
Stream Analytics

Yannis Kotidis
http://pages.cs.aueb.gr/~kotidis/



Stream Data Challenges

• Conventional (static) algorithms assume that data is 
available when we want it

• In a (pure) stream processing scenario, data arrives in 
streams and if not processed immediately or stored, 
then it is lost forever

• Main challenges: number of streams * velocity
– Data arrives so rapidly that it is not feasible to store it all in 

memory or in a database to query it in real time
– Even if a single stream is slow, there can be thousands of 

such steams in a large-scale application



Example: Gas Turbines Monitoring
[Optique FP7]

• 950 power generating turbines located across 
the globe

– 100K sensors installed

– Hundreds of TB worth of readings

• Detect in real-time undesirable patterns

– Single-stream processing

– Multi-stream processing 

– Live stream + archived stream correlation 



Correlation

Turbine monitoring
• Each Correlation query: 

– Intercepts two streams
– Groups measurements over specified windows
– Joins streams, computes Pearson coefficient:

PE

Pearson(ui , uj )=cov(ui , uj) /( σui
*σuj

) 



Throughput on a 256-core Exareme* 
cluster

5
*http://madgik.github.io/exareme/

0

1000000

2000000

3000000

4000000

5000000

0 200 400 600 800 1000 1200

Th
ro

u
gh

p
u

t 
(t

u
p

le
s/

se
c)

Number of Concurrent Queries (pairs of streams)



Speed-up via LSH

• Corr. between current window and 100K 
archived ones [ISWC 2016, BigData 2016]

6

0

40

80

120

160

1 2 4 8 16 32

Ti
m

e 
(s

ec
)

Number of Exareme Nodes

with RHP without RHP



Data Stream Processing

Data Streams

Processing 
Element (PE)

Streams of Results

Limited Working Space 
(RAM)

Stored continuous 
queries

Ad-hoc queries

Archival 
Storage

Off-line queries Hybrid queries

… …



Static and stream data processing

• E.g. compute correlation between the current state 
of a stream and its past states stored in archive 
storage



Ad-hoc query example

• Queries on a search engine
– Stream of tuples <user, term, time>

• Simplification (for the shake of this running 
example): a user may ask the same query (term) 
once or twice

• Want to compute the fraction of duplicate 
queries issued by a typical user

spark



Sampling from a data stream

• Keep a 10% sample of the stream
– E.g. draw a random integer x in range (0..9). Then 

keep tuple if x = 0  

• For a typical user, we want to compute the 
fraction of duplicate queries from the sample

• Assume a user make s one-time searches and d
duplicate searches
– Correct answer is d/(s+d)



Using the sample

• Look at the sample to determine duplicates

– Let s’ be the number of unique queries, for a user

– Let d’ be the number of duplicates found, for a 
user

– Report d’/(s’+d’)

• Is this correct?



Sampling unique queries

• Let s be the number of unique searches a user 
makes 

• These appear s/10 times in the sample



Sampling duplicate queries

• Let d be the number of duplicate searches a 
user makes 

• A duplicate search appears twice in the 
sample with probability 1/10 * 1/10 = 1/100



Sampling duplicate queries

• A duplicate search appears once in the sample 
with probability 1/10 * 9/10 + 9/10*1/10

• A duplicate search does not appear in the 
sample with probability 9/10 * 9/10

Sample only 1st occurrence Sample only 2nd occurrence



In conclusion

• One-time queries in the sample 
– s’=s/10 + 18d/100 = (10s+18d)/100

• Duplicate queries in the sample
– d’=d/100

• Our estimate is d’/(s’+d’) = d/(10s+18d)

• Notice that this is different that d/(s+d)



Under-estimation

s d
Fraction 
d/(s+d)

Estimate 
d/(10s+18d)

95 5 5% 0.5%

90 10 10% 0.9%

85 15 15% 1.3%

80 20 20% 1.7%

75 25 25% 2.1%

.

.

.

.

.

.

.

.

.

.

.

.

