® L‘\,
OIKONOMIKO =Sl ATHENS UNIVERSITY
MANEMIETHMIO OF ECONOMICS

AOHNAON & AND BUSINESS

Stream Analytics

Yannis Kotidis
http://pages.cs.aueb.gr/~kotidis/

Stream Data Challenges

e Conventional (static) algorithms assume that data is
available when we want it

* |n a (pure) stream processing scenario, data arrives in
streams and if not processed immediately or stored,
then it is lost forever

 Main challenges: number of streams * velocity

— Data arrives so rapidly that it is not feasible to store it all in
memory or in a database to query it in real time

— Even if a single stream is slow, there can be thousands of
such steams in a large-scale application

Example: Gas Turbines Monitoring
[Optique FP7]

* 950 power generating turbines located across
the globe

— 100K sensors installed
— Hundreds of TB worth of readings

* Detect in real-time undesirable patterns
— Single-stream processing
— Multi-stream processing
— Live stream + archived stream correlation

. ~

Turbine monitoring

* Each Correlation query:
— Intercepts two streams
— Groups measurements over specified windows
— Joins streams, computes Pearson coefficient:

Pearson(u;, u;)=cov(u;, u) /(o, ouj) 1 @C

Correlation

Throughput on a 256-core Exareme™
cluster

5000000

4000000

3000000

2000000

Throughput (tuples/sec)

1000000

0 T T T T T T 1
0 200 400 600 800 1000 1200

Number of Concurrent Queries (pairs of streams)

*http://madgik.github.io/exareme/

Speed-up via LSH

e Corr. between current window and 100K
archived ones [ISWC 2016, BigData 2016]

>-with RHP —e—without RHP

160 4

120

Time (sec)

I
o

9 : & ; & ; —3

o

1 2 4 8 16 32
Number of Exareme Nodes

Data Stream Processing

Limited Working Space
(RAM) ueries

Data Streams Streams of Results

O ee—— I
= Processing =
Element (PE)

Ad-hoc queries

Off-line queries - Archival Hybrid queries

Storage

Static and stream data processing

 E.g. compute correlation between the current state

of a stream and its past states stored in archive
storage

[LYUL LY

Ad-hoc query example

spark

* Queries on a search engine
— Stream of tuples <user, term, time>

* Simplification (for the shake of this running
example): a user may ask the same query (term)
once or twice

* Want to compute the fraction of duplicate
gueries issued by a typical user

Sampling from a data stream

e Keep a 10% sample of the stream

— E.g. draw a random integer x in range (0..9). Then
keep tupleif x=0

* For a typical user, we want to compute the
fraction of duplicate queries from the sample

e Assume a user make s one-time searches and d
duplicate searches

— Correct answer is d/(s+d)

Using the sample

* Look at the sample to determine duplicates
— Let s’ be the number of unique queries, for a user

— Let d’ be the number of duplicates found, for a
user

— Report d’/(s’+d’)

* |s this correct?

Sampling unique queries

* Let s be the number of unique searches a user
makes

* These appear s/10 times in the sample

Sampling duplicate queries

* Let d be the number of duplicate searches a
user makes

* A duplicate search appears twice in the
sample with probability 1/10 * 1/10 =1/100

Sampling duplicate queries

* A duplicate search appears once in the sample

with probability 1/10 * 9/10 + 9/10*1/10

\])
f |

Sample only 1t occurrence Sample only 2" occurrence

* A duplicate search does not appear in the
sample with probability 9/10 * 9/10

In conclusion

One-time queries in the sample
— s’=s/10 + 18d/100 = (10s+18d)/100

Duplicate queries in the sample
— d’=d/100

Our estimate is d’/(s’+d’) = d/(10s+18d)

Notice that this is different that d/(s+d)

90
85
80
75

Under-estimation

Fraction
d/(s+d)
5%

10
15
20
25

95

10%
15%
20%
25%

95%

d/(10s+18d)
0.5%
0.9%
1.3%

1.7%
2.1%

5.4%

Obtaining a Representative Sample

* As shown a random sample from all users is
not representative of the average behavior

Alternative idea: select 10% of the users and
keep all their queries

— Select these users at random

— Do not store searches from users not in the
sample

User selection

* [ncoming stream tuple <user, term, time>

* Let h(x) be a hash function returning values in
the range (0..9)

e Keep tuple if h(user) =0

Maintaining fixed sample size

* |n the previous example we keep about 10% of
the searches

* Recall that stream is (in theory) infinite
— Thus, the sample keeps growing

— Also recall that we do not have control over the input
stream. System may exhibit bursts of heavy usage

* How to keep the sample size memory bound?

