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What is clustering: general idea

 Given a collection of data objects, put them into groups

so that

 members of each group are similar to each other (cohesion)

 members of different groups are dissimilar (separation)

 Examples

 Cluster together customers based on their purchases

◼ Intuition: products explain customers habits

 Cluster together documents that are on the same topic

◼ Intuition: terms relate documents to topics



Before you start

 Choose a convenient representation

 Example: treat your data objects as high-dim vectors/points

◼ Customers represented as vectors, coords denote number of products 
they buy

 Alternatively, represent a customer as a set (or bag) of products 

◼ Documents may also be represented as bags of words

 Choice depends on the data and the techniques used and 
will affect the outcome of the analysis
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Need to quantify similarity

 Select an appropriate similarity/distance measure

 Euclidian or cosine distance for customer vectors?

 Jaccard similarity for baskets/sets/documents?

 Different distance measures lead to different cluster 

formations



Dimensionality curse

 In some application the number of dimensions is in 

the order of hundreds or thousands

 Number of different products, customers, words etc

 High-dimensionality affects

 Memory requirements, efficiency of computations

 Quality of resulting clusters: it becomes harder to 

distinguish clusters

◼ Also clusters are less meaningful



In high dimensions

 Most pairs of points are at about the same distance 

from each other

 The distance to the nearest neighbor and the 

distance to the farthest neighbor tend to converge 

as dim→inf

 Nearest neighbor computations become harder and 

less meaningful



Dimensionality reduction/sub-space 

clustering

 Map points into lower-dimensionality spaces



Clustering in two dimensions

Outliers



Elliptical shapes/rotated axes



Non-convex shapes



Clusters within clusters

What do they mean?



k-Means Algorithm

 Assume n points in the Euclidian space and a user-defined 
value of k=#clusters

1. Pick k points (centroids), one per cluster

2. Assign remaining points to closest centroid

3. In each cluster update location of its centroid

4. Reassign points, if necessary

5. Repeat steps 3-4 until clusters stabilize

 k-Means seeks to minimize the sum of squared distances 
(thus the variance of the distances) from the centroids

 the algorithm always converges to some (local) minimum solution



Example for k=3

Initial centroids are

existing dataset points



New centroids + reassignment

reassignment

updated centroids may not 

be part of the dataset



Performance considerations

 Quality: initial selection of centroids affects cluster 
discovery

 Intuition: pick points as further apart as possible

◼ Pick first centroid c1 at random

◼ At step i≤k, pick ith centroid ci so that the minimum distance 
to c1, c2,.. ci-1 is maximized

 Speed: assume m steps for convergence

 Assume initial centroids are given

 Each step takes O(k*N) time

 O(k*m*N) complexity, what if m is large?



Final clusters

1



What is a good value for k?

 Small k: few large clusters with large intra-cluster 

distances

 Large k: many small clusters

 Solution: try different values of k

 Plot average distance to centroids for different k
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Silhouette Coefficient (e.g. combine 

cohesion and separation)

i

ai = avg distance of i

from members of its 

own cluster

bi = avg distance of i

from members of 

another cluster

(consider cluster that 

minimizes this value)

Silhouettei = (bi-ai)/max(ai,bi)

Silhouette coefficient in [-1..+1]

Silhouette of a cluster = avg silhouette of its points

Silhouette of a solution = avg silhouette of proposed clusters

<0 is really bad (wrong assignment)

0 means point is borderline

close to 1 is best



Look at the following online example 

(next slides)

 http://scikit-

learn.org/stable/auto_examples/cluster/plot_kme

ans_silhouette_analysis.html













Shape of clusters



Hierarchical clustering

 Start assuming each point is a cluster

 Repeatedly merge clusters

 Look for clusters that are “close”

 Stop when resulting clusters are “bad”
◼ Or use a pre-defined value k

 Above method is “bottom-up” (hierarchical
agglomerative clustering)

 It is possible to start from a single cluster of all points 
and repeatedly split it into smaller clusters

 This “top-down” approach is often called divisive clustering



When two clusters are close?

 Idea 1: measure (Euclidian) distance of their 
centroids



When two clusters are close?

 Idea 2: measure maximum pair-wise distance

 This will reduce the diameter of the resulting merged cluster



When two clusters are close?