5 95 95% 5.4%



Obtaining a Representative Sample

• As shown a random sample from all users is 
not representative of the average behavior

• Alternative idea: select 10% of the users and 
keep all their queries

– Select these users at random

– Do not store searches from users not in the 
sample



User selection

• Incoming stream tuple <user, term, time>

• Let h(x) be a hash function returning values in 
the range (0..9)

• Keep tuple if h(user) = 0



Maintaining fixed sample size

• In the previous example we keep about 10% of 
the searches

• Recall that stream is (in theory) infinite
– Thus, the sample keeps growing

– Also recall that we do not have control over the input 
stream. System may exhibit bursts of heavy usage

• How to keep the sample size memory bound?



Hashing to the rescue

• Let h(x) return values in the range (0..B-1) for 
some very large value B

• Keep <user,term,time> in the sample if  h(user) ≤ 
k, for some constant k≤B, 
– Store <h(user),user,term,time> in memory
– Possibly index by h(user)

• If memory is full, reduce value of k
– discard samples with h(user)>k



STREAM FILTERING



Applying filters on streams

• Often the selection criterion can be calculated 
from the stream tuple
– Does the query term contain > 5 characters?

• Easy to compute: length(term) > 5

• In other cases the selection criterion involves 
lookup for membership in a set
– Problem becomes hard when this set is very large

– Is the query term a “bad” word



Membership Test: Motivational Example

• Have 1 billion  bad URLs you would 
like to block (n=109)

– each URL is ~50 characters long

– Need >50GB to keep all in main 
memory

• Would like to block a URL request in 
real time if it belongs to the black list



Membership test: Bloom Filters

• Be able to quickly test where key value x is 
part of a set S

• Application: spam filtering

– Have a set S of one billion valid email addresses 
(white list) for spam filtering

– Assume 20 bytes per email address. S does not fit 
in memory

– Want a memory resident data structure that will 
tell us whether an incoming email is spam or not



Spam Filtering

• Bloom filter will check whether an incoming 
email is from a valid email address in the 
white list

• If the answer is no then the email is 
guaranteed to be spam and is thus rejected

• If the answer is yes, the email is with high 
probability in the list
– Cases where the filter says “yes” while the true 

answer is “no” are termed false positives



More applications of Bloom Filters

• Web-crawler: avoid visiting same page twice

• High-traffic on-line music store with millions 
of titles

– only fetch song information when you know the 
song exists in your collection (minimize #queries 
to your db).

BF DB
YES, query DBx?

Answer NO



Problem Statement

• Have a very large set S

• Membership test: is x part of S?

• Want a data structure that
– Is small (can fit in memory, when S cannot)

– Requires a (small) constant time for look-ups

– Guarantees no false negatives

– Introduces a limited number of false positives
• For those cases you can optionally look up x in S in a second 

step
– This works only if answering “yes” happens infrequently



Bloom Filter

• Use bitmap of length m and k hash functions 

– Each hi(x) maps x to [0..m-1]

• Initially, all bits are zero

0 0 00 000000 0 0

0      1       2      3      4      5       6      7       8      9      10    11

(position)

Initially Empty Bloom Filter (m=12)



Training (using 3 hash functions)

• Insert “apples”

– h1("apples") = 3

– h2("apples") = 11 set corresponding bits

– h3("apples") = 10

0 0 10 000001 0 1

BITMAP (after insertion of “apples”)

(position)

0          1       2        3       4       5        6        7        8        9       10     11



Train with more data

• Now insert “oranges”

– h1("oranges ") = 10

– h2("oranges ") = 1

– h3("oranges ") = 5

0 0 10 000001 0 1

BITMAP (apples)

(position)

0 1 10 000011 0 1

BITMAP (apples+oranges)

(position)

collision

0       1       2        3       4       5        6        7        8        9       10     11

0       1       2        3       4       5        6        7        8        9       10     11



Querying: Membership test

• All bits indicated by hi(x) must be set

– h1(“bananas") = 10

– h2(“bananas") = 5

– h3(“bananas") = 7 

0 1 10 000011 0 1

BITMAP

(position)

Is “bananas” part of my data?