Hashing to the rescue

* Let h(x) return values in the range (0..B-1) for
some very large value B

* Keep <user,term,time> in the sample if h(user) <
k, for some constant k<B,

— Store <h(user),user,term,time> in memory
— Possibly index by h(user)

* If memory is full, reduce value of k
— discard samples with h(user)>k

STREAM FILTERING

Applying filters on streams

e Often the selection criterion can be calculated
from the stream tuple

— Does the query term contain > 5 characters?
* Easy to compute: length(term) > 5

* |In other cases the selection criterion involves
lookup for membership in a set

— Problem becomes hard when this set is very large
— Is the query term a “bad” word

Membership Test: Motivational Example

Websites

Have 1 billion bad URLs you would
like to block (n=10°)

— each URL is ~50 characters long

— Need >50GB to keep all in main
memory

Would like to block a URL request in
real time if it belongs to the black list

Membership test: Bloom Filters

* Be able to quickly test where key value x is
part of asetS

e Application: spam filtering
— Have a set S of one billion valid email addresses
(white list) for spam filtering

— Assume 20 bytes per email address. S does not fit
In memory

— Want a memory resident data structure that will
tell us whether an incoming email is spam or not

Spam Filtering

* Bloom filter will check whether an incoming
email is from a valid email address in the
white list

e |f the answer is no then the email is
guaranteed to be spam and is thus rejected

* |f the answer is yes, the email is with high
probability in the list

— Cases where the filter says “yes” while the true
answer is “no” are termed false positives

More applications of Bloom Filters

 Web-crawler: avoid visiting same page twice

* High-traffic on-line music store with millions
of titles
— only fetch song information when you know the

song exists in your collection (minimize #queries
to your db).

X? YES, query DB

—— | BF

Answer NO

Problem Statement

 Have a very large set S
* Membership test: is x part of S?

 Want a data structure that
— Is small (can fit in memory, when S cannot)
— Requires a (small) constant time for look-ups
— Guarantees no false negatives

— Introduces a limited number of false positives

* For those cases you can optionally look up xin S in a second
step

— This works only if answering “yes” happens infrequently

Bloom Filter

* Use bitmap of length m and k hash functions
— Each h,(x) maps x to [0..m-1]
* |nitially, all bits are zero

Initially Empty Bloom Filter (m=12)

oo (o (0 0 (0 |0 |0 (O |JO |O |O

o 1 2 3 4 5 6 7 8 9 10 11
(position)

Training (using 3 hash functions)

oV
ﬁ Insert “apples”
—h,("apples”) =3
— h,("apples") =11 = set corresponding bits

— hy("apples”) =10 _

BITMAP (after insertion of “apples”)

o o o 1 (0 O (O (O (O O |1 |1

0 1 2 3 4 5 6 7 8 9 10 11

(position)

Train with more data

BITMAP (apples)

O |0 |0 1 O (0 {0 (O O |0 1 1
o 1 2 3 4 5 6 7 8 9 10 11

(position)

€ Now insert “ ”
—h,("oranges ") =
— h,("oranges ") =

— hs("oranges ") =

BITMAP (apples+oranges) collision

o (1 |0 (1 {0 |12 (O O |O (O |1 |1

o 1 2 3 4 5 6 7 8 9 10 11

(position)

Querying: Membership test

* All bits indicated by h (x) must be set

—h,(“ ")=10
hybananast) =
— hy(” ') =7

BITMAP

o1 0 (1 0 1 (O (O (O O |1 |1

o 1 2 3 4 5 6 7 8 9 10 11

(position)

What can we guarantee?

* No false negatives (why?)

