Working with
Data

Yannis Kotidis

Department of
Informatics

Athens University of
Economics and Business

Motivation !

* We often need ways to
assess how similar or
dissimilar objects are in

comparison to one
another

 Examples: clustering,
outlier analysis, nearest-
neighbor search,
recommendation,
visualization, classification

NN;(Mary)

Simple Running Example

e Car dealership
— a customer inquired about car #1 that was sold

— which of the other cars is she most likely to buy?

Color Condition Mileage
(*1000)

Blue

1
2
3
4

Green
Red

Blue

Excellent

Fair 22
Good 64
Excellent 28

Roadmap

* We will first discuss simple similarity metrics for
common data types: nominal, ordinal and numerical
attributes

 We will then extend our techniques to address more
complex scenarios
— Hierarchical domains (e.g. product < categories)
— Sets (e.g. basket data), Bags
— Vectors (multidimensional data)
— Strings
— Time Series
— Distributions
— Graphs

Preliminaries

e Letsim(a,b) denote the similarity of two values a, b of
a data attribute
* |In order to have a common basis, we will normalize
values: sim(a,b) in range [0..1]
— sim(a,b) = 1, iff a and b are identical
— sim(a,b) = 0, iff a and b are unalike

* Dissimilarity: d(a,b) =1 —sim(a,b)
— Formula assumes sim(a,b) e [0..1]

— Notice that, depending on the internals of the sim()
function, dissimilarity is not necessarily a distance
function (i.e. triangle inequality may not hold)

Running Example

Dataset describing used cars

* 3 known attributes : color, condition, mileage
(in 1000 Km)

Color Condition Mileage
(*1000 Km)

1
2
3
4

Blue
Green
Red

Blue

Excellent

Fair 22
Good 64
Excellent 28

Nominal Attributes

 The values are symbols (e.g., names of things)
that often represent some category or state
— Are a type of categorical attributes when there is
no ordering/importance implied by the values

e Cats are not better than dogs or vice-versa
— Can be used to differentiate records (e.g.,
pet=“cat” vs pet=“dog”)
 Numerical attributes (e.g., product-ids) may
also be treated as nominal

Dissimilarity of nominal attributes

e Let us define

 Examples
— d(Blue,Green) =1

Py
Py

— d(Green,Red) = 1

p
f

— d(Green,Green) =0 o0—0

Dissimilarity of nominal attributes

 We can form a dissimilarity matrix for Color:

0
Car2 mp| 1 0
1 0
0 1 1 0
L}
T
(*1000)

Blue Excellent

Green Fair 22

1

2

3 Red Good 64
4 Blue Excellent 28

Note

 Even for medium-sized datasets, the
dissimilarity matrix may not fit in memory as it

requires O(n?) space

* We use it in our examples in order to visually
inspect the computed pair-wise dissimilarities

Dissimilarity of ordinal attributes

In this case there is an ordering of the symbols

Consider rank of different values
— Fair (1) < Good (2) < Excellent (3)

Let
rank(a) — rank(b
d(a’b)zl (a) _ (b)]
maxrank — minrank
Examples
— d(Fair, Good)=|1_2|- 0.5

I3 1|
-1

— d(Excellent, Fair) = =1

Dissimilarity of ordinal attributes

* Dissimilarity matrix for Condition:

0
0
0.5 0.5 0
1 0.5 0

Color Mileage
(*1000)

C 1 Blue Excellent
2 Green Fair
0.5 3 Red Good 64
4

Blue 28

Dissimilarity of numerical attributes

* Compute:
la — b|
d(a,b) = :
maxvalue — minvalue
* Example
—d(45,22)=" '45 22' - 0.55

Color Condition Mileage
(*1000)

1 Blue Excellent

2 Green Fair

3 Red Good 64
4 Blue Excellent 28

Dissimilarity of numerical attributes

* Dissimilarity matrix for Mileage:

0
0.55
0.45
0.40

0
1
0.14

--

1
2
3
4

0
0.86

0

Blue Excellent
Green Fair

Red Good
Blue Excellent

64
28

Combining scores

e Simplest approach: take average of computed
dissimilarities

1
d (Mo r.b)= g : (dcolor(Y rb)'l'dcondition(Mo r-b)'l'dmileage(Y rb))

* Use weights to prioritize certain attributes

— e.g. user prioritizes mileage over color (w3 > w;)

d — Wl*dcolor(rarrb)+W2*dcondition(rar r.b)'l'vv3*dmileae(rar r.b)
(raf rb)_

W{+W,+W;

Example (weighted average)

 Assume mileage is more (2x) important than
color, condition

_ Wcolorzlr Wconditionzlr Wmileage=2

Take avg of dissimilarity matrices

0 0 0
1 1 0 0.55 0
+
1 0.5 0.5 0 0.45 1 0
0 0 1 0.5 040 0.14 0.86 0
3
0

0.85 0

0.65 0.83 0

0.13 0.71 0.79 0

Outcome

Data Matrix:

Color Condition Millage
(*1000)

1 Blue Excellent

2 Green Fair 22
3 Red Good 64
4 Blue Excellent 28

Dissimilarity Matrix:

0
0.85 0
0.65 0.83 0
0.13 0.71 0.79 0

Most similar pair of cars?