0      1       2      3      4      5       6      7       8      9      10    11



What can we guarantee?

• No false negatives (why?)

• Small probability of false positives

(1-(1-1/m)kn)k

• False positive when all k bits are set for an item 
we have not seen
– A bit is set with probability 1/m assuming ideal 

hash function

– (1-1/m)k = probability a bit is not set after one 
insertion

– (1-1/m)kn = probability that a bit is not set after n 
insertions



Running Example

• Have 1 billion  bad URLs you 
would like to block (n=109)

– each URL is ~50 
characters long

– Need >50GB to keep all in 
main memory

• Use a bitmap of 8 billion 
entries (m=8*109)

– hash table takes 1GB of 
memory

• For k=6, probability of false 
positives = (1-(1-
1/(8*109))6*109

)6 =2.1%



Dependency on k

k
False positives 

Probability

1 12%

2 5%

3 3%

4 2.4%

5 2.2%

6 2.1%

7 2.3%

8 2.5%

9 3%

m
o

re
 h

as
h

 f
u

n
ct

io
n

s



Bloom Filters in Distributed Databases

• Suppose we want to join two tables R(A,...) 
and S(A,…) that reside on two distant locations

– Join result can be computed at either location

R(A,…) S(A,…)

Location 1 Location 2



Idea 1: Ship smallest relation to the 
other side

• Suppose S is smaller

• Communication Cost = size(S)

• Can we do better?

R(A,…) S(A,…)

Location 1 Location 2



Idea 2: Step 1

• Build BF on the values of R.A

• Ship BF to location 2

– Recall that size(BF) << size(R)

R(A,…) S(A,…)

Location 1 Location 2

BF



Idea 2: Step 2

• For each S.A value a test using BF whether a exists in R.A column

• Ship to Location 1 those records that pass the BF test
– If a value S.A does not pass the BF test, then S.A does not join for sure 

(why?)

– But we may ship a few records that will not join (false positives)

– Final result is always correct!

R(A,…) S(A,…)

Location 1 Location 2

BFa1,…
a2,…



Extensions

• Support insertions/deletions/multi-set semantics

• Have a grocery store and the following list of 
transactions
– Buy apple from supplier
– Buy apple from supplier
– Sell apple to buyer
– Buy apple from supplier
– Sell apple to buyer

• Do I have apples left in my store? 



Intuition: maintain counters within buckets

0 2 30 000021 0 1

(position)

0      1       2      3      4      5       6      7       8      9      10    11

0 0 10 000001 0 1

BITMAP (after insertion of 1 apple)

(position)

0       1      2      3      4      5      6      7      8      9     10    11

BITMAP (after insertion of 2 oranges)

Stream Neat Implementation: Count-Min sketch



APPROXIMATE COUNTING



Applications of Count-Distinct

• Suppose stream elements are chosen from some 
universal set

• We would like to know how many different 
elements have appeared in the stream
• Number of distinct (src,dest) pairs in traffic that flows through 

my routers?

• How many different users visited Facebook/Twitter this week?

• Also useful when data is locally available for quick 
approximate answers
• How many customers with at least one purchase?

• How many people have visited my web-site?



Document Crawling

• While crawling documents from a web-site we 
count the number of different words that 
appear in them

– Too low or too large may indicate artificial 
pages/spam



• Problem: Estimate the number of distinct items in 
a stream of values from [0,…, n-1]

Distinct Value Counting: Flajolet-Martin Sketch

Data stream:       3   0   5   3   0   1   7   5   1   0   3   7

Number of distinct values:  ?



Number of Distinct Values?

