Deep learning technig
for Graph Embeddi

\/

€5
25

Yannis Kotidis

Acknowledgements

* Some of the presented material adapted from the following sources:

* |SMB 2018 Tutorial on Deep Learning for Network Biology
(http://snap.stanford.edu/deepnetbio-ismb/)

* DeepWalk: Online Learning of Social Representations, Bryan Perozzi, Rami Al-
Rfou, Steven Skiena, Stony Brook University KDD 2014

* https://towardsdatascience.com/overview-of-deep-learning-on-graph-
embeddings-4305c10ad4a4

* http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-
model/

http://snap.stanford.edu/deepnetbio-ismb/
https://towardsdatascience.com/overview-of-deep-learning-on-graph-embeddings-4305c10ad4a4

Motivation

Node embeddings: intuition

Input f Output
Map nodes to d-dimensional space such that similar
nodes in the graph are embedded close together

Deep Learning for Network Biology --
snap.stanford.edu/deepnetbio-ismb -- ISMB 2018

Embedding methods

e Several existing methods:
* node2vec, DeepWalk, LINE, struc2vec

* These techniques extract topological features in the form of common
neighbors, paths, random walks, rooted trees, etc in order capture
different notions of node similarity

* They utilize these features in order to embed graph nodes in a d-
dimensional space

Simple Idea: two nodes are similar if they are
connected

* Let A be the adjacency matrix for the graph
* Then A, =1 iff there is an edge between nodes u,v

* Let z,, z, be the n-dim vector representations of
these nodes, respectively
* Let z,'z, denote their similarity (inner product)
* We seek representations such that:

T- ~
L, Ly = Au,v

Simple Idea: two nodes are similar if they are
connected

* Let A be the adjacency matrix for the graph
* Then A, =1 iff there is an edge between nodes u,v

* Let z,, z, be the n-dim vector representations of
these nodes, respectively
* Let z,'z, denote their similarity (inner product)
* We seek representations such that:

Trivial for two nodes:
T. ~
Z, L, = Au,v Zu=(0,1,0)

Zv=(0,1,0)

Simple Idea: two nodes are similar if they are
connected

* Let A be the adjacency matrix for the graph
* Then A, =1 iff there is an edge between nodes u,v
* May use edge-weight for weighted graphs
* Let z,, z, be the n-dim vector representations of
these nodes, respectively

* Let z,'z, denote their similarity (inner product)
* We seek representations such that:

T - Zu=(0,1,0)
Z, L, = Au,v Zv=(0,1,0)

Now what?

Adjacency-based Similarity

= Similarity function is the edge weight between u and v
in the network

= Intuition: Dot products between node z,'z, embeddings
approximate edge existence

L= Z HZIZ’U — Au,vH2
/ (u,0)EV XV \

loss (what we want ’\
to minimize)

(weighted)
sum over all adjacency matrix
node pairs for the graph

Adjacency-based Similarity Shortcomings
* Complexity: must consider all node pairs 20(|V|?) runtime
* Only considers direct connections (example bellow)

These two nodes are dissimilar
per our definition of similarity

Also, we expect red nodes be more similar to
Green nodes compared to
despite none being directly connected

10

Multi-Hop Similarity

Idea: Define node similarity function based on
higher-order neighborhoods

= Red: Target node
» k=1:1-hop neighbors
" |.e., adjacency matrix A
= k=2: 2-hop neighbors
= k=3: 3-hop neighbors
How to stochastically define
these higher-order
neighborhoods?

mmm) Random Walks ’

k=3

Random Walk Example

* Start from source node v, and walk for a while following graph edges
* Collected path: v, v; 2 v, Vi 2 V; 2 Ve 2 Vg, 2 Vg

= |ntuition: nodes are similar
if they are “close” in the
network topology

= Such nodes frequently co-

occur in a random walk
= We will learn embeddings
=3 that will boost the similarity
between such nodes

Word2vec

* Popular technique for creating vector representations of words

* Intuition: Two words are similar if the frequently appear in the same context
e Same context = within small distance in the same sentence
* |s believed to capture both syntactic and semantic relationships between
words:

* Let @(x) be the learnt representation (vector) of word x
* O("King") - ©("Man") + ®("Woman") = ®(“Queen”)