Most similar pair of cars

Data Matrix:

Color Condition Millage
(*1000)

1 Blue Excellent

2 Green Fair 22
3 Red Good 64
4 Blue Excellent 28

Dissimilarity Matrix:

0
0.85 0
0.65 0.83 0
0.13 0.71 0.79 0

John: | like Car #3

Data Matrix:

Color Condition Millage
(*1000)

1
2
3
4

Blue Excellent
Green Fair

Red Good
Blue Excellent

Dissimilarity Matrix:

0
0.85 0

0.65 0.83 0

0.13 0.71 |0.79

22
64
28

Can we rank the cars on
our lot based on their
dissimilarities to car #37

Nearest Neighbors of Car #3

Data Matrix:

Color Condition Millage
(*1000)

1 Blue Excellent
2 Green Fair

3 Red Good

4 Blue Excellent

Dissimilarity Matrix:

0
0.85 0
0.65 0.83 0
0.13 0.71 0.79

0

22
64
28

NN(Car #3) Most similar
Car#l (d(1,3) = 0.65)
Car#4 (d(4,3) = 0.79) l
Car#2 (d(3,2) = 0.83)

Less similar

Extended Data Matrix

Color Condition | Millage
(*1000)

1 Blue Excellent Supermini
2 Green Fair 22 Crossover
3 Red Good 64 SUvV

4 Blue Excellent 28 Small family

How do we treat the newly added Type
attribute?

Extended Data Matrix

Color Condition | Millage
(*1000)

1 Blue Excellent Supermini
2 Green Fair 22 Crossover
3 Red Good 64 SUvV

4 Blue Excellent 28 Small family

* How do we treat the newly added Type attribute?

— Small family cars more similar to superminis?
— SUVs more similar to Crossover?

Car-Type Hierarchy?

l City-car

l Supermini

Adventure-
car

l Crossover

SUV

2>

sneakers

laptop

N

high heels

Six products

ante
(‘9\(\0(\6 rp
Y
NE

=]

printer

smartphone

%
%
60
K
%

O,
K

N

T

Phone

Groups/Categories

Computers Communication Devices

smartphone

printer

sneakers

N

high heels

Shoes

Higher-level Categories

Electronics

Computers Communication

smartphone

printer

sneakers

N

high heels

Shoes

Utilize the Star Schema

TIME

time key
day

day_of the_ week
month

quarter

year

SALES

time_key
product_key

location_key

amount

PRODUCT

product key

product_name
category
sub-category

LOCATION

location key

store
street_address
city

state

country

region

B0

Using Hierarchies (simplified)

levels (0..3)
| Xoipwoé | Mooydpt o0pTL | Topi “ | Tdra | Dakéc | Docdho
— E 1
l Mnpiiora l IK aaaaaa l l Kupég ll DO - -l H?mp £G] l Xovtpég]
| (| Mpzonov | | Tiyaviee

| PO

— ——

Kitpwo l lKapona

 Assume a,b are leaves and Ica is their lowest
common ancestor in the hierarchy

Examples

ca("lpa
ca("Tpa
ca(“Tpa

3L8pa” ”q)E'[a”) — l(TUp’H

Blepa”, "ERamope”) = “Talaktokopka”

Blepa”, "Tiyavtec”) = “MPOIONTA”

32

Using Hierarchies (simplified)

| Xowpwo | Mooyapt ovpTL | Topi “ | [éha | Dorég | Dacoha | Poc
— L 3 —]
| Mapiona | | Komviors | | Kuie || oviro - -[mnp e] l Xovipég] Wnég Kitpwo l | Kaporiva
- Ztpayylo] B komé Tpeondv Tivavte
S l o

 Assume a,b are leaves and |p lIca|=the length of

the path towards their lowest common ancestor
(Ica)

— Define d(a,b) = trels_lflxcea;glht if azb, O otherwise

 Example
— d("TpaBrepa”, Peta”) =

(lca = “Tupl”)

33

Using Hierarchies (simplified)

| Xopwd | Mooydpt | Topt | Tdha | Dakég | Pacéha | Pou
| o T) 1 oL
l Mnpiloia l lKomvwrél l Kipdc ll Duéro - - l IMpe l Xovrpég] Pnhég Kitpwo l lKapona

pg]h

 Assume a,b are leaves and |p_lca|=the length of the
path towards their lowest common ancestor (Ica)