* Small probability of false positives
(1-(1-1/m)<n)k

* False positive when all k bits are set for an item

we have not seen

— A bit is set with probability 1/m assuming ideal
hash function

— (1-1/m)* = probability a bit is not set after one
Insertion

— (1-1/m)k = probability that a bit is not set after n
Insertions

Running Example

Websnes

Have 1 billion bad URLs you
would like to block (n=10%)

— each URLis ~50
characters long

— Need >50GB to keep all in
main memory

Use a bitmap of 8 billion
entries (m=8*10°)
— hash table takes 1GB of
memory

For k=6, probability of false
positives = (1- (1-
1/(8*109))6"‘10)6 =2.1%

Dependency on k

False positives
Probability

1 12%
2 5%
3 3%
4 2.4%
5 2.2%
6

7

8

9

2.1%

2.3%

2.5%
3%

more hash functions

Bloom Filters in Distributed Databases

e Suppose we want to join two tables R(A,...)
and S(A,...) that reside on two distant locations

— Join result can be computed at either location

O O
N S
R(A,..) S(A...)
R R

Location 1 Location 2

ldea 1: Ship smallest relation to the
other side

e Suppose S is smaller
* Communication Cost = size(S)
 Can we do better?

)
)

R(A,.) ~ (aammmm 5(A.)

(
(

Location 1 Location 2

ldea 2: Step 1

 Build BF on the values of R.A

e Ship BF to location 2
— Recall that size(BF) << size(R)

)

R(A,..)

(

Location 1

=) Bl =)

)

S(A,..)

(

Location 2

ldea 2: Step 2

* For each S.A value a test using BF whether a exists in R.A column
* Ship to Location 1 those records that pass the BF test

— |If a value S.A does not pass the BF test, then S.A does not join for sure
(why?)

— But we may ship a few records that will not join (false positives)

=

S(A,..)

R

Location 1 Location 2

— Final result is always correct!

)

R(A,.) (e

(

Extensions

* Support insertions/deletions/multi-set semantics

 Have a grocery store and the following list of
transactions

— Buy apple from supplier
— Buy apple from supplier
— Sell apple to buyer
— Buy apple from supplier
— Sell apple to buyer

* Do | have apples left in my store?

Intuition: maintain counters within buckets

-
’ BITMAP (after insertion of 1 apple)

[

i

Stream

o (0 |0 |1 |O |O |O |O |O |O |1 |1

0 1 2 3 4 5 6 7 8 9 10 11
(position)

BITMAP (after insertion of 2 oranges)

o (2 |0 (1 |O |2 |0 |O |O (O |3 |1

0O 1 2 3 4 5 6 7 8 9 10 11
(position)

Neat Implementation: Count-Min sketch

APPROXIMATE COUNTING

Applications of Count-Distinct

* Suppose stream elements are chosen from some
universal set

 We would like to know how many different
elements have appeared in the stream

e Number of distinct (src,dest) pairs in traffic that flows through
my routers?

e How many different users visited Facebook/Twitter this week?
e Also useful when data is locally available for quick
approximate answers
e How many customers with at least one purchase?
e How many people have visited my web-site?

Document Crawling

* While crawling documents from a web-site we
count the number of different words that
appear in them

— Too low or too large may indicate artificial
pages/spam

Distinct Value Counting: Flajolet-Martin Sketch

e Problem: Estimate the number of distinct items in
a stream of values from [O,..., n-1]

Data stream: 30530175 1¢0317

Number of distinct values: ?

Number of Distinct Values?

5336374141607384582215332936273739265654196521879036305
33246661837145979125486722778349561680902370255764559 25
2536819216073335643696971146958191263928930995178463 6512
519680576046 34228295575495523460652426599467713055457535
825227427377933650108808748557691269932045140857199 85649
8858148435159285214066115965121088339265701089488838069 1492
13657594816042353154144414860322847898161841877194648951
6369831575358391564357792878571329260513917605934772670
91206850933938552738953155393482813659773184365126727644
75361860791485136634142513972177225499621946295227578060
76489247 33237854567593117154144514140161354149516442111
8545818227980243117748086496078903979431637989764004972
349543328971678611992568976442102882379242551858 23521545
716132841137248523727989848963564783755427243676966299 27
2075609523188747714426751151831181463228158317703192802
76224059166188469788025699893316295749194252165573771138
96213943561185457947723547402614197685971291737209516369
8315753583915643577928785713292605139176059347726709120
68 6519405381652264306267287745149571532624723576087623148
54785134974024689888521603847718487827459679731332747136
68 755363681864985990235366287882848986979013497 721252962
9256430701967 16289614523256329125454939435638

How hard is it?

