SKETCH
- $1^{\text {th }}$ moment $=$ sum of stream elements
- Easy, just a counter
- $2^{\text {nd }}$ moment $=\Sigma_{i}\left(m_{i}\right)^{2}$

Example of second moment

$$
a, b, c, b, d, a, c, d, a, b, d, c, a, a, b
$$

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{a}}=5 \\
& \mathrm{~m}_{\mathrm{b}}=4 \\
& \mathrm{~m}_{\mathrm{c}}=3 \\
& \mathrm{~m}_{\mathrm{d}}=3
\end{aligned} \quad \square 2^{\text {nd }} \text { moment }=25+16+9+9=59
$$

Second moment as a surprise index

 (skewed distributions)$$
a, b, c, b, d, a, c, d, a, b, d, c, a, a, b
$$

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{a}}=5 \\
& \mathrm{~m}_{\mathrm{b}}=4 \\
& \mathrm{~m}_{\mathrm{c}}=3 \\
& \mathrm{~m}_{\mathrm{d}}=3
\end{aligned} \quad \square \mathrm{~S}=2^{\text {nd }} \text { moment }=25+16+9+9=59
$$

$a, b, a, a, d, a, c, a, a, a, a, a, a, a, ~ a$

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{m}_{\mathrm{a}}=12 \\
\mathrm{~m}_{\mathrm{b}}=1 \\
\mathrm{~m}_{\mathrm{c}}=1 \\
\mathrm{~m}_{\mathrm{d}}=1
\end{array} \quad \square \mathrm{~S}=2^{\text {nd }} \text { moment }=144+1+1+1=147
\end{aligned}
$$

AMS technique

(by Alon, Matias and Szegedy, 1996)

$$
a, b, c, b, d, a, c, d, a, b, d, c, a, a, b
$$

stream

- Let $\mathrm{X}=(\mathrm{X}$. element,X.value) be a variable
- Pick a random position in the stream
- X.element = element at position i
- X.value = a counter for item X.element from position i until the end of the stream
- E.g. for $\mathrm{i}=3, \mathrm{X}$. element $=c, \mathrm{X}$.value $=3$ at the end of the stream

Example with 3 variables

$$
a, b, c, b, d, a, c, d, a, b, d, c, a, a, b
$$

stream

- Assume we pick locations 3,8 and 13
- At the end of the stream we have
$-X 1=(c, 3) \quad$ CLAIM: $n(2 X . v a l u e-1)$ is an estimate for $2^{\text {nd }}$ moment S
$-\mathrm{X} 2=(\mathrm{d}, 2)$
$-X 3=(a, 2)$

$$
\begin{aligned}
& \text { X1 yields: } 15(2 * 3-1)=75 \\
& \text { X2 yields: } 15(2 * 2-1)=45 \\
& \text { X3 yields: } 15(2 * 2-1)=45
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
& \text { AVG }=55 \\
& \text { True } S=59
\end{aligned}
$$

Notation

- Let $\mathrm{c}_{\mathrm{t}}=$ number of times record at time t appears from that time on
- $\mathrm{c}_{1}=\mathrm{m}_{\mathrm{a}}, \mathrm{c}_{2}=\mathrm{m}_{\mathrm{b}}, \mathrm{c}_{4}=\mathrm{m}_{\mathrm{b}}-1, \ldots, \mathrm{c}_{6}=\mathrm{m}_{\mathrm{a}}-1, \mathrm{c}_{14}=1$

Observation

- Recall that for X we pick a random position i and start counting the observed element from that time on-ward

- Let $\mathrm{Y}=\mathrm{n}(2 X$.value-1)
- Claim E[Y] = S

Proof

- Average over all possible positions i that can be used to initiallize X
- $E[Y]=1 / n * \Sigma_{i}\left[n\left(2 c_{i}-1\right)\right]=\Sigma_{i}\left[\left(2 c_{i}-1\right)\right]$
- We will rewrite the sum by iterating over all elements a, b, c, \ldots.