53 36 37 41 41 60 7 38 45 82 21 53 32 93 62 73 73 92 65 6 54 1 96 52 18 79 0 36 30 5 
33 24 66 61 83 71 45 97 91 25 48 67 22 7 7 83 49 56 16 80 90 23 70 25 57 64 55 9 25 
25 3 68 19 21 60 73 33 5 64 36 96 97 11 46 95 81 9 12 63 9 2 89 30 99 51 78 46 3 65 12 
51 96 80 57 60 46 34 22 82 95 57 54 95 52 34 60 65 24 26 59 94 67 71 30 55 45 75 35 
82 52 27 42 73 77 93 36 50 10 8 80 87 48 55 76 91 26 99 3 20 45 1 40 85 71 99 8 56 49 
88 58 14 84 35 15 92 85 21 40 66 11 59 65 12 10 88 33 92 65 70 10 89 4 88 80 69 14 92 
13 65 75 94 81 60 42 35 31 54 14 44 14 86 0 32 28 47 89 81 61 84 18 77 19 46 48 9 51 
63 69 83 15 7 53 58 39 15 64 3 57 79 2 87 85 71 3 29 26 0 51 39 17 60 59 34 77 26 70 
91 20 68 50 93 39 38 55 27 3 89 53 15 5 39 34 82 81 36 59 7 73 18 43 65 1 26 72 76 44 
75 36 18 60 79 14 85 13 66 34 14 25 1 39 72 1 77 22 54 99 62 19 46 29 52 27 57 80 60 
76 48 92 47 33 23 7 85 45 67 59 31 17 15 41 44 51 41 40 16 1 35 41 49 51 64 4 21 11 
85 45 81 8 22 79 80 24 31 17 74 80 86 49 60 78 90 39 79 43 16 37 98 9 76 40 0 49 72 
34 95 4 33 28 97 16 7 86 11 99 25 68 97 64 42 10 2 88 2 37 92 42 55 18 58 23 52 15 45 
71 61 32 84 11 37 24 85 23 72 79 8 98 48 96 35 64 78 37 55 4 2 72 4 36 76 9 66 99 27 
20 75 60 95 23 18 87 47 71 44 26 75 11 5 1 83 11 81 46 32 28 15 83 17 70 31 92 80 2 
76 22 40 5 91 66 18 84 69 78 80 25 69 98 93 31 62 95 74 91 94 25 2 1 65 5 73 77 11 38 
96 21 39 43 56 11 85 45 79 47 72 35 47 40 2 61 41 97 68 59 71 29 17 37 20 9 51 63 69 
83 15 7 53 58 39 15 64 3 57 79 2 87 85 71 3 29 26 0 51 39 17 60 59 34 77 26 70 91 20 
68 65 19 40 53 81 65 22 64 30 62 67 28 77 45 14 95 71 5 32 62 47 23 57 60 87 62 31 48 
54 7 85 13 49 74 0 24 68 9 88 85 21 60 38 47 71 84 87 82 74 59 67 97 31 33 27 47 13 6 
68 75 53 63 68 18 64 98 59 90 23 53 66 2 87 88 28 48 98 6 97 90 13 49 7 7 21 25 29 62 
9 25 64 30 70 19 67 16 2 89 61 45 23 25 63 29 12 54 5 49 39 43 56 3 8



How hard is it?

• Naïve: bit array B of size n
– Upon seeing item i set B[i]=1

– Answer is #1s in B[]

• Similar ideas: store items in a hash-table

• Does not work for large domains or for multiple instances
– Count number of distinct source/dest IPs seen in a router

• There are 264 possible pairs. Impractical to maintain one bit of 
each one of them

– For each of my web-pages count the number of different users/IP-
addresses that have visited that page
• Would also like to have an estimate for groups or pages and the web-site as a whole



Distinct Value Counting [FM85]

• BITMAP array of B of L= O(logn) bits initialized 
to zero

• Hash function h(x) maps incoming values x in 
[0,n-1]  uniformly across [0, 2L-1]

• Example:

– L=8 bits

– Domain of h(x) is [0..255]



Distinct Value Counting [FM85]

• Let  lsb(y) denote the position of the least-
significant 1 bit in the binary representation of  y 
(i.e. rightmost bit set)

– A value x is mapped to lsb(h(x))

• Example

– lsb(00100100) = 2

– lsb(01011101) = 0

• For each incoming value x

– set  BITMAP[lsb(h(x))] = 1



0 0 0 000

EXAMPLE

Data stream:       3   0   5   3   0   1   7   5   1   0   3   7

Number of distinct values:  5

x = 3 h(3) =  101110 lsb(h(3)) = 1

0 0 0 110

BITMAP

0 0 0 010

BITMAP
5      4      3        2      1       0

h(0) =  011010

h(1)  =  101101

h(7) =  001001

h(5) =  100011

ASSUME

FINAL BITMAP?