 Idea 3: measure minimum pair-wise distance

 More ideas: average distances between points, etc



Cluster cohesion: 

Tell whether resulting cluster is good or bad

Density = #points/volume

Sum of Squared Distances



HAC example
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Euclidean space

 In a Euclidean space you may compute the 

“average” of two points, thus their “centroid”

(1,2)

(5,3)

(3,2.5)



Non-Euclidean space

 In a non-Euclidean space we can not “average” two 

or more points

 e.g. we can define a distance between two documents 

but we cannot take their average in a meaningful 

manner

Document-1

Document-2



How to represent a cluster in a non-

Euclidean space?

 Assume depicted points are documents



How to represent a cluster?

 Select as a representative (often termed “clustoid”) 

the document that is closest to all other docs

 e.g. clustoid minimizes average distance to all other 

docs in the cluster



Bisecting k-Means algorithm

 An example of divisive clustering

 E.g. start from a single cluster

 Repeatedly split clusters until k clusters are formed

 Bisecting k-Means: Divisive step using 2-Means to 

split a cluster in two pieces 



Algorithm

 Issues:

 Which cluster to split?

◼ Pick the largest?

◼ Pick “worst” (less coherent?)

Bisecting k-Means:

Initialize set of clusters C= {c1} // c1 contains all points 

Do

Select a cluster c from C

For i=1 to ITER  //try different bisections of c

Bisect c using k’-Means (k’=2)

Pick best bisection, replace c with its sub-clusters

Until |C| = k



Bisecting k-Means (k=3)
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Back to k-means

 k-means updates centroid locations at each iteration

 New centoids are computed by taking the arithmetic 

mean on each dimension

 Taking the means minimizes the sum of the squared 

distances from the centroids, thus the within-cluster 

variance



Analysis of Mean

 Mean is sensitive to outliers

 Dataset D = {1,2,3,4,5,7,48}

 Mean = (1+2+3+4+5+7+48)/7=10

 Avg dist from mean = 10.9

 Avg squared dist from mean = 244

3 5 721 4 48



Mean vs Median

 Mean is more sensitive to outliers

 Dataset D = {1,2,3,4,5,7,48}

 Mean = (1+2+3+4+5+7+48)/7=10

 Avg dist from mean = 10.9

 Avg squared dist from mean = 244

 Alternative idea: use median

 Dataset D = {1,2,3,4,5,7,48}

 Median = 4

 Avg dist from median= 7.9

 Avg squared dist from mean = 292.7



Mean vs Median

 Avg dist from mean = 10.9

 Avg squared dist from mean = 244

 Avg dist from median= 7.9

 Avg squared dist from mean = 292.7

3 5 721 4 48

3 5 721 4 48



k-median algorithm

 k-median algorithm uses the median on each 
dimension to update the centoids

 Selection of median minimizes the sum of the distances 
instead of the sum of the squared distances 

 Resulting values on each dimension are from the 
dataset but the centroids may not exist in the original 
dataset (as in k-means) 

 Minimizing the sum of the distances relates to the 
facility location problem



Facility location Problem

 Input

 A set of demand points D

 A set of candidate locations L where facilities can be opened

 Assumptions

 Each demand point is serviced by the closest facility

 Opening a facility incurs a cost f

 Goal

 Pick a subset F of facilities to open, to minimize the sum of distances 
from each demand point to its nearest facility, plus the sum of opening 
costs of the facilities.

 Variation: pick facilities from demand points D

 Neat online version: demand points are presented as a stream

 Check out http://web.cs.ucla.edu/~awm/papers/ofl.pdf



Facility Location Problem for clustering

 Medians are from original point set

 No k is given, but pay f for each median

 Cost function is 

 Sum of assignment distances + (# medians) × f

Reduced when more clusters are used Reduced when fewer clusters are used



k-Median vs. Facility Location
Slides from Liadan O’Callaghan: Clustering Data Streams

k-median:

cost = sum of distances

facility location: also include 

facility cost 

k = 2 Facility cost f = 1

Cost is 2+2+3+4=11 

2

3

4

2

Cost is 1+2+2+(3x1)=8

1

2

2

Demand Point Facility Location (or centroid)



