CLUSTERING

Yannis Kotidis

What is clustering: general idea

\square Given a collection of data objects, put them into groups so that
\square members of each group are similar to each other (cohesion)
\square members of different groups are dissimilar (separation)
\square Examples
\square Cluster together customers based on their purchases

- Intuition: products explain customers habits
\square Cluster together documents that are on the same topic
- Intuition: terms relate documents to topics

Before you start

\square Choose a convenient representation

- Example: treat your data objects as high-dim vectors/points
- Customers represented as vectors, coords denote number of products they buy

\square Alternatively, represent a customer as a set (or bag) of products
- Documents may also be represented as bags of words
\square Choice depends on the data and the techniques used and will affect the outcome of the analysis

Need to quantify similarity

\square Select an appropriate similarity/distance measure
\square Euclidian or cosine distance for customer vectors?
\square Jaccard similarity for baskets/sets/documents?
\square Different distance measures lead to different cluster formations

Dimensionality curse

\square In some application the number of dimensions is in the order of hundreds or thousands
\square Number of different products, customers, words etc
\square High-dimensionality affects
\square Memory requirements, efficiency of computations
\square Quality of resulting clusters: it becomes harder to distinguish clusters

- Also clusters are less meaningful

In high dimensions

\square Most pairs of points are at about the same distance from each other
\square The distance to the nearest neighbor and the distance to the farthest neighbor tend to converge as $\operatorname{dim} \rightarrow$ inf
\square Nearest neighbor computations become harder and less meaningful

Dimensionality reduction/sub-space clustering

\square Map points into lower-dimensionality spaces

Clustering in two dimensions

Elliptical shapes/rotated axes

Non-convex shapes

Clusters within clusters

What do they mean?

k-Means Algorithm

\square Assume n points in the Euclidian space and a user-defined value of $\mathrm{k}=\#$ clusters

1. Pick k points (centroids), one per cluster
2. Assign remaining points to closest centroid
3. In each cluster update location of its centroid
4. Reassign points, if necessary
5. Repeat steps 3-4 until clusters stabilize
$\square \quad$ k-Means seeks to minimize the sum of squared distances (thus the variance of the distances) from the centroids
\square the algorithm always converges to some (local) minimum solution

Example for $k=3$

New centroids + reassignment

Performance considerations

\square Quality: initial selection of centroids affects cluster discovery

- Intuition: pick points as further apart as possible

■ Pick first centroid c_{1} at random

- At step $i \leq k$, pick $i^{\text {th }}$ centroid c_{i} so that the minimum distance to $c_{1}, c_{2}, . . c_{i-1}$ is maximized
\square Speed: assume m steps for convergence
\square Assume initial centroids are given
\square Each step takes $\mathrm{O}\left(\mathrm{k}^{*} \mathrm{~N}\right)$ time
$\square \mathrm{O}\left(\mathrm{k}^{*} \mathrm{~m}^{*} \mathrm{~N}\right)$ complexity, what if m is large?

Final clusters

What is a good value for k ?

\square Small k: few large clusters with large intra-cluster distances
\square Large k: many small clusters
\square Solution: try different values of k
\square Plot average distance to centroids for different k

Silhouette Coefficient (e.g. combine cohesion and separation)

Silhouette of a cluster = avg silhouette of its points
Silhouette of a solution = avg silhouette of proposed clusters

Look at the following online example (next slides)

\square http://scikit-
learn.org/stable/auto_examples/cluster/plot_kme ans_silhouette_analysis.html

Silhouette analysis for KMeans clustering on sample data with \mathbf{n} clusters = $\mathbf{2}$

Silhouette analysis for KMeans clustering on sample data with \mathbf{n} clusters = $\mathbf{3}$

Silhouette analysis for KMeans clustering on sample data with $\mathbf{n}_{\mathbf{-}}$ clusters $=\mathbf{4}$

Silhouette analysis for KMeans clustering on sample data with \mathbf{n}_{-}clusters = $\mathbf{5}$

Silhouette analysis for KMeans clustering on sample data with \mathbf{n}_{-}clusters = $\mathbf{6}$

Shape of clusters

Hierarchical clustering

\square Start assuming each point is a cluster
\square Repeatedly merge clusters

- Look for clusters that are "close"
\square Stop when resulting clusters are "bad"
- Or use a pre-defined value k
\square Above method is "bottom-up" (hierarchical agglomerative clustering)
\square It is possible to start from a single cluster of all points and repeatedly split it into smaller clusters
\square This "top-down" approach is often called divisive clustering

When two clusters are close?

\square Idea 1: measure (Euclidian) distance of their centroids

When two clusters are close?

