
CLUSTERING

Yannis Kotidis

What is clustering: general idea

 Given a collection of data objects, put them into groups

so that

 members of each group are similar to each other (cohesion)

 members of different groups are dissimilar (separation)

 Examples

 Cluster together customers based on their purchases

◼ Intuition: products explain customers habits

 Cluster together documents that are on the same topic

◼ Intuition: terms relate documents to topics

Before you start

 Choose a convenient representation

 Example: treat your data objects as high-dim vectors/points

◼ Customers represented as vectors, coords denote number of products
they buy

 Alternatively, represent a customer as a set (or bag) of products

◼ Documents may also be represented as bags of words

 Choice depends on the data and the techniques used and
will affect the outcome of the analysis

5 122 0 8 0 0 0 2

100000 products

Customer’s vector @ time t

0α

Need to quantify similarity

 Select an appropriate similarity/distance measure

 Euclidian or cosine distance for customer vectors?

 Jaccard similarity for baskets/sets/documents?

 Different distance measures lead to different cluster

formations

Dimensionality curse

 In some application the number of dimensions is in

the order of hundreds or thousands

 Number of different products, customers, words etc

 High-dimensionality affects

 Memory requirements, efficiency of computations

 Quality of resulting clusters: it becomes harder to

distinguish clusters

◼ Also clusters are less meaningful

In high dimensions

 Most pairs of points are at about the same distance

from each other

 The distance to the nearest neighbor and the

distance to the farthest neighbor tend to converge

as dim→inf

 Nearest neighbor computations become harder and

less meaningful

Dimensionality reduction/sub-space

clustering

 Map points into lower-dimensionality spaces

Clustering in two dimensions

Outliers

Elliptical shapes/rotated axes

Non-convex shapes

Clusters within clusters

What do they mean?

k-Means Algorithm

 Assume n points in the Euclidian space and a user-defined
value of k=#clusters

1. Pick k points (centroids), one per cluster

2. Assign remaining points to closest centroid

3. In each cluster update location of its centroid

4. Reassign points, if necessary

5. Repeat steps 3-4 until clusters stabilize

 k-Means seeks to minimize the sum of squared distances
(thus the variance of the distances) from the centroids

 the algorithm always converges to some (local) minimum solution

Example for k=3

Initial centroids are

existing dataset points

New centroids + reassignment

reassignment

updated centroids may not

be part of the dataset

Performance considerations

 Quality: initial selection of centroids affects cluster
discovery

 Intuition: pick points as further apart as possible

◼ Pick first centroid c1 at random

◼ At step i≤k, pick ith centroid ci so that the minimum distance
to c1, c2,.. ci-1 is maximized

 Speed: assume m steps for convergence

 Assume initial centroids are given

 Each step takes O(k*N) time

 O(k*m*N) complexity, what if m is large?

Final clusters

1

What is a good value for k?

 Small k: few large clusters with large intra-cluster

distances

 Large k: many small clusters

 Solution: try different values of k

 Plot average distance to centroids for different k

k

This seems a good choice

a
vg

d
is

t
to

 c
e
nt

ro
id

s

Silhouette Coefficient (e.g. combine

cohesion and separation)

i

ai = avg distance of i

from members of its

own cluster

bi = avg distance of i

from members of

another cluster

(consider cluster that

minimizes this value)

Silhouettei = (bi-ai)/max(ai,bi)

Silhouette coefficient in [-1..+1]

Silhouette of a cluster = avg silhouette of its points

Silhouette of a solution = avg silhouette of proposed clusters

<0 is really bad (wrong assignment)

0 means point is borderline

close to 1 is best

Look at the following online example

(next slides)

 http://scikit-

learn.org/stable/auto_examples/cluster/plot_kme

ans_silhouette_analysis.html

Shape of clusters

Hierarchical clustering

 Start assuming each point is a cluster

 Repeatedly merge clusters

 Look for clusters that are “close”

 Stop when resulting clusters are “bad”
◼ Or use a pre-defined value k

 Above method is “bottom-up” (hierarchical
agglomerative clustering)

 It is possible to start from a single cluster of all points
and repeatedly split it into smaller clusters

 This “top-down” approach is often called divisive clustering

When two clusters are close?

 Idea 1: measure (Euclidian) distance of their
centroids

When two clusters are close?

 Idea 2: measure maximum pair-wise distance

 This will reduce the diameter of the resulting merged cluster

When two clusters are close?

