
CLUSTERING

Yannis Kotidis

What is clustering: general idea

 Given a collection of data objects, put them into groups

so that

 members of each group are similar to each other (cohesion)

 members of different groups are dissimilar (separation)

 Examples

 Cluster together customers based on their purchases

◼ Intuition: products explain customers habits

 Cluster together documents that are on the same topic

◼ Intuition: terms relate documents to topics

Before you start

 Choose a convenient representation

 Example: treat your data objects as high-dim vectors/points

◼ Customers represented as vectors, coords denote number of products
they buy

 Alternatively, represent a customer as a set (or bag) of products

◼ Documents may also be represented as bags of words

 Choice depends on the data and the techniques used and
will affect the outcome of the analysis

5 122 0 8 0 0 0 2

100000 products

Customer’s vector @ time t

0α

Need to quantify similarity

 Select an appropriate similarity/distance measure

 Euclidian or cosine distance for customer vectors?

 Jaccard similarity for baskets/sets/documents?

 Different distance measures lead to different cluster

formations

Dimensionality curse

 In some application the number of dimensions is in

the order of hundreds or thousands

 Number of different products, customers, words etc

 High-dimensionality affects

 Memory requirements, efficiency of computations

 Quality of resulting clusters: it becomes harder to

distinguish clusters

◼ Also clusters are less meaningful

In high dimensions

 Most pairs of points are at about the same distance

from each other

 The distance to the nearest neighbor and the

distance to the farthest neighbor tend to converge

as dim→inf

 Nearest neighbor computations become harder and

less meaningful

Dimensionality reduction/sub-space

clustering

 Map points into lower-dimensionality spaces

Clustering in two dimensions

Outliers

Elliptical shapes/rotated axes

Non-convex shapes

Clusters within clusters

What do they mean?

k-Means Algorithm

 Assume n points in the Euclidian space and a user-defined
value of k=#clusters

1. Pick k points (centroids), one per cluster

2. Assign remaining points to closest centroid

3. In each cluster update location of its centroid

4. Reassign points, if necessary

5. Repeat steps 3-4 until clusters stabilize

 k-Means seeks to minimize the sum of squared distances
(thus the variance of the distances) from the centroids

 the algorithm always converges to some (local) minimum solution

Example for k=3

Initial centroids are

existing dataset points

New centroids + reassignment

reassignment

updated centroids may not

be part of the dataset

Performance considerations

 Quality: initial selection of centroids affects cluster
discovery

 Intuition: pick points as further apart as possible

◼ Pick first centroid c1 at random

◼ At step i≤k, pick ith centroid ci so that the minimum distance
to c1, c2,.. ci-1 is maximized

 Speed: assume m steps for convergence

 Assume initial centroids are given

 Each step takes O(k*N) time

 O(k*m*N) complexity, what if m is large?

Final clusters

1

What is a good value for k?

 Small k: few large clusters with large intra-cluster

distances

 Large k: many small clusters

 Solution: try different values of k

 Plot average distance to centroids for different k

k

This seems a good choice

a
vg

d
is

t
to

 c
e
nt

ro
id

s

Silhouette Coefficient (e.g. combine

cohesion and separation)

i

ai = avg distance of i

from members of its

own cluster

bi = avg distance of i

from members of

another cluster

(consider cluster that

minimizes this value)

Silhouettei = (bi-ai)/max(ai,bi)

Silhouette coefficient in [-1..+1]

Silhouette of a cluster = avg silhouette of its points

Silhouette of a solution = avg silhouette of proposed clusters

<0 is really bad (wrong assignment)

0 means point is borderline

close to 1 is best

Look at the following online example

(next slides)

 http://scikit-

learn.org/stable/auto_examples/cluster/plot_kme

ans_silhouette_analysis.html

Shape of clusters

Hierarchical clustering

 Start assuming each point is a cluster

 Repeatedly merge clusters

 Look for clusters that are “close”

 Stop when resulting clusters are “bad”
◼ Or use a pre-defined value k

 Above method is “bottom-up” (hierarchical
agglomerative clustering)

 It is possible to start from a single cluster of all points
and repeatedly split it into smaller clusters

 This “top-down” approach is often called divisive clustering

When two clusters are close?

 Idea 1: measure (Euclidian) distance of their
centroids

When two clusters are close?

 Idea 2: measure maximum pair-wise distance

 This will reduce the diameter of the resulting merged cluster

When two clusters are close?

 Idea 3: measure minimum pair-wise distance

 More ideas: average distances between points, etc

Cluster cohesion:

Tell whether resulting cluster is good or bad

Density = #points/volume

Sum of Squared Distances

HAC example

a
b

c

d

e

a b c d e

f
f

h

h

g
g

i

i

Euclidean space

 In a Euclidean space you may compute the

“average” of two points, thus their “centroid”

(1,2)

(5,3)

(3,2.5)

Non-Euclidean space

 In a non-Euclidean space we can not “average” two

or more points

 e.g. we can define a distance between two documents

but we cannot take their average in a meaningful

manner

Document-1

Document-2

How to represent a cluster in a non-

Euclidean space?

 Assume depicted points are documents

How to represent a cluster?