* Naive: bit array B of size n
— Upon seeing item i set B[i]=1
— Answer is #1s in B[]

e Similar ideas: store items in a hash-table

* Does not work for large domains or for multiple instances
— Count number of distinct source/dest IPs seen in a router

* There are 2% possible pairs. Impractical to maintain one bit of
each one of them

— For each of my web-pages count the number of different users/IP-
addresses that have visited that page
* Would also like to have an estimate for groups or pages and the web-site as a whole

Distinct Value Counting [FM85]

e BITMAP array of B of L= O(logn) bits initialized
to zero

e Hash function h(x) maps incoming values x in
[0,n-1] uniformly across [0, 2--1]

e Example:
— L=8 bits
— Domain of h(x) is [0..255]

Distinct Value Counting [FM85]

e Let Isb(y) denote the position of the least-
significant 1 bit in the binary representation of y
(i.e. rightmost bit set)

— A value x is mapped to Isb(h(x))
e Example

— |sb(00100100) = 2

— 1sh(01011101) =0
e For each incoming value x

— set BITMAP[Isb(h(x))] = 1

EXAMPLE

Data stream: 3053017510317

Number of distinct values: 5

BITMAP
5 4 3 2 1 0
x=3 —> h(3)= 101110 —> Isb(h(3)) =1 olofofof1]o

N, =

FINAL BITMAP?

ASSUME
h(0) = 011010

h(1) = 101101
_ BITMAP
h(5) = 100011 c 4 3 2 1 0o

h(7)= 001001 olofofof1]1

How do we use it?

e What is the probability that BITMAP[0]=17

— Recall that x maps uniformly to h(x)

— Bit O is setto 1 if h(x)=........ 1
— This happens ~half of the times (for the other half Is-bit
is zero)

— BITMAP[O] is set d/2 times (on expectation)

(d is the number of distinct items that we are trying to figure
out)

Next bit

 What is the probability that BITMAP[1]=17

— Bit 1issetto 1if h(x)=........ 10
— BITMAP[1] is set d/4 times during counting

Next bits

* With similar arguments
* P[BITMAPJ[i]=1] = min(1,d/2})

* So we expect ~log(d) rightmost bits in BITMAP
to be set with high probability

e Let R = position of rightmost zero in BITMAP

Estimate

— FM show that E[R]=log(¢d) , $=0.7735
— Thus, we estimate d=(28)/d

. BITMAP

L-1 RITH 0

olo|o|o o |1|ofz1dofa| 2 fafa)1]|1] 1|1

\ _J/ \ _/
Y Y

position >> log(d)

fringe of 0/1s around

log(d)

position << log(d)

Back to our example

Data stream:

305301751037

Number of distinct values: 5

BITMAP
5 4 3 2 1 0

0

Oj0|JO0O|1] 1

R=2
Estimate: d=(22)/0,7735=5.17

WARNING

* This type of algorithms have good expected
behavior

— But results may vary significantly between runs

. NEW BITMAP
What if 5 4 3 2 1 0
h(1) = 010100 010|0f[1]1]1

R=3
New estimate = 2243/0.7735=10.3

Work around:
- use multiple BITMAPS, each with a different hash function
- combine estimates

Multiple bitmaps

* Use k*| bitmaps, each with a different hash
function
— Consider them as k groups of | bitmaps

* From each group of | bitmaps take the average of
their estimates

— Occasionally, some of these averages will be affected
by overestimation (previous example)

* Return the median of the produced k averages

Distributed Applications

FM-sketches are
composable

How many distinct IPs
transmit over our
network?

Compute FM sketch at ‘/
each router >
Combine (by OR-ing)

corresponding bitmaps

Src

=

ESTIMATING MOMENTS

Generalized Counting Problem

 Computing “moments,” involves the
distribution of frequencies of different
elements in the stream

* Let m. be the number of occurrences of the it
element

* The kth-order moment (or just k' moment) of
the stream is the sum over all i of (m)X

Examples
Recall k' moment = Z,(m.)*

0t moment = #distinct elements in the stream
— Solved with FM SKETCH

1th moment = sum of stream elements

— Easy, just a counter

2"d moment = Z,(m,)?