\square Idea 2: measure maximum pair-wise distance
\square This will reduce the diameter of the resulting merged cluster

When two clusters are close?

\square Idea 3: measure minimum pair-wise distance
\square More ideas: average distances between points, etc

Cluster cohesion:
 Tell whether resulting cluster is good or bad

Sum of Squared Distances

HAC example

Euclidean space

\square In a Euclidean space you may compute the "average" of two points, thus their "centroid"

Non-Euclidean space

\square In a non-Euclidean space we can not "average" two or more points
\square e.g. we can define a distance between two documents but we cannot take their average in a meaningful manner

How to represent a cluster in a nonEuclidean space?

\square Assume depicted points are documents

How to represent a cluster?

\square Select as a representative (often termed "clustoid") the document that is closest to all other docs
\square e.g. clustoid minimizes average distance to all other docs in the cluster

Bisecting k-Means algorithm

\square An example of divisive clustering
\square E.g. start from a single cluster
\square Repeatedly split clusters until k clusters are formed
\square Bisecting k-Means: Divisive step using 2-Means to split a cluster in two pieces

Algorithm

```
Bisecting k-Means:
Initialize set of clusters C={\mp@subsup{c}{1}{}}// c, contains all points
Do
    Select a cluster c from C
    For i=1 to ITER //try different bisections of c
        Bisect c using k'-Means (k'=2)
    Pick best bisection, replace c with its sub-clusters
Until |C| = k
```

\square Issues:
\square Which cluster to split?

- Pick the largest?
- Pick "worst" (less coherent?)

Bisecting k-Means (k=3)

Back to k-means

$\square \mathrm{k}$-means updates centroid locations at each iteration
\square New centoids are computed by taking the arithmetic mean on each dimension
\square Taking the means minimizes the sum of the squared distances from the centroids, thus the within-cluster variance

Analysis of Mean

\square Mean is sensitive to outliers
\square Dataset $D=\{1,2,3,4,5,7,48\}$
\square Mean $=(1+2+3+4+5+7+48) / 7=10$
\square Avg dist from mean $=10.9$
\square Avg squared dist from mean $=244$

Mean vs Median

\square Mean is more sensitive to outliers
\square Dataset $D=\{1,2,3,4,5,7,48\}$
\square Mean $=(1+2+3+4+5+7+48) / 7=10$
\square Avg dist from mean $=10.9$
\square Avg squared dist from mean $=244$
\square Alternative idea: use median
\square Dataset $D=\{1,2,3,4,5,7,48\}$
\square Median $=4$
\square Avg dist from median= 7.9
\square Avg squared dist from mean $=292.7$

Mean vs Median

\square Avg dist from mean $=10.9$
\square Avg squared dist from mean $=244$
\square Avg dist from median= 7.9
\square Avg squared dist from mean $=292.7$

- (3)(4) 8

k-median algorithm

$\square \mathrm{k}$-median algorithm uses the median on each dimension to update the centoids
\square Selection of median minimizes the sum of the distances instead of the sum of the squared distances
\square Resulting values on each dimension are from the dataset but the centroids may not exist in the original dataset (as in k-means)
\square Minimizing the sum of the distances relates to the facility location problem

Facility location Problem

\square Input
\square A set of demand points D
\square A set of candidate locations L where facilities can be opened
\square Assumptions
\square Each demand point is serviced by the closest facility
\square Opening a facility incurs a cost f
\square Goal

- Pick a subset F of facilities to open, to minimize the sum of distances from each demand point to its nearest facility, plus the sum of opening costs of the facilities.
\square Variation: pick facilities from demand points D
- Neat online version: demand points are presented as a stream
\square Check out http://web.cs.ucla.edu/~awm/papers/ofl.pdf

Facility Location Problem for clustering

\square Medians are from original point set
\square No k is given, but pay for each median
\square Cost function is
\square Sum of assignment distances $+(\#$ medians $) \times f$

Reduced when more clusters are used Reduced when fewer clusters are used

k-Median vs. Facility Location

Slides from Liadan O'Callaghan: Clustering Data Streams

Demand Point

Facility Location (or centroid)
facility location: also include facility cost

Cost is $1+2+2+(3 \times 1)=8$

Meyerson's Algorithm

\square A facility location algorithm
\square Let f denote facility cos \dagger
\square Assumption: consider points in random order (or online)
\square First point becomes a median
\square If $\mathrm{x}=\mathrm{i}^{\text {th }}$ point, $\mathrm{d}=$ distance from x to closest existing median:

- "open" x as a median with prob. d / f
\square else assign x to nearest median

Examples

Local Search Algorithm

Suggested k-median algorithm will be based on local search, i.e.:
\square Start with initial solution (medians + assignment function)
\square Iteratively make local improvements to solution
\square After some number of iterations, your solution is provably good