 Idea 3: measure minimum pair-wise distance

 More ideas: average distances between points, etc

Cluster cohesion:

Tell whether resulting cluster is good or bad

Density = #points/volume

Sum of Squared Distances

HAC example

a
b

c

d

e

a b c d e

f
f

h

h

g
g

i

i

Euclidean space

 In a Euclidean space you may compute the

“average” of two points, thus their “centroid”

(1,2)

(5,3)

(3,2.5)

Non-Euclidean space

 In a non-Euclidean space we can not “average” two

or more points

 e.g. we can define a distance between two documents

but we cannot take their average in a meaningful

manner

Document-1

Document-2

How to represent a cluster in a non-

Euclidean space?

 Assume depicted points are documents

How to represent a cluster?

 Select as a representative (often termed “clustoid”)

the document that is closest to all other docs

 e.g. clustoid minimizes average distance to all other

docs in the cluster

Bisecting k-Means algorithm

 An example of divisive clustering

 E.g. start from a single cluster

 Repeatedly split clusters until k clusters are formed

 Bisecting k-Means: Divisive step using 2-Means to

split a cluster in two pieces

Algorithm

 Issues:

 Which cluster to split?

◼ Pick the largest?

◼ Pick “worst” (less coherent?)

Bisecting k-Means:

Initialize set of clusters C= {c1} // c1 contains all points

Do

Select a cluster c from C

For i=1 to ITER //try different bisections of c

Bisect c using k’-Means (k’=2)

Pick best bisection, replace c with its sub-clusters

Until |C| = k

Bisecting k-Means (k=3)

a
b

c

d

e

c4

c2

c3

c1

c5

Back to k-means

 k-means updates centroid locations at each iteration

 New centoids are computed by taking the arithmetic

mean on each dimension

 Taking the means minimizes the sum of the squared

distances from the centroids, thus the within-cluster

variance

Analysis of Mean

 Mean is sensitive to outliers

 Dataset D = {1,2,3,4,5,7,48}

 Mean = (1+2+3+4+5+7+48)/7=10

 Avg dist from mean = 10.9

 Avg squared dist from mean = 244

3 5 721 4 48

Mean vs Median

 Mean is more sensitive to outliers

 Dataset D = {1,2,3,4,5,7,48}

 Mean = (1+2+3+4+5+7+48)/7=10

 Avg dist from mean = 10.9

 Avg squared dist from mean = 244

 Alternative idea: use median

 Dataset D = {1,2,3,4,5,7,48}

 Median = 4

 Avg dist from median= 7.9

 Avg squared dist from mean = 292.7

Mean vs Median

 Avg dist from mean = 10.9

 Avg squared dist from mean = 244

 Avg dist from median= 7.9

 Avg squared dist from mean = 292.7

3 5 721 4 48

3 5 721 4 48

k-median algorithm

 k-median algorithm uses the median on each
dimension to update the centoids

 Selection of median minimizes the sum of the distances
instead of the sum of the squared distances

 Resulting values on each dimension are from the
dataset but the centroids may not exist in the original
dataset (as in k-means)

 Minimizing the sum of the distances relates to the
facility location problem

Facility location Problem

 Input

 A set of demand points D

 A set of candidate locations L where facilities can be opened

 Assumptions

 Each demand point is serviced by the closest facility

 Opening a facility incurs a cost f

 Goal

 Pick a subset F of facilities to open, to minimize the sum of distances
from each demand point to its nearest facility, plus the sum of opening
costs of the facilities.

 Variation: pick facilities from demand points D

 Neat online version: demand points are presented as a stream

 Check out http://web.cs.ucla.edu/~awm/papers/ofl.pdf

Facility Location Problem for clustering

 Medians are from original point set

 No k is given, but pay f for each median

 Cost function is

 Sum of assignment distances + (# medians) × f

Reduced when more clusters are used Reduced when fewer clusters are used

k-Median vs. Facility Location
Slides from Liadan O’Callaghan: Clustering Data Streams

k-median:

cost = sum of distances

facility location: also include

facility cost

k = 2 Facility cost f = 1

Cost is 2+2+3+4=11

2

3

4

2

Cost is 1+2+2+(3x1)=8

1

2

2

Demand Point Facility Location (or centroid)

Meyerson’s Algorithm

 A facility location algorithm

 Let f denote facility cost

 Assumption: consider points in random order (or

online)