Example of second moment

a,b,c,b,d,a,c,d a b,d,c a ab
—

stream

Second moment as a surprise index

(skewed distributions)

a,b,c,b,d,a,c,d a b,d,ca ab
—

m,=5 stream 1
my, =4

=2nd = 25+16+9+9=
m =3 ‘ S moment = 25+16+9+9=59
my=3

a,b,a,a,d, acaaa,a,ga,a,a,a?a
—

m, =12 stream 2
my, =1

m.=1 ‘ S=2"d moment = 144+1+1+1=147

my=1

AMS technique

(by Alon, Matias and Szegedy, 1996)

a,b,c,b,d,a,c,d a b,d,c a a,b
| O O O >

stream

* Let X=(X.element,X.value) be a variable

* Pick a random positioniin the stream
— X.element = element at position i

— X.value = a counter for item X.element from position i until
the end of the stream

e E.g.fori=3, X.element = ¢, X.value = 3 at the end of the
stream

Example with 3 variables

a,b,c,b,d,a,c,d a b,d,c a ab
! @) @) O N,

stream

* Assume we pick locations 3,8 and 13
e At the end of the stream we have
— X1=(c,3)

— X2=(d,2
() X1 yields: 15(2*3-1)=75

— X3=(a,2) X2 yields: 15(2*2-1)=45 s ¢VG : _5559
X3 yields: 15(2*2-1)=45 rue S=

CLAIM: n(2X.value-1) is an estimate for 2"d moment S

Notation

a,b,c,b,d,a,c,d a b,d,c a ab

C =4 C = Y
6' 14 s]tream

* Let ¢, = number of times record at time t
appears from that time on

* ¢,=m,, ¢c,=m,, ¢,=m,-1,..., c,.=m,-1, c,,=1

Observation

e Recall that for X we pick a random position i
and start counting the observed element from

that time on-ward

a,b,c,b,d,a,c,d a,b,d,ca ab
| O O O >

stream

1 2 3

e Let Y=n(2X.value-1)
e Claim E[Y] =S

Proof

* Average over all possible positions i that can
be used to initiallize X

* E[Y]=1/n*Z% [n(2¢-1)] =% [(2¢-1)]

* We will rewrite the sum by iterating over all
elements a,b,c,....

Consider some element a

a o000 a o000 a a
l l:)
15t occurrence of a Last occurrence of a
c=m, c=1, 2*1-1=1

ast occurrence of a
c=2, 2*%2-1=3

* 3,(2¢-1) = 5,[1+3+5..+(2m_-1)]= 2,(m,)?

* Thus, E[Y]=Z,(m,)?=S

Complication

* Since the stream is infinite, n keeps increasing
* How to maintain a random sample of size s
(locations that define the X variables)?

— If we pick locations too early, sample won’t be
representative of recent behavior

— If we wait too long, then we will have few
variables to answer queries

e Solution: reservoir sampling

Reservoir sampling

* |nput n elements (n keeps increasing)

 Want a fixed size sample (assume size = s)
— This is your “reservoir” of sampled items

e Solution
— Choose the first s elements, keep them in memory

— When the nth element arrives (n > s), choose it
with probability s/n

* If chosen, throw away a random item from the sample

FREQUENT ITEM COUNTING

FREQUENT ITEM COUNTING

Example

 Example: given a stream of tweets, find the most
popular hash tags

* Does not make sense to keep counters from a
very distance past

* Mechanisms to concentrate on the most recent
trends
— Sliding windows
— Exponential decay

Sliding windows

present
past < Current window of 120 secs 5 future
(infinite) stream (mi) 10 secs
HHHHHHHHHH HHHHHHHOHHHH HEHHHHHHOHHOHHHHBEBEHS
—r o
Th tupl ill
exSfrZ aunzev?/(\)/\r/:’t These tuples will
count in the next er.1ter th?
invocation window in the

next invocation

Spark (brute-force) implementation

val lines = ssc.socketTextStream("localhost", 9999)
val words = lines.flatMap(_.split(" "))
/ffilter hashtags only
val hashtags = words.filter(w=>w.contains("#"))
/lcount all hashtags in the last 120 seconds
val winh = hashtags.window(Seconds(120))
/literate over accumulated hashtags
winh.foreachRDD { (rdd: RDD[String], time: Time) =>
val spark = SparkSession.builder.config(rdd.sparkContext.getConf).getOrCreate()
/I Convert RDD[String] to RDDJ[case class] to DataFrame
val wordsDataFrame = rdd.map(w => Record(w)).toDF()
/I Creates a temporary view using the DataFrame
wordsDataFrame.createOrReplaceTempView("words")
/I Do word count on table using SQL and print it
val wordCountsDataFrame =
spark.sql("select word, count(*) as total from words group by word order by total DESC")
printin(s
wordCountsDataFrame.show(20,false)