Consider some element a

- Thus, $\mathrm{E}[\mathrm{Y}]=\Sigma_{\mathrm{a}}\left(\mathrm{ma}_{\mathrm{a}}\right)^{2}=\mathrm{S}$

Complication

- Since the stream is infinite, n keeps increasing
- How to maintain a random sample of size s (locations that define the X variables)?
- If we pick locations too early, sample won't be representative of recent behavior
- If we wait too long, then we will have few variables to answer queries
- Solution: reservoir sampling

Reservoir sampling

- Input n elements (n keeps increasing)
- Want a fixed size sample (assume size = s)
- This is your "reservoir" of sampled items
- Solution
- Choose the first s elements, keep them in memory
- When the $\mathrm{n}^{\text {th }}$ element arrives ($\mathrm{n}>\mathrm{s}$), choose it with probability s / n
- If chosen, throw away a random item from the sample

FREQUENT ITEM COUNTING

FREQUENT ITEM COUNTING

Example

- Example: given a stream of tweets, find the most popular hash tags
- Does not make sense to keep counters from a very distance past
- Mechanisms to concentrate on the most recent trends
- Sliding windows
- Exponential decay

Sliding windows

Spark (brute-force) implementation

```
val lines = ssc.socketTextStream("localhost", 9999)
val words = lines.flatMap(_.split(" "))
//filter hashtags only
val hashtags = words.filter(w=>w.contains("#"))
//count all hashtags in the last 120 seconds
val winh = hashtags.window(Seconds(120))
//iterate over accumulated hashtags
winh.foreachRDD { (rdd: RDD[String], time: Time) =>
val spark = SparkSession.builder.config(rdd.sparkContext.getConf).getOrCreate()
    // Convert RDD[String] to RDD[case class] to DataFrame
    val wordsDataFrame = rdd.map(w => Record(w)).toDF()
    // Creates a temporary view using the DataFrame
    wordsDataFrame.createOrReplaceTempView("words")
    // Do word count on table using SQL and print it
    val wordCountsDataFrame =
```

 spark.sql("select word, count(\({ }^{*}\)) as total from words group by word order by total DESC")
 println(s"========= \$time =========")
 wordCountsDataFrame.show(20,false)

Sample Output

Issues with this scheme

- Assume window = 1 week
- Recall our example of counting hash tags
- The number of hash tags in all tweets made worldwide is too large
- We are only interested in frequent hashtags
- It is not memory-friendly to keep counters for all hash-tags seen in the current window (especially for the infrequent ones)

Decaying windows

- Sliding windows make sharp distinction between recent elements and those in the distant past
- weight = 1, if recent (within specified window)
- weight $=0$, otherwise
- Decaying windows
- weigh recent elements more heavily
- older elements receive monotonically smaller weights

Exponentially Decaying Windows

- Given a stream of numerical items $a_{1}, a_{2}, \ldots . a_{t}$
- Assume we would like to compute their SUM
- For a small constant $c \ll 1$, compute

$$
\sum_{i=0}^{t-1} a_{t-i}(1-c)^{i}
$$

Spread of weights

Sum of weights $=\Sigma(1-c)^{t}=1 / c$

1/c

Counting using Decaying Windows

- Keep a counter for each item seen
- We will discard counters for infrequent items later-on
- Upon seeing an item a
- Multiply counters for all items by (1-c)
- Then, add 1 to the counter for a
- If no such counter exists, initialize it

Pruning

- Say we want frequent items with counts >s - drop counters smaller than s
- Recall that weights sum to $1 / \mathrm{c}$
- There can be at most $1 /$ sc counters exceeding the threshold
- E.g. for $s=1 / 2, c=1 / 1000$, there can be at most 2000 counters in use

LINEAR PROJECTIONS

Linear-Projections

- Seek to build a small-space summary for distribution vector $f(i)(i=1, \ldots, N)$ seen as a stream of i-values

Data stream:
$3,1,2,4,2,3,5, \ldots$

- Basic Construct: Randomized Linear Projection of $f()=$ project onto inner/dot product of f-vector

$$
\langle f, \xi\rangle=\sum f(i) \xi_{i} \quad \begin{aligned}
& \text { Where } \xi=\text { vector of random values from an } \\
& \text { appropriate distribution }
\end{aligned}
$$