Ztpayylo l B komé

Hpeoniv T'iyavteg
acé

— Define d(a,b) = trels_PL(:eaiglht if azb, 0 otherwise

 Example

” ”n

— d("TpaBiépa”, "EBamops”) =§ (Ica = “TaAaktokopka”)

34

Using Hierarchies (simplified)

| Xowpwo | Mooydpt Topi| | Téo | | doxéc | 1§ Pacoho | Pl
—— —
| Mapiona | | Komviors | | Kuse || overo - l pec] l Xovtpég l ‘Pnk & Kizpwo || | Kaporiva
31] B komé
o BEiEs|

 Assume a,b are leaves and |p lIca|=the length of

the path towards their lowest common ancestor
(Ica)

. _|p_lcal .)
— Define d(a,b) = free height if azb, O otherwise
 Example
— d(“TpaBrepa”, "Tiyovtec”) = g (lca = “MPOIONTA”)

35

d(Crossover, SUV)=?

l City-car

l Supermini

Adventure-
car

l Crossover

SUV

d(Crossover, SUV)= %

Adventure-
car

l City-car

Supermini ol
Family

Crossover

COMBINING EVIDENCE

Combining similarities from
difference processes/sources

* Assume we have two separate processes for computing
similarities between users

* Process 1: assesses demographic data from the user
database (gender, age, marital status, etc.)

— Reports similarity score s; based on demographic data

* Process 2: considers their interaction with our systems (e.g.
purchases, logins, etc.)

— Reports similarity score s, based on user activity

Taking weighted averages

* We already saw this computation

Wi+W

sim =

 Can be fine-tuned to our preferences or trust
on these datasets

— E.g. if we believe that activity data is more
reliable or important, use w, > w;

Treating scores as evidence

* One problem with averaging is that low scores
from one of the two processes (e.g. due to
wrong/missing data) will lower the overall
calculation

— Example: s; =0.7, 5,=0.2, Average(s,, s,)=0.45
* Possible solution: take maximum score

— Take: Max(s, s,)=0.70
 Another idea is to treat each score as

independent evidence that each boosts our
confidence on the similarity between the users

Treating similarities as probabilities

* Assuming independence, combine scores in a
probabilistic manner

sim(s,,S,) =s;+5S,-5; *s, O

* |[n our example
— sim(0.7,0.2)=0.7+0.2-0.14=0.76

* Notice that sim(s,,s,) 2 max(s,,s,)

Using additional sources

This calculation can be extended in case we have more
sources suggesting similarity for the customers

— e.g. based on customer surveys s;= 0.8
Combine scores in a probabilistic manner

sim(sy, S, ,S3) = sim(sy, S,) + 53 - sim(s,, S,) *s;3

In our running example

— sim(0.7,0.2,0.8) =0.76 + 0.8 — 0.76*0.8 = 0.952
— Compare with average (0.7,0.2,0.8) = 0.56

— Compare with max (0.7,0.2,0.8) = 0.8

— Compare with min (0.7,0.2,0.8) = 0.2

WORKING WITH SETS

How do we compare sets?

UserA= {milk, bread, coffee}

UserB= {milk, bread

UserC= {milk, bread

, donut}
, soda, potatoes}

Straightforward idea: look at their intersection
— Intersection(UserA,UserB) = {milk,bread}

— Intersection(UserA,UserC) = {milk,bread}

Intersection not enough!
— Need to look at their differences too

46

Set similarity: Jaccard Index

e Jaccard(S1,52) = the ratio of the sizes of the
intersection and of S1 and S2

— Jaccard(S1,52) =|S1nS2|/|S1US2 |

.\ intersection

\ J
|

* Note that [S1NS2|<|S1US2 |
 Thus, 0 <Jaccard(S1,52)<1

47

Jaccard Index Examples

Recall: Jaccard(S1,52) = [S1nS2|/|S1US2 |

1
Jaccard({potatoes, lettuce}, {potatoes, tomatoes}) = 3

1
Jaccard({potatoes, lettuce, cucumbers}, {potatoes, tomatoes, ketchup}) = <

2
Jaccard({potatoes, lettuce}, {potatoes, lettuce, tomatoes}) = 3

Jaccard({lettuce}, {milk, soda}) =0

Jaccard({soda, milk}, {milk, soda}) =1

48

Toy exercise
(python jupyter notebook in e-class)

 Assume the following 5 customers with their
purchases

userl : ['milk’, 'bread’, 'coffee’]
user? : ['milk’, 'bread’, 'cola’]
user3 : ['cereal’, 'milk’, 'donut’]
userd : ['donut’, 'cream’, 'cola’]
user5 : ['cola’, 'milk’, 'cereal’, "tea’]

e Can you group these customers into two
clusters?