Sample Output

| #NBAMEDIADAY
| #DUBNATION | #NBA

| #NBA | #DUBNATIO

| #TRAININGCAMPTIPOFF | | #TRATININGC

| #CLTPPERS | #CLIPPERS

| #PLAYGROUNDS?2 | #60SPURSGO

| #GOSPURSGO | #GSW

| #TRUETOATLANTA | #JOINTHEREVOLUTION
| #GSW)
| #JOINTHEREVOLUTION
| #SANANTONIOSPURS

| #NBAMEDT ADAY

SR

| #10N1
| #STEPHENCURRY
| #SANANTONIOSPURS

| #KAWHT L FONARD
| #STACKED
| #PLAYGROUNDS?2

| #STEPHENCURRY
| #NBADRAFTROOM

2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1

only showing top 20 rows only showing top 20 rows

Issues with this scheme

Assume window = 1 week
Recall our example of counting hash tags

The number of hash tags in all tweets made worldwide is
too large

We are only interested in frequent hashtags

It is not memory-friendly to keep counters for all hash-tags
seen in the current window (especially for the infrequent
ones)

Decaying windows

* Sliding windows make sharp distinction between
recent elements and those in the distant past

— weight = 1, if recent (within specified window)
— weight = 0, otherwise

* Decaying windows
— weigh recent elements more heavily
— older elements receive monotonically smaller weights

Exponentially Decaying Windows

* Given a stream of numerical items a,,a,,....a,

* Assume we would like to compute their SUM

* For a small constant c<<1, compute

t—1
Z ar—;(1 —c)’
i=0

Spread of weights

t=now

a,b,c,b,d a,c,d a b,dca ab
III’P

l | !

(1-c)** == practically zero (1-c)?
Sum of weights = ¥(1-c)t =1/c 1
__.4
1/c

EaSt

Counting using Decaying Windows

* Keep a counter for each item seen

— We will discard counters for infrequent items
later-on

* Upon seeing an item a
— Multiply counters for all items by (1-c)
— Then, add 1 to the counter for a

* If no such counter exists, initialize it

Pruning

Say we want frequent items with counts > s

— drop counters smaller than s

Recall that weights sum to 1/c

There can be at most 1/sc counters exceeding
the threshold

E.g. for s=1/2, c=1/1000, there can be at most
2000 counters in use

LINEAR PROJECTIONS

Linear-Projections

e Seek to build a small-space summary for distribution vector f(i) (i=1,..., N) seen as a
stream of i-values

2 2

Data stream: 3,1, 2,4, 2, 3,5, ... >

f(1) f(2) f(3) f(4) f(5)

e Basic Construct: Randomized Linear Projection of f() = project onto inner/dot
product of f-vector

Data stream:|3, 1, 2, 4, 2, 3, 5, ...) 51 + 252 + 253 +§4 +§5

Example: Binary-Join COUNT Query

Problem: Compute answer for the query COUNT(R P , S)
Example: 3

f(o) 2
).
DatastreamR.A:l4 1 2 4 1 4 R 1

I/ 1 2 3 4
2 2

f.(): 1 1
Data stream S.A:|3 1 2 4 2 4 —

1 2 3 4
COUNTR b4, S)= " £.()- £, (i)
=10 (2+2+0+6)

e Exact solution: too expensive, requires O(N) space!

— N = sizeof(domain(A))

AMS Sketching Technique [AMS96]

Key Intuition: Use randomized linear projections of f() to define random
variable X such that:

— Xiis easily computed over the stream (in small space)
—| E[X] = COUNT(R[], S)

. Var[X] is small Used to provide probabilistic error guarantees
(e.g., actual answer is 10%1 with probability 0.9)

Basic Idea:
— Define a family of 4-wise independent {-1, +1} random variables & :i=1..,N
— Prl§, =+1]=Pr[§ =-1]1=1/2
e Expected value of each &, E[§] =0

— Variables & are 4-wise independent
o E[&, &, EE4]=E[E, 1 *E[E,)*E[ES] *E[E,]=0 (expected value of product of 4 distinct § s is zero)

e Variables & can be generated using pseudo-random generator using only
O(log N) space (for seeding)!