 First point becomes a median

 If x = ith point, d = distance from x to closest existing

median:

 “open” x as a median with prob. d/f

 else assign x to nearest median

Examples

assigned

(prob 1 - .4 = .6)

Let f = 10

9

4“opened” (prob .9)

Local Search Algorithm

Suggested k-median algorithm will be based on local
search, i.e.:

 Start with initial solution (medians + assignment
function)

 Iteratively make local improvements to solution

 After some number of iterations, your solution is
provably good

Local Search Algorithm

1. Find initial solution (Meyerson)

2. Iterative local improvement: Check each point,
“opening,” “closing,” or reassigning so as to lower
total cost

3. If #medians k, adjust facility cost and repeat
step 2.

4. At the end: k medians, approx. optimal

Local Search Algorithm

Iterative

Improvement

Steps

Initial

Solution
medians?

Point set,

Integer k

 k

= k

Done

Adjust f

Example

Point

Set S

1. Initial

Solution

2. Iterative

Improvement

Too many medians!

Raise f and go back to step 2

#medians = k

Success!

k=2

Local Search Algorithm Speedup

 Instead of considering all points as feasible
facilities, take a sample at the beginning, and only
let sample points be medians

 Fewer potential medians to search through

 Solution converges faster

 …And should still be good

Sudipto Guha, Rajeev Rastogi, Kyuseok Shim:

Cure: An Efficient Clustering Algorithm for Large

Databases. Inf. Syst. 26(1): 35-58 (2001)

Clustering Using REpresentatives

(CURE)

Clustering Using REpresentatives

(CURE)

 Uses multiple representatives to represent clusters

 This allows clusters to assume complex forms

 Also lees sensitive to outliers

Representatives

 From each cluster select c “well scattered points” as

representatives

 Representatives are as dispersed as possible

 Move each representative points “inwards”, e.g.

towards the centroid of the cluster by a fixed

fraction a%

 Shrinking the representatives towards the centroid

(mean) by a factor a% helps get rid of surface

abnormalities and reduces the effect of outliers

Selection of Representatives

Shrinkage

centroid

CURE uses HAC for merging clusters

 At each step pick the closest pair of clusters

 Uses a priority queue and a k-d tree to speed up

processing

 Distance between two clusters is defined as the

minimum distance between their representative

points

Pre-processing (for large datasets)

 Take a random sample of the data that fits in main

memory

 Partition sample, form partial clusters

 Remove outliers, cluster partial clusters

 Use these clusters to initialize HAC

Martin Ester, Hans-Peter Kriegel, Jörg Sander,
Xiaowei Xu: A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with
Noise. KDD 1996: 226-231

DBSCAN

Density-based Clustering

 Intuition: clusters are formed in high density regions

and are separated from one another by regions of

low density.

Preliminaries of DBSCAN

 A density based algorithm

 density = number of points within a specified radius (ε)

 DBSCAN classifies points into three groups

 A point is a core point if it has more than a specified
number of points (MinPts) within distance ε
◼ Core points are at the interior of a cluster

 A border point has fewer than MinPts within distance ε,
but is in the neighborhood of a core point

 A noise point is any point that is not a core point nor a
border point

Assume MinPts=3

Core points

Border points

Noise points
ε

ε

Cluster

Core points

Border points

Noise points

Direct Density-Reachability

 An point q is directly density-reachable from a core

point p if it is within distance ε from q

 Relationship is asymmetric (e.g. when q is a border

point)

ε

q

Density-reachability

 A point p is density-reachable from q if there is a

chain of points p1,…,pn, with p1=q, pn=p such that

pi+1is directly density-reachable from pi for all 1≤ i

≤n

p q

Density-connectivity

 Point p is density-connected to point q if there is an

object x such that both p and q are density-

reachable from x

 Relationship is symmetric

xp
q

Cluster definition

 A cluster C in a set of points satisfying

 Maximality: For all p, q if p is in C and if q is density-

reachable from p then q is also in C

 Connectivity: for all p, q in C, p is density-connected to

q

 Noise objects which are not directly density-

reachable from at least one core object

DBSCAN Overview

 Core points within distance ε of one another are

assigned to the same cluster

 A border point that is in the neighborhood of a core

point is assigned to the same cluster

 Noise points are discarded

DBSCAN vs k-Means

(code available on eclass)

DBSCAN vs k-Means

(Wholesale customers data)

DBSCAN

How to measure distance/similarity

 Euclidean distance

 Generalization: Lp-norm

L1

L2

L∞

How to measure distance/similarity

 Cosine coefficient/similarity

 x and y are n-dimensional vectors

==

==•=
•

=
n

i i

n

i i

n

i ii

yx

yx

y

y

x

x

yx

yx
yx

1

2

1

2

1),cos(

How to measure distance/similarity

 What about interconnected data?