Meyerson’s Algorithm

 A facility location algorithm

 Let f denote facility cost

 Assumption: consider points in random order (or 

online)

 First point becomes a median

 If x = ith point, d = distance from x to closest existing 

median: 

 “open” x as a median with prob. d/f

 else assign x to nearest median



Examples

assigned

(prob 1 - .4 = .6)

Let f = 10

9

4“opened” (prob .9)



Local Search Algorithm

Suggested k-median algorithm will be based on local 
search, i.e.:

 Start with initial solution (medians + assignment 
function)

 Iteratively make local improvements to solution

 After some number of iterations, your solution is 
provably good



Local Search Algorithm

1. Find initial solution (Meyerson)

2. Iterative local improvement: Check each point, 
“opening,”  “closing,” or reassigning so as to lower 
total cost

3. If #medians  k, adjust facility cost and repeat 
step 2.

4. At the end: k medians, approx. optimal



Local Search Algorithm

Iterative

Improvement

Steps

Initial

Solution 
# medians?

Point set,

Integer k

 k

= k

Done

Adjust f



Example

Point

Set S

1. Initial

Solution

2. Iterative

Improvement

Too many medians!

Raise f and go back to step 2

#medians = k

Success!

k=2



Local Search Algorithm Speedup

 Instead of considering all points as feasible 
facilities, take a sample at the beginning, and only 
let sample points be medians

 Fewer potential medians to search through

 Solution converges faster

 …And should still be good



Sudipto Guha, Rajeev Rastogi, Kyuseok Shim:

Cure: An Efficient Clustering Algorithm for Large 

Databases. Inf. Syst. 26(1): 35-58 (2001)

Clustering Using REpresentatives

(CURE)



Clustering Using REpresentatives

(CURE)

 Uses multiple representatives to represent clusters

 This allows clusters to assume complex forms

 Also lees sensitive to outliers



Representatives

 From each cluster select c “well scattered points” as 

representatives

 Representatives are as dispersed as possible

 Move each representative points “inwards”, e.g. 

towards the centroid of the cluster by a fixed 

fraction a%

 Shrinking the representatives towards the centroid

(mean) by a factor a% helps get rid of surface 

abnormalities and reduces the effect of outliers



Selection of Representatives



Shrinkage

centroid



CURE uses HAC for merging clusters

 At each step pick the closest pair of clusters

 Uses a priority queue and a k-d tree to speed up 

processing

 Distance between two clusters is defined as the 

minimum distance between their representative 

points



Pre-processing (for large datasets)

 Take a random sample of the data that fits in main 

memory

 Partition sample, form partial clusters

 Remove outliers, cluster partial clusters

 Use these clusters to initialize HAC



Martin Ester, Hans-Peter Kriegel, Jörg Sander, 
Xiaowei Xu: A Density-Based Algorithm for 
Discovering Clusters in Large Spatial Databases with 
Noise. KDD 1996: 226-231

DBSCAN



Density-based Clustering

 Intuition: clusters are formed in high density regions 

and are separated from one another by regions of 

low density.  



Preliminaries of DBSCAN

 A density based algorithm

 density = number of points within a specified radius (ε)

 DBSCAN classifies points into three groups

 A point is a core point if it has more than a specified 
number of points (MinPts) within distance ε
◼ Core points are at the interior of a cluster

 A border point has fewer than MinPts within distance ε, 
but is in the neighborhood of a core point

 A noise point is any point that is not a core point nor a 
border point



Assume MinPts=3

Core points

Border points

Noise points
ε

ε



Cluster

Core points

Border points

Noise points



Direct Density-Reachability

 An point q is directly density-reachable from a core 

point p if it is within distance ε from q

 Relationship is asymmetric (e.g. when q is a border 

point)

ε

q



Density-reachability

 A point p is density-reachable from q if there is a 

chain of points p1,…,pn, with p1=q, pn=p such that 

pi+1is directly density-reachable from pi for all 1≤ i

≤n

p q



Density-connectivity

 Point p is density-connected to point q if there is an 

object x such that both p and q are density-

reachable from x

 Relationship is symmetric

xp
q



Cluster definition

 A cluster C in a set of points satisfying

 Maximality: For all p, q if p is in C and if q is density-

reachable from p then q is also in C

 Connectivity: for all p, q in C, p is density-connected to 

q

 Noise objects which are not directly density-

reachable from at least one core object



DBSCAN Overview

 Core points within distance ε of one another are 

assigned to the same cluster

 A border point that is in the neighborhood of a core 

point is assigned to the same cluster

 Noise points are discarded



DBSCAN vs k-Means

(code available on eclass)