L Separate data into disjoint groups such that:
CI u Ste ri n O Increased similarity among members of the same
g group (cluster cohesion)

O Members of different groups are dissimilar

. “."o

2 .. O'a
1- o 00“.}

The famous k-Means algorithm

Assume n points in the Euclidian space and a user-defined
value of k=#clusters

Pick k points (centroids), one per cluster
Assign remaining points to closest centroid
In each cluster update location of its centroid
Reassign points, if necessary

Repeat steps 3-4 until clusters stabilize

e e

k-Means seeks to minimize the sum of squared distances
(thus the variance of the distances) from the centroids

— the algorithm always converges to some (local) minimum
solution

Example for k=3

S o Initial centroids are
\ e 4. .
\ existing dataset points
\ -
\ /’ ‘ S
® \ o @ N
P ’ o \
h / @ \
/
@ \
/ ll o © 1
o
! I
7’
_ - \ /
\ /
N y
N /
PRl 7
e S < -
, o N
/7 \
/ \\
I/ ® () \
1@ \
I (] ‘I
o o I
1 I
\@ /
\ /

New centroids + reassignment

updated centroids may not

T T R ~ \\be part of the dataset
7 N ,’ Py \
/7
\ O \
P e \ ¢ @ o @
/ O j
O \ \
fe o T
() |
@ ;) o © |
\ @ O \ L /
. @ © / \
/
\\ Y \\ /7
N ,/ -~ ,/
__—’ /’ \\\ P d
~— -
e N
/
/ ‘ \
, \)
| \ reassignment
I ® !
1 (] [| ['|
\\) ,
. @) /
\ //
\
N) ,
~ P d

Wa it | O Our dataset is not points in a Euclidian space
[]

O There is no obvious way to compute a “centroid”

3 1 00.00.

2 - ‘. ‘.u
1 - o o"‘ }

Our data:
01 ® o o o @ userl : ['milk’, 'bread’, 'coffee’]
l. ® o user2 : ['milk’, 'bread’, 'cola’]
1] ®e® S . user3 : ['cereal’, 'milk', 'donut’]
".\. ® user4 : ['donut’, 'cream’, 'cola’]
e © ® user5 : ['cola’, 'milk', 'cereal’, 'tea’]

]

| | | | |

-2 -1 0 1 2 3

Hierarchical Clustering to the rescue

- i h
’f’ N\\
/’/’-Il TSN |
0= Fd N
72 ! b ™ \ '@ O\ f g
/Ila . I\ \ e \l
1l @ 7f S J I_l |-—|
7’ N /
\ ‘___’ I -~ -
v .C’ ,
S pid U’ d b C d e
N - - _

Initial set of clusters

Executive decision

e Purchases are modelled as sets of items

— Use Jaccard for computing customer pair-wise
similarity

userl : ['milk’, 'bread’, 'coffee’]

user? : ['milk’, 'bread’, 'cola’] |
user3 : ['cereal’, 'milk’, 'donut’]

userd : ['donut’, 'cream’, 'cola’]

user5 : ['cola’, 'milk’, 'cereal’, "tea’]

~ Jaccard_sim =2/4=50%

~ Jaccard_sim=1/6=16%

Jaccard Similarity

* All-pair similarity computation

userl
user2
user3
userd
user5

: ['milk’, 'bread’, 'coffee’]
: ['milk’, 'bread’, 'cola’]
: ['cereal’, 'milk’, 'donut’]
: ['donut’, 'cream’, 'cola’]

: ['cola’, 'milk’, 'cerea

III
’

tea’]

—>

Jaccard_sim of userl, user2
Jaccard_sim of userl, user3
Jaccard_sim of userl, user4
Jaccard_sim of userl, user5
Jaccard_sim of user2, user3
Jaccard_sim of user2, user4
Jaccard_sim of user2, user5
Jaccard_sim of user3, user4
Jaccard_sim of user3, user5
Jaccard_sim of user4, user5

0.5
0.2
0.0
0.16
0.2
0.2
0.4
0.2
0.4
0.16

Hierarchical Clustering

* Merge most similar pair to form a new cluster

userl
user2
user3
userd
user5

: ['milk’, 'bread’, 'coffee’]
: ['milk’, 'bread’, 'cola’]
: ['cereal’, 'milk’, 'donut’]
: ['donut’, 'cream’, 'cola’]

: ['cola’, 'milk’, 'cerea

III
’

tea’]