5      4      3        2      1       0



How do we use it?

• What is the probability that BITMAP[0]=1?

– Recall that x maps uniformly to h(x)

– Bit 0 is set to 1 if h(x)= ……..1

– This happens ~half of the times (for the other half ls-bit 

is zero)

– BITMAP[0] is set d/2 times (on expectation)

(d is the number of distinct items that we are trying to figure 

out)



Next bit

• What is the probability that BITMAP[1]=1?

– Bit 1 is set to 1 if h(x)= ……..10

– BITMAP[1] is set d/4 times during counting



Next bits

• With similar arguments

• P[BITMAP[i]=1] = min(1,d/2i)

• So we expect ~log(d) rightmost bits in BITMAP 

to be set with high probability



Estimate

• Let  R = position of rightmost zero in BITMAP

– FM show that E[R]=log(φd) , φ=0.7735

– Thus, we estimate d=(2R)/φ

fringe of 0/1s around  
log(d)

0 0 0 00 1

BITMAP

0 00 111 1 11111

position << log(d)position >> log(d)

0L-1
R



Back to our example

Data stream:        3   0   5   3   0   1   7   5   1   0   3   7

Number of distinct values:  5

0 0 0 110

BITMAP

R=2

Estimate: d=(22)/0,7735=5.17

5      4      3        2      1       0



WARNING

• This type of algorithms have good expected
behavior

– But results may vary significantly between runs

h(1) =  010100

What if

0 0 0 111

NEW BITMAP

New estimate = 2^3/0.7735=10.3

Work around:
- use multiple BITMAPS, each with a different hash function
- combine estimates

R=3

5      4      3        2      1       0



Multiple bitmaps

• Use k*l bitmaps, each with a different hash 
function
– Consider them as k groups of l bitmaps 

• From each group of l bitmaps take the average of 
their estimates
– Occasionally, some of these averages will be affected 

by overestimation (previous example)

• Return the median of the produced k averages



Distributed Applications

• FM-sketches are 
composable

• How many distinct IPs 
transmit over our 
network?

• Compute FM sketch at 
each router

• Combine (by OR-ing) 
corresponding bitmaps

src



ESTIMATING MOMENTS



Generalized Counting Problem

• Computing “moments,” involves the 
distribution of frequencies of different 
elements in the stream

• Let mi be the number of occurrences of the ith

element 

• The kth-order moment (or just kth moment) of 
the stream is the sum over all i of (mi)

k



Examples

• Recall kth moment = Σi(mi)
k

• 0th moment = #distinct elements in the stream

– Solved with FM SKETCH

• 1th moment = sum of stream elements

– Easy, just a counter

• 2nd moment = Σi(mi)
2



Example of second moment

ma = 5

mb = 4

mc = 3

md = 3

a, b, c, b, d, a, c, d, a, b, d, c, a, a, b

2nd moment = 25+16+9+9=59

stream



Second moment as a surprise index 
(skewed distributions)

ma = 5

mb = 4

mc = 3

md = 3

a, b, c, b, d, a, c, d, a, b, d, c, a, a, b

S=2nd moment = 25+16+9+9=59

stream 1

a, b, a, a, d, a, c, a, a, a, a, a, a, a, a

S=2nd moment = 144+1+1+1=147

stream 2ma = 12

mb = 1

mc = 1

md = 1



• Let X=(X.element,X.value) be a variable
• Pick a random position i in the stream