When two graph nodes are similar?

A B

1
5

4

6

9

7

2

3

10

8

Consider neighbors in-common

A B

1
5

4

9

7

2

3

10

86

Consider neighbors not in-common

A B

1
5

4

9

7

2

3

10

86

Combine using Jaccard

 Let N(u) = set of neighbors of node u

 sim(A,B) = Jaccard(N(A),N(B))

= (N(A) N(B))/(N(A) N(B)) = 20%

A B

1
5

4

9

7

2

3

1

0

86

How to apply this idea for clustering

 Define a distance metric based on Jaccard

similarity

 E.g. dist(u,v)=1-Jaccard(N(u),N(v))

 Then, any hierarchical clustering method will do

 E.g. bottom-up: merge nodes to form clusters

◼ Complication: what is a clustoid in this case?

A B

1
5

4

9

7

2

3

1

0

86

Merging of nodes

A B

2

3

1 4

A,B

2

3

1 4

5

5

Is it always good?

A B

sim(A,B)=0

A B

Simpler case:

common friend-of-friend

A Measure of Structural-Context Similarity

Glen Jeh and Jennifer Widom

Stanford University

ACM SIGKDD 2002

SimRank

In a nutshell

 SimRank: two objects are similar if they are

referenced by similar objects

u

b

a

Motivation

 A similarity measure that exploits the object-to-

object relationships found in many domains of

interest

 Web page X “points to” Web page Y

 customer “buys” product

 May be used to cluster objects, such as for

collaborative filtering in a recommender system

Intuition

 Concentrate on structural content

 Can be combined with other similarity metrics that

consider content similarity

 Two nodes are similar if they are referenced by

similar nodes

SimRank Recursive Computation

 Initialize:

 s(a,b) =

 Iteratively compute (a≠b):

 Where

 I(x) = in-neighbors of x

 Ii(x) = ith in-neighbor of x and C<1 (decay factor)

1, if a=b

0, otherwise

Explanation

 Nodes receive the average similarity of their in-

neighbors multiplied by the decay factor C

 Special case: s(a,b) = 0 if |I(a)| = 0 or |I(b)|=0

 i.e. nodes have no in-neighbors

Example

u

b

a x

y

Initialization

s(u,u)=1

s(a,b)=0

s(a,x)=0

s(x,y)=0

Assume C=0.8

Iterate

u

b

a x

y

Updated SimRank

s(u,u)=1

s(a,b)=0.8*s(u,u)=0.8

s(a,x)=0.8*s(u,a)=0

s(x,y)=0,8*s(a,b)=0,8*0,8=0,64

Assume C=0.8

C C2

SimRank propagation

u

b

a x

y

Assume C=0.8

C C2

u,u a,b x,y

*C *C2

Another View
94

 Let G2=(V2, E2) with

 V2=V x V, represents a pair (a,b) of nodes in G

 An edge from (a,b) to (x,y) exists in E2, iff the edges

<a,x> and <b,y> exist in G

 SimRank propagates through pairs in G2

SimRank in bipartite graphs

 Bipartie graph: two disjoint classes of nodes V1, V2

 e.g. V1={customers}, V2={items}

 Edges only between nodes in V1 to nodes in V2

V1 V2

Intuition-1

 People are similar if they purchase similar objects

Intuition-2

 Items are similar if they are purchased by similar

people

Bipartite SimRank
98

 SimRank between persons A and B, (A≠B)

 SimRank between items x and y, (x≠y)

 The similarity between persons A and B is the average similarity
between the items they purchased

 O(A) are the out-neighbors (items) for person A

 The similarity between items x and y is the average similarity
between the people who purchased them

==

=

)(

1

)(

1

1))(),((
)()(

),(

BO

j

ji

AO

i

BOAOs
BOAO

C
BAs

==

=

)(

1

)(

1

2))(),((
)()(

),(

yI

j

ji

xI

i

yIxIs
yIxI

C
yxs

Modified SimRank in bipartite graphs