—

Jaccard_sim of userl, user2
Jaccard_sim of userl, user3
Jaccard_sim of userl, user4
Jaccard_sim of userl, user5
Jaccard_sim of user2, user3
Jaccard_sim of user2, user4
Jaccard_sim of user2, user5
Jaccard_sim of user3, user4
Jaccard_sim of user3, user5
Jaccard_sim of user4, user5

0.5
0.2
0.0
0.16
0.2
0.2
0.4
0.2
0.4
0.16

New state

 Merge best pair (userl+user2) to form a new
cluster

— Represent cluster of customers as their union (not
ideal, other options exist)

e [VanclY ! 1)
7 7

e [VanclY ! 1)
7 7

user3 : ['cereal’, 'milk’, '"donut’]

userd : ['donut’, 'cream’, 'cola’]

user5 : ['cola’, 'milk’, 'cereal’, ‘tea’]
userl+user? : ['bread’, 'cola’, 'milk’, 'coffee’]

Next step

(most similar pair: user3, userb)

user3 : ['cereal’, 'milk’, 'donut’]

userd : ['donut’, 'cream’, 'cola’]

user5 : ['cola’, 'milk’, 'cereal’, ‘tea’]
userl+user? :['bread’, 'cola’, 'milk’, 'coffee’]

userd : ['donut’, 'cream’, 'cola’]
userl+user2 :['bread’, 'cola’, 'milk’, 'coffee’]
user3+user5 : ['cereal’, 'donut’, 'milk’, 'cola’, 'tea’]

Final step
(most similar pair: user4, user3+user5)

userd : ['donut’, 'cream’, 'cola’]
userl+user? :['bread’, 'cola’, 'milk’, 'coffee’]
user3+user5 : ['cereal’, 'donut’, 'milk’, 'cola’, 'tea’]

userl+user? :['bread’, 'cola’, 'milk’, 'coffee’]
user4+user3+user5 : {'donut’, 'cereal’, 'milk', 'cream’, 'cola’, 'tea'}

Cluster 1 Cluster 2

Notes

* In this toy example we performed Hierarchical Clustering up
to 2 clusters without checking the quality of the intermediate

clusters
— Sometimes it is better to stop sooner that later

* To simplify the code, we used as a representative (clustoid) of
a cluster the UNION of its members
— Can you think of examples where this is a bad choice?

Cluster 1 Cluster 2

userl : ['milk’, 'bread’, 'coffee’]
user? : ['milk’, 'bread’, 'cola’]

Jaccard Distance between sets

* Can be defined as the complement of their
Jaccard similarity

~|S1ImS2) _
IS1US2|

\ J
|

—d.,(51,52) = 1

How about
?

Bags are “sets” with
repetition of elements
allowed

Jaccard can be extended to
work with bags

Intersection(S1,52): count an
element n times in the Union(S1,52): count the element
intersection, where n is the the sum of the number of times
minimum of the number of times it appearsin S1, S2
the element appears in S1 and S2

Example

« S1={a,a,a,b}, S2 ={a,a,b,b,c}

* Then, intersection is {a,a,b} and union
{a,a,a,a,a,b,b,b,c}

* Bag-similarity is thus, 3/9 =1/3

* Note, bag similarity is between 0 and % (why?)

Alternative bag similarity

e Count an element n times in the intersection,
where n is the minimum of the number of

times the element appears in S1 and S2

* In the union, count the element the max of
the number of times it appears in S1, S2

Example (alt)

e S1={a,a,a,b}, S2 ={a,a,b,b,c}

* Then, intersection is {a,a,b} and union
{a,a,a,b,b,c}

* Bag-similarity of S1, S2 is thus, 3/6 = 50%

* Note, alternative bag similarity is between O
and 1 (why?)

Bag Similarity Example

* Movies ratings dataset
— John: Star_Wars_1:3/5, Avatar: 4/5, Aliens: 2/5
— Mary: Star_Wars_I: 2/5, Avatar: 5/5, ET: 4/5
— Nick: Star_Wars_1: 4/5, Aliens: 2/5, ET: 1/5

* Who is the Nearest Neighbor of John?

* Note: if treated as sets
— Jaccard(John, Mary) = Jaccard(John, Nick) = 2/4 = 50%
— Let us consider their bag similarity instead!