A o More examples (from product descriptions in online catalogs):
- (https://medium.com/arvind-internet/applying-word2vec-on-our-catalog-data-2d74dfee419d)
\I * shirt — buttons =~ sweater

e suit — shirt — bow — waistcoat = jeans
WOMAN e party + weekend + clothing = holiday

https://medium.com/arvind-internet/applying-word2vec-on-our-catalog-data-2d74dfee419d

The Skip-gram model

Source Text (window=2) Training
Samples
]) . -quick brown |fox jumps over the lazy dog. == (the, quick)
* Given an input word try to predict (the. brown)
the previous w and following w
words (w=window SiZE) The brown |fox|jumps over the lazy dog. = (quick, the)

* Inthe last training sample for

(quick, brown)

(quick, fox)
input = fox try to predict quick,
brow, jumps, over The quick- fox|Jjumps|over the lazy dog. = (brown, the)
prediction (brown, quick)
(brown, fox)
uick (brown, jumps)
The|gquick|brown - Jumps| over |the lazy dog. = (fox, quick)
brown (fox, brown)
(fox, jJumps)
(fox, over)
jumps

P[“quick”

over
I | P[“brown” | ®(“fox”)]
P[Iljumpsﬂ |q)(llfoxll)]

Learn a representation @(“fox”) that maximizes these probabilities:

P[“over”

|O(“Fox”)]

| D(“fox”)] for this training input

Neat Idea (Deep Walk)

* In the previous discussion replace
* Words with graph nodes
* Sentences with node sequences from short random words

* Observation
* Words frequency in a natural language corpus follows a power law

* Vertex frequency in random walks on scale free graphs also follows a power
law

* Advantages

* Flexibility: captures local and higher-order neighborhoods

* Efficiency: Do not need to consider all node pairs when training
e Consider only node pairs that co-occur in random walks

Deep Walk Framework

window =1

v49| V3 2 V2 Vg 2 Vy 2 Vg 2 Vg 2 Vgg
W W2 o
.t :. - 'l' .i Y 9 o Randﬂm Walks T,]:l Uj =i LT
'. " .u 2N . —> 5}
o ® o\ » 1 (I)
S Il/"_'“'\\] .
1) Input: Graph 3) Representation Mapping
s
D » .‘
0+ Sy a o o im 4
10t ' o) ' : n_
1.2 -:. ®
(v,) oo s ®

(4) Hierarchical Softmax

2.5

’3} Output: Representation

Il i i Il Il Il Il
-1La 05 0o 0.5 1.0 1.5 2.0

17

node2vec: Biased Walks

Two classic strategies to define a neighborhood Ny (1) of
a given node u:

Nprs(u) = {s1,52,53} Local microscopic view
Nprs(u) = {s4,55,5,} Global macroscopic view

Interpolate BFS and DFS

Biased random walk R that given a node u generates
neighborhood Ny (u)

* TwWo parameters:
* Return parameter p:
* Return back to the previous node

* |[n-out parameter q:
* Moving outwards (DFS) vs. inwards (BFS)

Biased Random Walks

Biased 2"d-order random walks explore network neighborhoods:
* Rnd. walk started at u and is now at w
* Insight: Neighbors of w can only be:

Idea: Remember where that walk came from

23

Biased Random Walks

* Walker is at W. Where to go next?

1/p,1/q,1 are
unnormalized
probabilities

started at u ‘ @

* p», q model transition probabilities
* p.."“return” parameter (lower values are preferable)
* g .. "walk away” parameter (lower values are preferable)

24

Biased Random Walks

* Walker is at W. Where to go next?

Si||1/p
s, | 1
ss| 1 1/q
* BFS-like walk: Low value of p /
* DFS-like walk: Low value of g Unnormalized

Ns(u) are the nodes visited by the walker

transition prob.

25

BFS vs. DFS

BFS:
Micro-view of
neighbourhood

DFS:
Macro-view of
neighbourhood

26

Experiment: Micro vs. Macro

Interactions of characters in a novel:

p=1, =2
Microscopic view of the
network neighbourhood

% 0..:..: -

f.' @9 0o%

-l ® :i.i..: :

u%' %

p=1, g=0.5
Macroscopic view of the
network neighbourhood

27

Node2vec example

Input network Clustering of resulting 2-dim vectors

(p=1,9=2,w=3) with k-Means (k=2)

Mel

Mike

/}ohn : Maia

Jim _ _ / *
//Tlm | Maya
/Helen ’ Sara
Sara .
Mary/
i o Helen
Mel aria
Maya \Mike John

im

Graph Convolutional
Networks

GCNs application

* Semi-supervised learning: Given a single network with partial nodes
being labelled and others remaining unlabelled, GCN’s model can
identify the class labels for the unlabelled nodes

* Graph node embedding: We can use GCNs to represent each node as
an aggregate of its neighbourhood and derive node embeddings

* For more details see https://arxiv.org/pdf/1609.02907.pdf

What is Convolution
(image processing)

* Try to learn from the provided image by
computing weighted averages of pixel values of the
red pixel along with its neighbours

e Pass the computed result to an activation function
that propagates the result to the next layer of the
CNN.