Local Search Algorithm

1. Find initial solution (Meyerson)
2. Iterative local improvement: Check each point, "opening," "closing," or reassigning so as to lower total cost
3. If \#medians $\neq k$, adjust facility cost and repeat step 2.
4. At the end: k medians, approx. optimal

Local Search Algorithm

Example

Local Search Algorithm Speedup

\square Instead of considering all points as feasible facilities, take a sample at the beginning, and only let sample points be medians
\square Fewer potential medians to search through
\square Solution converges faster
\square...And should still be good

Clustering Using REpresentatives (CURE)

Sudipto Guha, Rajeev Rastogi, Kyuseok Shim:
Cure: An Efficient Clustering Algorithm for Large Databases. Inf. Syst. 26(1): 35-58 (2001)

Clustering Using REpresentatives (CURE)

\square Uses multiple representatives to represent clusters
\square This allows clusters to assume complex forms
\square Also lees sensitive to outliers

Representatives

\square From each cluster select c "well scattered points" as representatives
\square Representatives are as dispersed as possible
\square Move each representative points "inwards", e.g. towards the centroid of the cluster by a fixed fraction $a \%$
\square Shrinking the representatives towards the centroid (mean) by a factor a\% helps get rid of surface abnormalities and reduces the effect of outliers

Selection of Representatives

Shrinkage

CURE uses HAC for merging clusters

\square At each step pick the closest pair of clusters
\square Uses a priority queue and a k-d tree to speed up processing
\square Distance between two clusters is defined as the minimum distance between their representative points

Pre-processing (for large datasets)

\square Take a random sample of the data that fits in main memory
\square Partition sample, form partial clusters
\square Remove outliers, cluster partial clusters
\square Use these clusters to initialize HAC

DBSCAN

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. KDD 1996: 226-231

Density-based Clustering

\square Intuition: clusters are formed in high density regions and are separated from one another by regions of low density.

Preliminaries of DBSCAN

\square A density based algorithm
\square density = number of points within a specified radius (ε)
\square DBSCAN classifies points into three groups
\square A point is a core point if it has more than a specified number of points (MinPts) within distance ε

- Core points are at the interior of a cluster
\square A border point has fewer than MinPts within distance ε, but is in the neighborhood of a core point
\square A noise point is any point that is not a core point nor a border point

Assume MinPts=3

Cluster

Direct Density-Reachability

\square An point q is directly density-reachable from a core point p if it is within distance ε from q
\square Relationship is asymmetric (e.g. when q is a border point)

Density-reachability

\square A point p is density-reachable from q if there is a chain of points p_{1}, \ldots, p_{n}, with $p_{1}=q, p_{n}=p$ such that p_{i+1} is directly density-reachable from p_{i} for all $1 \leq i$ $\leq n$

Density-connectivity

\square Point p is density-connected to point q if there is an object x such that both p and q are densityreachable from x
\square Relationship is symmetric

Cluster definition

\square A cluster C in a set of points satisfying
\square Maximality: For all p, q if p is in C and if q is densityreachable from p then q is also in C
\square Connectivity: for all p, q in C, p is density-connected to q

\square Noise objects which are not directly densityreachable from at least one core object

DBSCAN Overview

\square Core points within distance ε of one another are assigned to the same cluster

- A border point that is in the neighborhood of a core point is assigned to the same cluster
\square Noise points are discarded

DBSCAN vs k-Means (code available on eclass)

DBSCAN vs k-Means (Wholesale customers data)

How to measure distance/similarity

\square Euclidean distance
\square Generalization: Lp-norm

How to measure distance/similarity

\square Cosine coefficient/similarity
$\square x$ and y are n-dimensional vectors

$$
\cos (x, y)=\frac{x \bullet y}{|x||y|}=\frac{x}{|x|} \bullet \frac{y}{|y|}=\frac{\sum_{i=1}^{|n|} x_{i} y_{i}}{\sqrt{\sum_{i=1}^{|n|} x_{i}^{2}} \sqrt{\sum_{i=1}^{|n|} y_{i}^{2}}}
$$

How to measure distance/similarity

\square What about interconnected data?

When two graph nodes are similar?

Consider neighbors in-common

Consider neighbors not in-common

Combine using Jaccard

\square Let $N(u)=$ set of neighbors of node u
$\square \operatorname{sim}(A, B)=\operatorname{Jaccard}(N(A), N(B))$

$$
=(N(A) \cap N(B)) /(N(A) \cup N(B))=20 \%
$$

How to apply this idea for clustering

\square Define a distance metric based on Jaccard similarity
\square E.g. $\operatorname{dist}(u, v)=1-\operatorname{Jaccard}(N(u), N(v))$
\square Then, any hierarchical clustering method will do

- E.g. bottom-up: merge nodes to form clusters
- Complication: what is a clustoid in this case?