Bag Similarity Example

* Convert to bags:

— John: {Star_Wars_I, Star_ Wars_|, Star_Wars_|I, Avatar,
Avatar, Avatar, Avatar, Aliens, Aliens}

— Mary: {Star_Wars_|, Star_Wars_|, Avatar, Avatar,
Avatar, Avatar, Avatar, ET, ET, ET, ET}

— Nick: {Star_Wars_|, Star_Wars_|, Star_Wars_|,
Star_Wars_|, Aliens, Aliens, ET}
* Bag similarity alt(John,Mary) =(2+4)/(3+5+4+2)
=6/14 =42.9%
* Bag similarity alt(John,Nick) = (3+2)/(4+4+2+1)
=5/11 =45.5%

WORKING WITH VECTORS

Basket data example

* Three distinct products:
— potato (p), lettuce (l),

Vector Model

tomato (t) <#p,H#l Ht>
* Three users with the
following purchases >
— John: 2 potatoes, 1 lettuce 1=<2,1,0>
— Kostas: 1 tomato —> K = <0,0,1>
— Mary: 10 potatoes, 6 N = <10,6,0>

lettuces

Definition of Euclidean Distance

e X=<2,1,0,5>
e v=<5,6,1,10>

e Recall that:

d(x,V)=y(2 —5)2+ (1 — 6)2+ (0 — 1)2 + (5 — 10)?

=9 + 25+ 1 + 25=/60 = 7.75

Euclidean Distance NN Calculations

tomatoes
Vector Model
1 =<2,1,0>
K =<0,0,1>
Kostasoﬁ\
M = <10,6,0>

potatoes

~® Mary

Kostas is the nearest neighbor of John!!!

Angle Calculations:
favor direction over length (norm)

t a

Vector Model

Kostas ©

John

When to use Cosine?

-
F|
-

|

i

s

Cosine Similarity

* sim(X,y) = cos(B(X,y)) € [-1..+1]
— Used in collaborative filtering

— Popular in document matching

—

cos(6(J, K)) = cos(90°) =0
s cos(6(J, M)) = cos(4.3°) = 0.997

M\hr\’
Mary

78

Dot (inner) product between two
vectors
. X. \7=Z(Xk * Vi)

 Example:

%= (1)3,0,5) &
= (1)0,16)
e Then: .

X . y=1*143*0+0* 1+5*6=31
= |X]*|y|*cos(B(x, y))

From dot to cosine

—>

-> > X
cos(0(x, y))= |

Y

|y

In this example
IX| =V I2+32+0?+52=~/35
Y|=V1Z+07+12+62 =/ 38

31

J35+/38

cos(B(X, v))= — 0.85

Dot product with unit vector

X.V=2(x * vy

Example for unit vector y:

x=(1,3,0,5)
v=1(1/2,1/2,1/2,1/2)

Notice that |y|=1

Then:

X .y=1/2+3/2+5/2=9/2=4.5
= [x|*1*cos(8(X, ¥))

Random Hyperplane Projection

(Mining Massive Data Sets, Sec. 3.7.2)

O wuses n d-dimensional
random vectors (rv;)

Generates for each input
vector a bitmap of size n as
follows:

O

Sets bit;=1 if dot product of
input vector with i-th
random vector is positive
Sets bit;=0 if dot product of
input vector with i-th
random vector is negative

A

I'Vy

Locality Sensitive Hashing (LSH)

e Assign items to buckets using o
a hash function h(x) O O

— E.g. h(@)=0110 in binary ® o

— Details of function h() depend

on the preferred similarity
metric:

* Similar objects are hashed to the
same bucket with high
probability

* Dissimilar objects are hashed to O
the same bucket with very small

probability O

e
* Repeat several times o |@®
O O

Buckets 83

Is RHP a locality-sensitive hashing

scheme?

O Assume vectors for customers

O

x and y point (approximately)
towards the same direction

[0 This means their cosine is close
to 1l

We expect that with high

probability the RHP values will
be identical

Use RHP encodings as “bucket
ids”
[0 Similar customers are hashed to

the same bucket (with high
probability)

A

RHP(x)=RHP(y)

I'Vy

1

0

0

1

Hamming Distance

* The Hamming distance between two equal-
length strings of symbols is the number of
positions at which the corresponding symbols
are different (Wikipedia)

— D,(‘00110107,
’10110110°) = 3
— Dy (‘abc’/acc’) =1

Approximate Similarity Computation via Hamming
Distance of RHP bitmaps

RHPx:'0 0 1 0 1 1

< n bits /y

* Vectors are collinear (6(X]y)=0, cosine similarity = 1)

v

Approximate Similarity Computation via Hamming
Distance of RHP bitmaps

RHPx: 110 1 0|0 y

v

* \Vectors are opposite (0(X)y)=n, cosine similarity = 0)

Approximate Similarity Computation via Hamming
Distance of RHP bitmaps

A
v

RHP(y):OO'IO 1 1

G(X,y) y

O(RHP), RHP,,)=2/6*n=n/3

Estimate 0(x,y)=Dn(RHP,RHP,))*n/n

Also works for the Pearson correlation
— Cor(x, y) = Cos(x-x, y-y)