– X.element = element at position i
– X.value = a counter for item X.element from position i until 

the end of the stream

• E.g. for i=3, X.element = c, X.value = 3 at the end of the 
stream

AMS technique
(by Alon, Matias and Szegedy, 1996)

a, b, c, b, d, a, c, d, a, b, d, c, a, a, b

stream



Example with 3 variables

a, b, c, b, d, a, c, d, a, b, d, c, a, a, b

stream

• Assume we pick locations 3,8 and 13

• At the end of the stream we have

– X1=(c,3)

– X2=(d,2)

– X3=(a,2) 

CLAIM: n(2X.value-1) is an estimate for 2nd moment S

X1 yields: 15(2*3-1)=75
X2 yields: 15(2*2-1)=45
X3 yields: 15(2*2-1)=45

AVG = 55
True S=59



Notation

a, b, c, b, d, a, c, d, a, b, d, c, a, a, b

stream

• Let ct = number of times record at time t 
appears from that time on 

• c1=ma, c2=mb, c4=mb-1,…, c6=ma-1, c14=1

c6 = 4 c14 = 1



Observation

• Recall that for X we pick a random position i
and start counting the observed element from 
that time on-ward

• Let Y=n(2X.value-1)

• Claim E[Y] = S

a, b, c, b, d, a, c, d, a, b, d, c, a, a, b

stream
1 2 3



Proof

• Average over all possible positions i that can 
be used to initiallize X

• E[Y] = 1/n * Σi [n(2ci-1)] = Σi [(2ci-1)] 

• We will rewrite the sum by iterating over all 
elements a,b,c,….



Consider some element a

• Σa(2c-1) = Σa[1+3+5…+(2ma-1)]= Σa(ma)2

• Thus, E[Y] = Σa (ma)2 = S

a ...a...                          a            a

1st occurrence of a
c=ma

Last occurrence of a
c=1, 2*1-1=1

2nd to last occurrence of a
c=2, 2*2-1=3



Complication

• Since the stream is infinite, n keeps increasing

• How to maintain a random sample of size s 
(locations that define the X variables)?
– If we pick locations too early, sample won’t be 

representative of recent behavior

– If we wait too long, then we will have few 
variables to answer queries

• Solution: reservoir sampling 



Reservoir sampling

• Input n elements (n keeps increasing)

• Want a fixed size sample (assume size = s)
– This is your “reservoir” of sampled items

• Solution
– Choose the first s elements, keep them in memory

– When the nth element arrives (n > s), choose it 
with probability s/n
• If chosen, throw away a random item from the sample 



FREQUENT ITEM COUNTING



FREQUENT ITEM COUNTING



Example

• Example: given a stream of tweets, find the most 
popular hash tags

• Does not make sense to keep counters from a 
very distance past

• Mechanisms to concentrate on the most recent 
trends
– Sliding windows
– Exponential decay



10 secs

Sliding windows

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

(infinite) stream

These tuples will 
expire and won’t 
count in the next 
invocation

10 secs

These tuples will 
enter the 
window in the 
next invocation

Current window of 120 secspast future

present



Spark (brute-force) implementation

val lines = ssc.socketTextStream("localhost", 9999)

val words = lines.flatMap(_.split(" "))

//filter hashtags only

val hashtags = words.filter(w=>w.contains("#"))

//count all hashtags in the last 120 seconds

val winh = hashtags.window(Seconds(120))

//iterate over accumulated hashtags

winh.foreachRDD { (rdd: RDD[String], time: Time) =>

val spark = SparkSession.builder.config(rdd.sparkContext.getConf).getOrCreate()

// Convert RDD[String] to RDD[case class] to DataFrame

val wordsDataFrame = rdd.map(w => Record(w)).toDF()

// Creates a temporary view using the DataFrame

wordsDataFrame.createOrReplaceTempView("words")

// Do word count on table using SQL and print it

val wordCountsDataFrame =

spark.sql("select word, count(*) as total from words group by word order by total DESC")

println(s"========= $time =========")

wordCountsDataFrame.show(20,false)