Image source
https://medium.com/@sunitachoudhary103/how-to-deal-the-graphs-data-in-deep-learning-with-graph-convolutional-networks-gcn-39f69db072ee

Convolution in graphs

* Derive a hidden representation of the red node,
by taking the average value of the available features
of the red node along with its neighbours

Image source
https://medium.com/@sunitachoudhary103/how-to-deal-the-graphs-data-in-deep-learning-with-graph-convolutional-networks-gcn-39f69db072ee

Let's see an example

Node list: ['John', 'Mary', 'Sara', 'Helen', 'Tim', 'Jim', 'Maria', 'Mike', 'Mel', 'Mavya']
Original adjacency matrix:
Graph [[0. 0. 0. 0. 1. 1. 0. 0. 0. 0.1
[0. 0. 1. 0. 0. 0. 1. 1. 1. 0.]
[0. 1. 0. 1. 0. 0. 0. 0. 0. 0.]
john [0. 0. 1. 0. 1. 1. 0. 0. 0. 0.]
[1. 0. 0. 1. 0. 1. 0. 0. 0. 0.] . .
Z>Tim [1. 0. 0. 1. 1. 0. 0. 0. 0. 0.] - Adjacency Matrix A
Jim [0. 1. 0. 0. 0. 0. 0. 1. 1. 0.]
\‘:e [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.1
len [0. 1. 0. 0. 0. 0. 1. 1. 0. 1.] L . .
0. 0. 0. 0. 0. 0. 0. 0. 1. 0.11 | Note: in this example the graph is
\ undirected, thus A is symmetric
Sara
Mary :
\vana
Mike
Mel —
/

Maya

Let's see an example

Node list: ['John', 'Mary', 'Sara', 'Helen', 'Tim', 'Jim', 'Maria', 'Mike', 'Mel', 'Mavya']
Original adjacency matrix:
Graph John ———— [[0. 0. 0. 0. [L= 4. 0. 0. 0. 0.7 |
[0. 0. 1. 0. 0. 0. 1. 1. 1. 0.]
[0. 1. 0. 1. 0. 0. 0. 0. 0. 0.]
@\r [0. 0. 1. 0. 1. 1. 0. 0. 0. 0.]
[1. 0. 0. 1. 0. 1. 0. 0. 0. 0.] . .
C . Tim [1. 0. 0. 1. 1. 0. 0. 0. 0. 0.] - Adjacency Matrix A
Jim [0. 1. 0. 0. 0. 0. 0. 1. 1. 0.]
\‘}e [0. 1. 0. 0. 0. 0. 1. 0. 1. 0.1
len [0. 1. 0. 0. 0. 0. 1. 1. 0. 1.] L . .
(0. 0. 0. 0. 0. 0. 0. 0. 1. 0.11 | Note: in this example the graph is
\ undirected, thus A is symmetric
Sara
Mary
\varia
Mike
Mel —
/

Encode two features using matrix X

(features don’t have to be exclusive)

Node list: ['John', 'Mary', 'Sara', 'Helen', 'Tim', 'Jim', 'Maria', 'Mike', 'Mel', 'Mavya']

#PLAY WITH TWO FEATURES (PAO, AEK)
#John, Tim = PAO
#Mel, Maya = AEK

X=np.matrix ([
1,07,

-

-

]

]

-

-

Maya

-

 ~/ /A /7 & Ak ek e
o O O O OB O O o

-
il = & B o I o i ab N ol o

-

| IS Ry N [I S SR S S— S—) —
[EEE - - - - - - -

Aggregate features

Mel

e Let X be a n*k matrix encoding k features

for each of the n nodes - Maya
AEK
* Question: what does A*X produce? | [,
A [[0. 0. 0. O. 1. 1. 0. 0. 0. 0O.] [0 |0f] X

Mary — | [0 0. 1. 0. 0. 0. 1. 1. L. 0.]