Data stream: $3,1,2,4,2,3,5, \ldots \quad \xi_{1}+2 \xi_{2}+2 \xi_{3}+\xi_{4}+\xi_{5}$

Example: Binary-Join COUNT Query

- Problem: Compute answer for the query $\operatorname{COUNT}\left(R \bowtie_{A} S\right)$
- Example:

$$
\begin{array}{r}
\operatorname{COUNT}\left(R \bowtie_{A} S\right)=\sum_{i} f_{R}(i) \cdot f_{S}(i) \\
=10 \quad(2+2+0+6)
\end{array}
$$

- Exact solution: too expensive, requires $\mathrm{O}(\mathrm{N})$ space!
- $N=\operatorname{sizeof}($ domain(A))

AMS Sketching Technique [AMS96]

- Key Intuition: Use randomized linear projections of $f()$ to define random variable X such that:
$-X$ is easily computed over the stream (in small space)
$-E[X]=\operatorname{COUNT}\left(R \bowtie_{A} S\right)$
- $\operatorname{Var}[\mathrm{X}]$ is small
- Basic Idea:
- Define a family of 4 -wise independent $\{-1,+1\}$ random variables $\xi_{1}: \mathrm{i}=1 . ., \mathrm{N}$
$-\operatorname{Pr}\left[\xi_{\mathrm{c}}=+1\right]=\operatorname{Pr}\left[\xi_{\mathrm{l}}=-1\right]=1 / 2$
- Expected value of each $\xi_{,}, E\left[\xi_{j}\right]=0$
- Variables ξ_{1} are 4 -wise independent
- $\mathrm{E}\left[\xi_{1} \xi_{2} \xi_{3} \xi_{4}\right]=\mathrm{E}\left[\xi_{1}\right]^{*} \mathrm{E}\left[\xi_{2}\right]^{*} \mathrm{E}\left[\xi_{3}\right]^{*} \mathrm{E}\left[\xi_{4}\right]=0$ (expected value of product of 4 distinct $\xi_{1} \mathrm{~s}$ is zero)
- Variables ξ_{1} can be generated using pseudo-random generator using only $\mathrm{O}(\log \mathrm{N})$ space (for seeding)!

Summary Construction

- Compute random variables $: X_{R}=\sum_{i} f_{R}(i) \xi_{i}$ and $X_{S}=\sum_{i} f_{S}(i) \xi_{i}$
-Simply add ξ_{I} to $\mathrm{X}_{\mathrm{R}}\left(\right.$ resp. X_{S}) whenever the i -th value is observed in the R.A (resp. S.A) stream
- Define $X=X_{R} X_{S}$ to be estimate of COUNT query
- Example:

Binary-Join AMS Sketching Analysis

- Expected value of $X=\operatorname{COUNT}\left(R \bowtie_{A} S\right)$

$$
\begin{aligned}
E[X] & =E\left[X_{R} \cdot X_{S}\right] \\
& =E\left[\sum_{i} f_{R}(i) \xi_{i} \cdot \sum_{i} f_{S}(i) \xi_{i}\right] \\
& =E\left[\sum_{i} f_{R}(i) \cdot f_{S}(i) \xi_{i}^{2}\right]+E\left[\sum_{i \neq i} f_{R}(i) \cdot f_{S}\left(i^{\prime}\right) \xi_{j_{j}} \xi_{i}\right] \\
& =\sum_{i} f_{R}(i) \cdot f_{S}(i) \quad 1
\end{aligned}
$$

$$
\operatorname{Var}[X] \leq 2 \cdot S J(R) \cdot S J(S)
$$

- Where $S J(R)=\sum_{i} f_{R}(i)^{2}$ is self-join size of $R\left(2^{\text {nd }}\right.$ moment)

Tail Inequalities

- General bounds on tail probability of a random variable (that is, probability that a random variable deviates far from its expectation)

- Basic Inequalities: Let X be a random variable with expectation μ and variance $\operatorname{Var}[\mathrm{X}]$. Then for any $\varepsilon>0$ it holds thank