RHP Example

J=<2,1,0>
K=<0,0,1>
Kostas
T:‘\. | M =<10,6,0>
John
/ o 1=<3 165
rv2=<-5,3,2>

e Calculations for John:
e <2.1,0>.<3,1,6>=2*3+1*1+0*6=+7 =2 bit =1
¢ <2,1,0>.<-53,2>=-10+3=-7 2 bit=0

* Thus, RHP(John) =10

RHP Example

J=<2,1,0>
K=<0,0,1>
Kostas
b\. | M =<10,6,0>
John
/ o 1m<3 165
rv2=<-5,3,2>

e Calculations for Kostas:
¢ <0,0,1>.<3,1,6> =46 = bit=1
¢ <0,0,1>.<-5,3,2>=+2 =2 bit=1
 Thus, RHP(Kostas) = 11

RHP Example

J=<2,1,0>
K=<0,0,1>
Kostas
b\. | M =<10,6,0>
John
/ o 1=<3 165
rv2=<-5,3,2>

e Calculations for Mary:
¢ <10,6,0>.<3,1,6>=+36=> bit =1
¢ <10,6,0>.<-5,3,2>=-32 2 bit=0
* Thus, RHP(Mary) =10

RHP Example

] =<2,1,0>
Kostas $\I K= <O'O'1>

\ : M = <1O/6;O>
John

Mary

RHP(John) = RHP(Mary) = 10
e Hamming distance =0
e Estimated angle is O

— Thus, estimated cosine similarity = 1
— True cosine = 0.997

 Good accuracy by using just two bits!
— Disclaimer: | am cherry picking favorable examples here

92

RHP Example

] =<2,1,0>
K=<0,0,1>
Kostas

™~ = M =<10,6,0>

* RHP(John) =10, RHP(Kostas) = 11

« Hamming distance = 1 (out of n = 2 bits)

* Estimated angle is /2 = 90°
— Thus, estimated cosine similarity = cos(m/2) =0
— This is also the true cosine similarity

93

WORKING WITH STRINGS

String distance computations

 Why it is useful
— String Matching
— Spelling Checking
e Examples

— Fix data entry errors: replace “Yiannis” with “Yannis”

— Address matching/correction
e Compare “Patission” , “Patision Str”, “Patission St”

— Fraud Detection

e Are “Kotidis123”, “Kotidis554” and “7Kotidis123”
the same user?

String Edit Distance

* The edit distance between strings x = x,X,..X, and

Y = VY,Y5..¥,, IS the smallest number of insertions
and deletions of single characters that will
convertxtoy

* As an example to convert x="abcde” toy
="acfdeg”
1. delete b and get “akcde”
2. insert f after c and get “acfde”
3. insert g after e and get “acfdeg” =y

* Thus, d 4(“abcde”,”acfdeg”)=3

Longest Common Subsequence (LCS)

* The LCS of x and y is the longest common

string that is constructed by deleting positions
from xandy

— For x="abcde” to y =“acfdeg”

— LCS(x,y) = “acde”
* It holds that

— dgit(x,y¥)= len(x)+len(y)-2*len(LCS(x,y))
* In our example d_4(X,y)=5+6-2*%4=3

Levenshtein Distance

* |n addition to insertions and deletions of single
characters, Levenshtein distance also allows

substitutions
* As an example, for x="“STALL” and y=“TABLE”,
dlev(xry)=3
1. (starting with “STALL”) delete S and get “TALL",
2. substitute first L with B and get “TABL”,
3. insert E at the end and get “TABLE”

* In comparison d 4. (“STALL", “TABLE”",)=4
— Notice that 1 substitution < 1 deletion + 1 insertion

Note

* |n the literature sometimes Levenshtein
distance is referred as edit distance (e.g. edit
distance adjusted to permit insertions,
deletions as well as substitutions)

Additional Metrics for strings

 Damerau-Levenshtein distance further allows
transportation between two successive

characters
— Corssroads = Crossroads

e Jaro distance only allows transportations

Time Series

Sequence of data points
indexed in time order

— Examples: financial data,
sensor data, speech, etc
— Univariate (running
examples) vs multivariate
Can be compared with
Euclidean distance (given two
series of same length)
— The it point on one time
series is aligned with the
ith point on the other

However, this often gives poor
results

Does not work if series have
difference lengths

)

_—
i

time

Image from
https://medium.com/datadriveninvestor/dynamic-time-warping-dtw-d51d1lale4afc

Time Series - Euclidean Distance

. Sx=<2,1,0,1>
. Sy=<2,0,2,3>

Euclidean-distace d(Sx, Sy)=
V2 =2)2+(1-0)2+(0—2)2 + (1 —3)?
= V0% + 12 4 22 4 22
=vV0+1+4+4
=/9=3

Time Series - Euclidean Distance

*+ Sx=<2,1,0,1>
* 5y=<2,0,2,3,1,2,2,0,4>

What now?