This computation is repeated
for all RDD data accumulated 
within a window



Sample Output



Issues with this scheme

• Assume window = 1 week

• Recall our example of counting hash tags

• The number of hash tags in all tweets made worldwide is 
too large

• We are only interested in frequent hashtags

• It is not memory-friendly to keep counters for all hash-tags 
seen in the current window (especially for the infrequent 
ones)



Decaying windows

• Sliding windows make sharp distinction between 
recent elements and those in the distant past

– weight = 1, if recent (within specified window)

– weight = 0, otherwise

• Decaying windows

– weigh recent elements more heavily

– older elements receive monotonically smaller weights



Exponentially Decaying Windows

• Given a stream of numerical items a1,a2,….at

• Assume we would like to compute their SUM

• For a small constant c<<1, compute 



Spread of weights

a, b, c, b, d, a, c, d, a, b, d, c, a, a, b

11-c

(1-c)2

t=now

(1-c)14

1/c

Sum of weights = Σ(1-c)t =1/c 1

past

practically zero



Counting using Decaying Windows

• Keep a counter for each item seen

– We will discard counters for infrequent items 
later-on

• Upon seeing an item a

– Multiply counters for all items by (1-c)

– Then, add 1 to the counter for a

• If no such counter exists, initialize it



Pruning

• Say we want frequent items with counts > s

– drop counters smaller than s

• Recall that weights sum to 1/c

• There can be at most 1/sc counters exceeding 
the threshold

• E.g. for s=1/2, c=1/1000, there can be at most 
2000 counters in use



LINEAR PROJECTIONS



Linear-Projections

• Seek to build a small-space summary for distribution vector f(i) (i=1,..., N) seen as a 
stream of i-values

• Basic Construct: Randomized Linear Projection of f() =  project onto inner/dot 
product of  f-vector

Data stream:  3,  1,  2,  4,  2,  3,  5,  . . . 54321 22  ++++

Data stream:       3,  1,  2,  4,  2,  3, 5,  . . .

f(1)     f(2)    f(3)    f(4)   f(5)

11 1

2 2

= iiff  )(, Where      = vector of random values from an 
appropriate distribution





Example: Binary-Join COUNT Query

• Problem: Compute answer for the query COUNT(R       A S)

• Example:

• Exact solution: too expensive, requires O(N) space!

– N = sizeof(domain(A))

Data stream R.A:  4   1   2   4   1   4
1

2

0

3

21 3 4

:(i)fR

Data stream S.A:  3   1   2   4   2   4

2
:(i)fS

2
1

21 3 4

1

 =
i SRA (i)f(i)fS)      COUNT(R

= 10    (2 + 2 + 0 + 6)



AMS Sketching Technique [AMS96]

• Key Intuition: Use randomized linear projections of f() to define random 
variable X such that:
– X is easily computed over the stream (in small space)
– E[X] = COUNT(R      A S) 
– Var[X] is small 

• Basic Idea:
– Define a family of 4-wise independent {-1, +1} random variables ξι : i=1..,N
– Pr[ξι = +1] = Pr[ξι = -1] = 1/2

• Expected value of each ξι,  E[ξι] = 0

– Variables ξι are 4-wise independent
• E[ξ1 ξ2 ξ3 ξ4]=E[ξ1]*E[ξ2]*E[ξ3]*E[ξ4]=0 (expected value of product of 4 distinct ξι s is zero)

• Variables ξι can be generated using pseudo-random generator using only 
O(log N) space (for seeding)!

Used to provide probabilistic error guarantees 

(e.g., actual answer is 10±1 with probability 0.9)



Summary Construction

• Compute random variables:                          and 

–Simply add ξι to XR (resp. XS) whenever the i-th value is observed in the 

R.A (resp. S.A) stream

• Define X = XRXS to be estimate of COUNT query

• Example:

= i iRR (i)fX  = i iSS (i)fX 

Data stream R.A:  4   1   2   4   1   4

Data stream S.A:  3   1   2   4   2   4

1
2

0

21 3 4

:(i)fR

1
2

21 3 4

:(i)fS
2

1

4RR XX +=

1SS XX +=

421R 32X  ++=

3

4321S 2X  2+++=



Binary-Join AMS Sketching Analysis 

• Expected value of X =  COUNT(R     AS)