DBSCAN vs k-Means

(Wholesale customers data)

DBSCAN



How to measure distance/similarity

 Euclidean distance

 Generalization: Lp-norm

L1

L2

L∞



How to measure distance/similarity

 Cosine coefficient/similarity

 x and y are n-dimensional vectors
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How to measure distance/similarity

 What about interconnected data?



When two graph nodes are similar?

A B

1
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Consider neighbors in-common

A B
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Consider neighbors not in-common

A B
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Combine using Jaccard

 Let N(u) = set of neighbors of node u

 sim(A,B) = Jaccard(N(A),N(B))

= (N(A)  N(B))/(N(A)  N(B)) = 20%

A B
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How to apply this idea for clustering

 Define a distance metric based on Jaccard

similarity

 E.g. dist(u,v)=1-Jaccard(N(u),N(v))

 Then, any hierarchical clustering method will do

 E.g. bottom-up: merge nodes to form clusters

◼ Complication: what is a clustoid in this case?

A B
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Merging of nodes

A B

2

3

1 4

A,B

2

3

1 4

5

5



Is it always good?

A B

sim(A,B)=0

A B

Simpler case:

common friend-of-friend



A Measure of Structural-Context Similarity

Glen Jeh and Jennifer Widom

Stanford University

ACM SIGKDD 2002

SimRank



In a nutshell

 SimRank: two objects are similar if they are 

referenced by similar objects

u

b

a



Motivation

 A similarity measure that exploits the object-to-

object relationships found in many domains of 

interest

 Web page X “points to” Web page Y

 customer “buys”  product

 May be used to cluster objects, such as for 

collaborative filtering in a recommender system



Intuition

 Concentrate on structural content

 Can be combined with other similarity metrics that 

consider content similarity

 Two nodes are similar if they are referenced by 

similar nodes



SimRank Recursive Computation

 Initialize: 

 s(a,b) =

 Iteratively compute (a≠b):

 Where

 I(x) = in-neighbors of x

 Ii(x) = ith in-neighbor of x and C<1 (decay factor)

1, if a=b

0, otherwise



Explanation

 Nodes receive the average similarity of their in-

neighbors multiplied by the decay factor C

 Special case: s(a,b) = 0 if |I(a)| = 0 or |I(b)|=0

 i.e. nodes have no in-neighbors



Example

u

b

a x

y

Initialization

s(u,u)=1

s(a,b)=0

s(a,x)=0

s(x,y)=0

Assume C=0.8



Iterate

u

b

a x

y

Updated SimRank

s(u,u)=1

s(a,b)=0.8*s(u,u)=0.8

s(a,x)=0.8*s(u,a)=0

s(x,y)=0,8*s(a,b)=0,8*0,8=0,64

Assume C=0.8

C C2



SimRank propagation

u

b

a x

y

Assume C=0.8

C C2

u,u a,b x,y

*C *C2



Another View
94

 Let G2=(V2, E2) with

 V2=V x V, represents a pair (a,b) of nodes in G

 An edge from (a,b) to (x,y) exists in E2, iff the edges 

<a,x> and <b,y> exist in G

 SimRank propagates through pairs in G2



SimRank in bipartite graphs

 Bipartie graph: two disjoint classes of nodes V1, V2

 e.g. V1={customers}, V2={items}

 Edges only between nodes in V1 to nodes in V2

V1 V2



Intuition-1

 People are similar if they purchase similar objects



Intuition-2

 Items are similar if they are purchased by similar 

people



Bipartite SimRank
98

 SimRank between persons A and B, (A≠B)

 SimRank between items x and y, (x≠y)

 The similarity between persons A and B is the average similarity 
between the items they purchased

 O(A) are the out-neighbors (items) for person A

 The similarity between items x and y is the average similarity 
between the people who purchased them
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Modified SimRank in bipartite graphs