Time Series - Euclidean Distance

*+ Sx=<2,1,0,1>
* 5y=<2,0,2,3,1,2,2,0,4>

Padding (convert to same length)?
e Sx=<2,1,0,1,0,0,0,0,0>
* S5y =<2,0,2,3,1,2,2,0,4>

Alternatives to zero padding?

Dynamic Time Warping

DTW computes the best
alignment between the two-
time series

— Works even if the input series
have different lengths

— Useful if series have different
frequencies or are out of phase

(e.g. lag)
Has been shown to be
superior than Euclidean
distance for tasks such as
time series classification

Drawback: quadratic
complexity O(n?) | | | |

Image from
https://medium.com/datadriveninvestor/dynamic-time-warping-dtw-d51d1lale4afc

Computation complexity: O(n*m)

Start A/\

End

Example: Time Series Classification

—_

Binary

Problem Statement classification

e Q@Given:

— ntime series Xx4,.., X, along with
their labels (classes) y,.., y, to be ‘
used as training examples

— a time series x with an unknown
label

e Goal: ‘
— classify x: find the class label of x

Intuition

In a perfect world:

 Assume there is another data point
(time series) x; that is very similar to
the input series x

* We would then pick the label y; of x; as
our selection

* This decision is optimal if x = x; or, X@
equivalently when d(x, x,)=2>0
In practice: \«

e We will look at labeled data from the Some example x;
neighborhood of x, with known label y;

k-NN algorithm

e Q@Given:

— ntime series xy,.., X,, along with their
labels (classes) y;,.., Yy, to be used as
training examples

— atime series x with an unknown
label

* Goal:
— classify x: find the class label of x

* Intuition:

— assign x to the class most common
among its k nearest neighbours

e Considerations:
— selection of k
— weigh neighbours

k-NN algorithm

e Q@Given:

— ntime series xy,.., X,, along with their
labels (classes) y;,.., Yy, to be used as
training examples

— atime series x with an unknown
label

e @Goal:
— classify x: find the class label of x

* Intuition:

— assign x to the class most commort
among its k nearest neighbours

e Considerations:
— selection of k
— weigh neighbours

k-NN algorithm

e Q@Given:

— ntime series xy,.., X,, along with their
labels (classes) y;,.., Yy, to be used as
training examples

— atime series x with an unknown
label

e @Goal:
— classify x: find the class label of x
* |ntuition:

— assign x to the class most commoné‘
among its k nearest neighbours

e Considerations:
— selection of k
— weigh neighbours

Comparing Distributions (1)

Pet-shop A Pet-shop B
> 4
= =)}
cat dog bat snake cat dog bat snake
pets pets

~

Categorical domain

Comparing Distributions (1):
Convert to vectors

Pet-shop A Pet-shop B
> 4
I : I * H 10
= [~]
cat dog bat snake cat dog bat snake
pets pets

<3,5,0,4> vs.<4,3,2,0>

 Makes sense for categorical domains

Comparing Distributions (2):
Earth Movers Distance

34 353637383940 34 3536 37383940
Customer age Customer age

Image source: https://sbl.inria.fr/doc/Earth_mover_distance-user-manual.html

EMD Intuition @ Ficotan

‘ Hole in the ground

 Compute minimum amount of work required to
change one distribution into the other.

— Unit of work: the amount of work necessary to move one
unit of weight by one unit of ground distance.
* Informally: work = amount of dirt moved x distance travelled

— Ground distance: the distance measure between weight

locations.
EMD(X.Y) = min(Work(X,Y))
"7 min(Weight(X), Weight(Y))
e EMD allows partial matching (when cumulative Work = 2*d;+3*d,+1*d;

weights don’t match): Weight(X)<>Weight(Y)
— all the weight in the lighter distribution should be
matched to weight in the heavier distribution
— In this case EMD(x,y) is not a distance metric

EMD = WORK / 6

Compare results of Clustering

* Clusters: {(x;,n)), i=1,..n}
— X; is the cluster centroid

—n, is the size of the cluster
O O

O
O ; ©

Compare Features Exported from
dataset

* Features: {(f,n), i=1,..n}
—f. : feature |
— n, : number of times f, appears in dataset
— Ground distance: dist(f;,f;)

Comparing Time Series?

Sun (30)

<80,10,20,10,15,15,30> <40,20,10,15,20,15,50>

Neat Application:
Word Movers Distance (Kusner et. al.)

4
document 1 , ‘gr.eets’ document 2
Obama Obama o The
L 2

speaks Wi, 2 , ‘speaks’ President

to President greets

the the
media ‘Chicago’ press

in ° ‘media’ in
Illinois ‘4 3 o ‘, . Chicago

Illinois® press

word2vec embedding