Summary Construction

- Compute random variables:X, = > £, ()& andXs = > _f(i)&

—Simply add & to X; (resp. X;) whenever the i-th value is observed in the

R.A (resp. S.A) stream
* Define X = XX, to be estimate of COUNT query

e Example: , 3
= r— 1 p----
Datastream R.A:|4 1 2 4 1(4)\ ﬁQ() ;I 0
l 1 2 3 4
Xy =Xg +&4 XR:2§1+§2+3§4
) 2 2
~ f.(i): 1 1
Data stream S.A:|3\ IN2 4 2 4 —
l 1 2 3 4

Xs=Xs+& Xs =& +28, +&+28,

Binary-Join AMS Sketching Analysis

* Expected value of X = COUNT(RPX,S)
E[X]= E[XR'XS]
=E[>_ (D& f(i)s]

_E[Y £ f (.@@f (i) f@

=) R0 1

* Using 4-wise independence, possible to show that

Var[X]<2-SJ(R)-SJ(S)

* WhereSJ(R) = > f,(i)° is self-join size of R (2" moment)

Tail Inequalities

* General bounds on tail probability of a random variable (that is, probability that a random
variable deviates far from its expectation)

Probability
distribution

Tail probability

ue

* Basic Inequalities: Let X be a random variable with expectation pu and variance Var[X]. Then
for any €>0 it holds thank

Var[X]

2 2
&

Chebyshev: Pr(| X —u|> ue) <

Boosting Accuracy

* Chebyshev’s Inequality:

Pr(| X -E[X] |2 eE[X]) < Y arlX]

~ e E[XY

* Boost accuracy to € by averaging over several (=s) independent copies of X
(reduces variance)

X X B @ @ @ X Average} \4

_8:(2:5J(R)-5J(S)) ' E[Y]=E[X]= COUNT(RDY S
5= 7 COUNT? copies [Y]=E[X] ()

Var[X] _ e COUNT®

Var[Y]=
ar[Y] p 3

e By Chebyshev:
Var[Y] 1
Pr(lY-COUNT |>e-COUNT) < < —
n(e)< & COUNT? 8

Boosting Confidence

* Boost confidence to 1-6 by taking median of 2log(1/6) independent copies of Y

* Each Y = Bernoulli Trial that fails with probability £ 12.5%. With 87.5% it succeeds to provide
estimate within (1% €)

“FAILURE”: Pr<1/8

RN o P

(1- s)COuyCOUNT (1+€)COUNT
median
Pr>1-9

—

2log(1/8)
copies

<|l g a|<| @ @ |=

Pr[| median(Y)-COUNT|> e*COUNT]

= Pr[# failures in 2log(1/ 6) trials >= half of the trials = log(1/6)] < & by Chernoff Bound

E.g. probability that more than half of Y’s are out of the (1t€) range is smaller than 6

Summary of Binary-Join AMS Sketching

* Step 1: Compute random variables: X, = ZifR(i)(f,. and X = Z,-fs(i)fa
* Step 2: Define X= XX,
* Steps 3 & 4: Average independent copies of X; Return median of

averages g ».s7(R)-sJ(s)) .
> > copies
£ COUNT
= 5 os 0 E EERy [
(o] (o) o o
2log(1/6) ° ° o o
copies = oo o T} median
o o o
(o] (o] (o] (o]
= = = a v

* Main Theorem (AGMS99): Sketching approximates COUNT to within
a relative error of € with probability >1 —6 using space

SI(R)-ST(S) log(1/5) logN,
e2 COUNT?

O(

A Special Case: Self-join Size (2" moment)

e Estimate COUNT(RD>AR) = Zifgz(i) (original AMS paper)

— Second moment of data distribution

In this case, COUNT = SJ(R), so we get an (g,0)—estimate using space only

log(1/6)-logN
2

O()

Best-case for AMS streaming join-size estimation

Question

e Can | estimate some arbitrary portion of the
distribution using these techniques?

2

& (i): 1

DatastreamR.A:l]4 1 2 4 1 4

1 2 3

 E.g. What is the value of f[4]?

Trick

* Think of your query as a second distribution S
we want to sketch

o

1) :
DatastreamR.Af4 1 2 4 1 4 (1) 1

Query steam S.A:

* Then answer = f [4] = COUNT(RS)

Same for Range Queries

* Think of your query as a second distribution S
we want to sketch

. 1 1 1
Query steam S.A]2 3 4 fs(')- | | I l
1 2 3 4
3
. 2
).
DatastreamR.All4 1 2 4 1 4 fR() ;I 0

* Thenanswer=2_, ,fg[L]