• Using 4-wise independence, possible to show that

• Where                                   is  self-join size of R  (2nd moment)

SJ(S) SJ(R)2Var[X] 

= i

2
R(i)f SJ(R)

]XE[XE[X] SR =

](i)f(i)fE[
i iSi iR  = 

])(i'f(i)fE[](i)f(i)fE[ i'i'i iSR

2

i iSR   
+=

 =
i SR (i)f(i)f

0

1



Tail Inequalities 

• General bounds on tail probability of a random variable (that is, probability that a random 
variable deviates far from its expectation)

• Basic Inequalities: Let X be a random variable with expectation μ and variance Var[X]. Then 
for any ε>0 it holds thank


 

Probability
distribution

Tail probability

Chebyshev:
22

][
)|Pr(|




XVar
X −



Boosting Accuracy

• Chebyshev’s Inequality:

• Boost accuracy to ε by averaging over several (=s) independent copies of X 
(reduces variance)

• By Chebyshev: 

S)      COUNT(RE[X]E[Y] ==

22 E[X] ε

Var[X]
εE[X])|E[X]-XPr(| 

8

1

COUNT ε

Var[Y]
COUNT)ε|COUNT-YPr(|

22


x x x Average y

copies
COUNT ε

SJ(S))SJ(R)(28
s

22


=

8

COUNT ε

s

Var[X]
Var[Y]

22

=



Boosting Confidence

• Boost confidence to 1-δ by taking median of 2log(1/δ) independent copies of Y

• Each  Y =  Bernoulli Trial that fails with probability ≤ 12.5%. With 87.5% it succeeds to provide 
estimate within (1± ε)

Pr[|median(Y)-COUNT|≥ ε*COUNT]

= Pr[ # failures in  2log(1/ δ) trials >= half of the trials = log(1/δ) ] ≤ δ by Chernoff Bound

y

y

y

ε)COUNT(1− ε)COUNT(1+COUNT

median
δ1Pr −

1/8Pr 

2log(1/δ)
copies

“FAILURE”:

E.g. probability that more than half of Y’s are out of the (1±ε) range is smaller than δ



Summary of Binary-Join AMS Sketching

• Step 1: Compute random variables:                        and 

• Step 2: Define X= XRXS

• Steps 3 & 4: Average independent copies of X; Return median of 
averages

• Main Theorem (AGMS99): Sketching approximates COUNT to within 
a relative error of ε with probability ≥1 –δ using space

= i iRR (i)fX  = i iSS (i)fX 

22 COUNT ε

SJ(S))SJ(R)28  (

x x x

x x x y

x x x

copies

copies

Average y

Average

Average y

median

)
COUNT ε

logN)log(1/ SJ(S)SJ(R)
O(

22

 

2log(1/δ )



A Special Case:  Self-join Size (2nd moment)

• Estimate COUNT(R     A R)                          (original AMS paper)

– Second moment of data distribution

In this case,  COUNT = SJ(R), so we get an (,)−estimate using space only

Best-case for AMS streaming join-size estimation

)
ε

logN)log(1/
O(

2



= i

2
R (i)f



Question

• Can I estimate some arbitrary portion of the 
distribution using these techniques?

• E.g. What is the value of f[4]? 

Data stream R.A:  4   1   2   4   1   4
1

2

0

3

21 3 4

:(i)fR



Trick

• Think of your query as a second distribution S 
we want to sketch

• Then answer = fR[4] = COUNT(R   S)  

Data stream R.A:  4   1   2   4   1   4
1

2

0

3

21 3 4

:(i)fR

Query steam S.A:  4
1

21 3 4

:(i)fS



Same for Range Queries

• Think of your query as a second distribution S 
we want to sketch

• Then answer = Σi=2..4 fR[ι] 

Data stream R.A:  4   1   2   4   1   4
1

2

0

3

21 3 4

:(i)fR

Query steam S.A:  2   3   4
1

21 3 4

:(i)fS
11