(0. 1. 0. 1. 0. 0. 0. 0. 0. 0.] [0/]0]

(0. 0. 1. 0. 1. 1. 0. 0. 0. 0.] [0 [O]]

[1. 0. 0. 1. 0. 1. 0. 0. 0. 0.] [1 O]

(1. 0. 0. 1. 1. 0. 0. 0. 0. 0.] [0 |0}

(0. 1. 0. 0. 0. 0. 0. 1. 1. 0.] ro lol]

(0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] 0 lol
(0. 1. 0. 0. 0. 0. 1. 1. 0. 1.]

(0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]] [0 4]

[0 (1]]

Node list: ['John', 'Mary', 'Sara', 'Helen', 'Tim', 'Jim', 'Maria', 'Mike', 'Mel', 'Mava'l]

Aggregate features

Mel

e Let X be a n*k matrix encoding k features

for each of the n nodes - Maya
AEK
* Question: what does A*X produce? | [,
A [[0. 0. 0. O. 1. 1. 0. 0. 0. 0O.] [0 |0f] X
Mary — | [0 0. 1. 0. 0. 0. 1. 1.(1). 0.] (0 lol]
[0. 1. 0. 1. 0. 0. 0. 0. 0. 0.]
(0. 0. 1. 0. 1. 1. 0. 0. 0. 0.] [0 0]
[1. 0. 0. 1. 0. 1. 0. 0. 0. 0.] [1 |0Of] Thus, for each node we
[1. 0. 0. 1. 1. 0. 0. 0. 0. 0.] [0 0] Qareaggregatingthe
[0. 1. 0. 0. 0. 0. 0. 1. 1. 0.] [0 |0l] feature values of their
[0. 1. 0. 0. 0. 0. 1. 0. 1. 0.] (0 |0l neighbours!
[0. 1. 0. 0. 0. 0. 1. 1. 0. 1.] =l
[0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]] [0 [2]
[0 (1]1]

Node list: ['John', 'Mary', 'Sara', 'Helen', 'Tim', 'Jim', 'Maria', 'Mike', , "Maya']

Result for our running example

Node list: ['John', 'Mary', 'Sara', 'Helen', 'Tim', 'Jim', 'Maria', 'Mike', 'Mel', 'Mavya']

A*X=
[[1. O.]
[O.
[O.
[1.
[1.

m» [2.
[O.
[0.
[O.
[O.

A\

Maya Mike

Ma
A*X i

H R R 200 OO

e e)]] e]]
2

Mel

Maya

Issue #1

* Node’s own features are not taken into consideration in A*X
e This is because A[i,i]=0

)

Issue #1: Solution

* Trick: add a self-loop
* make Ali,i]=1
e equivalently add identity matrix I: I[i,i]=1

Issue #2

* Ais not normalized. Thus, vertices with large degree will have large values
in their feature representation while nodes with small degrees will have
small values

* Solve by using the symmetrically normalized adjacency matrix D~%°(A4 + [)D~%>

* D is a diagonal matrix with DI[i,i] = degree of node i (computed on adjusted
matrix A+l)
e Lefthand side D0 scales the aggregate feature on i based on the degree on node i
* Righthand side scales the aggregate feature on i based on the degree on node j

* Intuition: often low-degree neighbours provide more useful information than high-
degree neighbours

Recap (aggregation
step)

* Compute normalized sum of

neighboring nodes plus own ,
features: D™%°>(4 + I)D~%°X ~
* Where \
* A: Graph Adjacency matrix
/

* |: Identity matrix
e D: Degree matrix of A+l
e X: Node’s features

Graph Convolutional
Networks

* |n supervised learning we will use
o H(l+1) — f(D—OS(A+I)D—05H(l)W(l))

Where

« HW js the input to layer | (initially the node
features X we know from the dataset)

« HU+D s the output to the next layer

Image source: https://towardsdatascience.com/designing-your-neural-networks-a5e4617027ed

« WO are the weights to learn via training
 fis an non-linear function such as RelLU

Continue our example

* Initialize nodes using | as X

* Use three hidden layers with random initial
weights

* On the right see output with a single forward
pass (no learning)

[npost Inyer Hixlbrder logerrs Clatpet Inyer

Input

John

___—Tim

\l:elen

Sara

Mary
\ ?”"”a
Mike
Mel =
/
Maya
hn
™
Jielen
goara
Maya JMary
Mel e
J"“*TB
0.0 02 0.4 06 08 10