Chebyshev: $\quad \operatorname{Pr}(|X-\mu| \geq \mu \varepsilon) \leq \frac{\operatorname{Var}[X]}{\mu^{2} \varepsilon^{2}}$

Boosting Accuracy

- Chebyshev's Inequality:

$$
\operatorname{Pr}(|X-E[X]| \geq \varepsilon E[X]) \leq \frac{\operatorname{Var}[X]}{\varepsilon^{2} E[X]^{2}}
$$

- Boost accuracy to ε by averaging over several (=s) independent copies of X (reduces variance)

$$
\operatorname{Var}[Y]=\frac{\operatorname{Var}[X]}{s} \leq \frac{\varepsilon^{2} \operatorname{COUNT}{ }^{2}}{8}
$$

- By Chebyshev:

$$
\operatorname{Pr}(|Y-\operatorname{COUNT}| \geq \varepsilon \cdot \operatorname{COUNT}) \leq \frac{\operatorname{Var}[Y]}{\varepsilon^{2} \operatorname{COUNT} T^{2}} \leq \frac{1}{8}
$$

Boosting Confidence

- Boost confidence to $1-\delta$ by taking median of $2 \log (1 / \delta)$ independent copies of Y
- Each $\mathrm{Y}=$ Bernoulli Trial that fails with probability $\leq 12.5 \%$. With 87.5% it succeeds to provide estimate within ($1 \pm \varepsilon$)
"FAILURE": $\operatorname{Pr} \leq 1 / 8$

$\operatorname{Pr}\left[\mid\right.$ median(Y)-COUNT $\mid \geq \varepsilon^{*}$ COUNT]
$=\operatorname{Pr}[\#$ failures in $2 \log (1 / \delta)$ trials $>=$ half of the trials $=\log (1 / \delta)] \leq \delta$ by Chernoff Bound
E.g. probability that more than half of Y 's are out of the ($1 \pm \varepsilon$) range is smaller than δ

Summary of Binary-Join AMS Sketching

- Step 1: Compute random variables: $X_{R}=\sum_{i} f_{R}(i) \xi_{i}$ and $X_{s}=\sum_{i} f_{s}(i) \xi_{i}$
- Step 2: Define $X=X_{R} X_{s}$
- Steps 3 \& 4: Average independent copies of X; Return median of averages

$$
\frac{8 \cdot(2 \cdot S J(R) \cdot S J(S))}{\varepsilon^{2} C O U N T^{2}} \text { copies }
$$

- Main Theorem (AGMS99): Sketching approximates COUNT to within a relative error of ε with probability $\geq 1-\delta$ using space

$$
O\left(\frac{\mathrm{SJ}(\mathrm{R}) \cdot \mathrm{SJ}(\mathrm{~S}) \cdot \log (1 / \delta) \cdot \log N}{\varepsilon^{2} \operatorname{COUNT} T^{2}}\right)
$$

A Special Case: Self-join Size (2 ${ }^{\text {nd }}$ moment)

- Estimate $\operatorname{COUNT}(R \bowtie A R)=\sum_{i} f_{R}^{2}(i) \quad$ (original AMS paper)
- Second moment of data distribution

In this case, $\operatorname{COUNT}=\mathrm{SJ}(\mathrm{R})$, so we get an (ε, δ)-estimate using space only

$$
O\left(\frac{\log (1 / \delta) \cdot \log N}{\varepsilon^{2}}\right)
$$

Best-case for AMS streaming join-size estimation

Question

- Can I estimate some arbitrary portion of the distribution using these techniques?

- E.g. What is the value of $f[4]$?

Trick

- Think of your query as a second distribution S we want to sketch

- Then answer $=f_{R}[4]=\operatorname{COUNT}(R \bowtie S)$

Same for Range Queries

- Think of your query as a second distribution S we want to sketch

Query steam S.A:	2	$3 \quad 4$

Data stream R.A: | 4 | 1 | 2 | 4 | 1 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |

- Then answer $=\sum_{i=2 . .4} f_{R}[\iota]$