Merging of nodes

Is it always good?

$$
\operatorname{sim}(A, B)=0
$$

Simpler case:
common friend-of-friend

SimRank

A Measure of Structural-Context Similarity
Glen Jeh and Jennifer Widom
Stanford University
ACM SIGKDD 2002

In a nutshell

\square SimRank: two objects are similar if they are referenced by similar objects

Motivation

\square A similarity measure that exploits the object-toobject relationships found in many domains of interest
\square Web page X "points to" Web page Y
\square customer "buys" product
\square May be used to cluster objects, such as for collaborative filtering in a recommender system

Intuition

\square Concentrate on structural content
\square Can be combined with other similarity metrics that consider content similarity
\square Two nodes are similar if they are referenced by similar nodes

SimRank Recursive Computation

\square Initialize:
$\begin{aligned} & \text { Initialize: } \\ & \square(a, b)\end{aligned}=\left\{\begin{array}{l}1, \text { if } a=b \\ 0, \text { otherwise }\end{array}\right.$
\square Iteratively compute ($a \neq b$):

$$
s(a, b)=\frac{C}{|I(a)||I(b)|} \sum_{i=1}^{|I(a)|} \sum_{j=1}^{\|I(b)\|} s\left(I_{i}(a), I_{j}(b)\right)
$$

\square Where
$\square I(x)=$ in-neighbors of x
$\square \mathrm{I}_{\mathrm{i}}(\mathrm{x})=\mathrm{i}^{\text {th }}$ in-neighbor of x and $\mathrm{C}<1$ (decay factor)

$$
\text { Explanation } \quad s(a, b)=\frac{C}{|I(a)||I(b)|} \sum_{i=1}^{|I(a)| \mid(i(b) \mid} \sum_{j=1} s\left(I_{i}(a), I_{j}(b)\right)
$$

\square Nodes receive the average similarity of their inneighbors multiplied by the decay factor C
\square Special case: $s(a, b)=0$ if $|l(a)|=0$ or $|l(b)|=0$
\square i.e. nodes have no in-neighbors

Example

$$
\begin{aligned}
& \text { Initialization } \\
& s(u, u)=1 \\
& s(a, b)=0 \\
& s(a, x)=0 \\
& s(x, y)=0
\end{aligned}
$$

Assume $C=0.8$

Iterate

$$
\begin{aligned}
& \text { Updated SimRank } \\
& s(u, u)=1 \\
& s(a, b)=0.8 * s(u, u)=0.8 \\
& s(a, x)=0.8 * s(u, a)=0 \\
& s(x, y)=0,8 * s(a, b)=0,8 * 0,8=0,64
\end{aligned}
$$

Assume $\mathrm{C}=0.8$

SimRank propagation

Assume $C=0.8$

Another View

\square Let $G^{2}=\left(V^{2}, E^{2}\right)$ with
$\square V^{2}=V \times V$, represents a pair (a, b) of nodes in G
\square An edge from (a, b) to (x, y) exists in E^{2}, iff the edges $<a, x>$ and $<b, y>$ exist in G
\square SimRank propagates through pairs in \mathbf{G}^{2}

SimRank in bipartite graphs

\square Bipartie graph: two disjoint classes of nodes $\mathrm{V}_{1}, \mathrm{~V}_{2}$

- e.g. $\mathrm{V}_{1}=$ \{customers\}, $\mathrm{V}_{2}=\{$ items $\}$
\square Edges only between nodes in V_{1} to nodes in V_{2}

Intuition- 1

\square People are similar if they purchase similar objects

Intuition-2

\square Items are similar if they are purchased by similar people

Bipartite SimRank

\square SimRank between persons A and $B,(A \neq B)$

$$
s(A, B)=\frac{C_{1}}{|O(A)||O(B)|} \sum_{i=1}^{|O(A)|} \sum_{j=1}^{|O(B)|} s\left(O_{i}(A), O_{j}(B)\right)
$$

\square SimRank between items x and $y,(x \neq y)$

$$
s(x, y)=\frac{C_{2}}{|I(x)||I(y)|} \sum_{i=1}^{|I(x)|} \sum_{j=1}^{|I(y)|} s\left(I_{i}(x), I_{j}(y)\right)
$$

\square The similarity between persons A and B is the average similarity between the items they purchased
$\square O(A)$ are the out-neighbors (items) for person A
\square The similarity between items x and y is the average similarity between the people who purchased them

Modified SimRank in bipartite graphs