 Select as a representative (often termed “clustoid”)

the document that is closest to all other docs

 e.g. clustoid minimizes average distance to all other

docs in the cluster

Bisecting k-Means algorithm

 An example of divisive clustering

 E.g. start from a single cluster

 Repeatedly split clusters until k clusters are formed

 Bisecting k-Means: Divisive step using 2-Means to

split a cluster in two pieces

Algorithm

 Issues:

 Which cluster to split?

◼ Pick the largest?

◼ Pick “worst” (less coherent?)

Bisecting k-Means:

Initialize set of clusters C= {c1} // c1 contains all points

Do

Select a cluster c from C

For i=1 to ITER //try different bisections of c

Bisect c using k’-Means (k’=2)

Pick best bisection, replace c with its sub-clusters

Until |C| = k

Bisecting k-Means (k=3)

a
b

c

d

e

c4

c2

c3

c1

c5

Back to k-means

 k-means updates centroid locations at each iteration

 New centoids are computed by taking the arithmetic

mean on each dimension

 Taking the means minimizes the sum of the squared

distances from the centroids, thus the within-cluster

variance

Analysis of Mean

 Mean is sensitive to outliers

 Dataset D = {1,2,3,4,5,7,48}

 Mean = (1+2+3+4+5+7+48)/7=10

 Avg dist from mean = 10.9

 Avg squared dist from mean = 244

3 5 721 4 48

Mean vs Median

 Mean is more sensitive to outliers

 Dataset D = {1,2,3,4,5,7,48}

 Mean = (1+2+3+4+5+7+48)/7=10

 Avg dist from mean = 10.9

 Avg squared dist from mean = 244

 Alternative idea: use median

 Dataset D = {1,2,3,4,5,7,48}

 Median = 4

 Avg dist from median= 7.9

 Avg squared dist from mean = 292.7

Mean vs Median

 Avg dist from mean = 10.9

 Avg squared dist from mean = 244

 Avg dist from median= 7.9

 Avg squared dist from mean = 292.7

3 5 721 4 48

3 5 721 4 48

k-median algorithm

 k-median algorithm uses the median on each
dimension to update the centoids

 Selection of median minimizes the sum of the distances
instead of the sum of the squared distances

 Resulting values on each dimension are from the
dataset but the centroids may not exist in the original
dataset (as in k-means)

 Minimizing the sum of the distances relates to the
facility location problem

Facility location Problem

 Input

 A set of demand points D

 A set of candidate locations L where facilities can be opened

 Assumptions

 Each demand point is serviced by the closest facility

 Opening a facility incurs a cost f

 Goal

 Pick a subset F of facilities to open, to minimize the sum of distances
from each demand point to its nearest facility, plus the sum of opening
costs of the facilities.

 Variation: pick facilities from demand points D

 Neat online version: demand points are presented as a stream

 Check out http://web.cs.ucla.edu/~awm/papers/ofl.pdf

Facility Location Problem for clustering

 Medians are from original point set

 No k is given, but pay f for each median

 Cost function is

 Sum of assignment distances + (# medians) × f

Reduced when more clusters are used Reduced when fewer clusters are used

k-Median vs. Facility Location
Slides from Liadan O’Callaghan: Clustering Data Streams

k-median:

cost = sum of distances

facility location: also include

facility cost

k = 2 Facility cost f = 1

Cost is 2+2+3+4=11

2

3

4

2

Cost is 1+2+2+(3x1)=8

1

2

2

Demand Point Facility Location (or centroid)

Meyerson’s Algorithm

 A facility location algorithm

 Let f denote facility cost

 Assumption: consider points in random order (or

online)

 First point becomes a median

 If x = ith point, d = distance from x to closest existing

median:

 “open” x as a median with prob. d/f

 else assign x to nearest median

Examples

assigned

(prob 1 - .4 = .6)

Let f = 10

9

4“opened” (prob .9)

Local Search Algorithm

Suggested k-median algorithm will be based on local
search, i.e.:

 Start with initial solution (medians + assignment
function)

 Iteratively make local improvements to solution

 After some number of iterations, your solution is
provably good

Local Search Algorithm

1. Find initial solution (Meyerson)

2. Iterative local improvement: Check each point,
“opening,” “closing,” or reassigning so as to lower
total cost

3. If #medians  k, adjust facility cost and repeat
step 2.

4. At the end: k medians, approx. optimal

Local Search Algorithm

Iterative

Improvement

Steps

Initial

Solution
medians?

Point set,

Integer k

 k

= k

Done

Adjust f

Example

Point

Set S

1. Initial

Solution

2. Iterative

Improvement

Too many medians!

Raise f and go back to step 2

#medians = k

Success!

k=2

Local Search Algorithm Speedup

 Instead of considering all points as feasible
facilities, take a sample at the beginning, and only
let sample points be medians

 Fewer potential medians to search through

 Solution converges faster

 …And should still be good

Sudipto Guha, Rajeev Rastogi, Kyuseok Shim:

Cure: An Efficient Clustering Algorithm for Large

Databases. Inf. Syst. 26(1): 35-58 (2001)

Clustering Using REpresentatives

(CURE)

Clustering Using REpresentatives

(CURE)

 Uses multiple representatives to represent clusters

 This allows clusters to assume complex forms

 Also lees sensitive to outliers

Representatives

 From each cluster select c “well scattered points” as

representatives

 Representatives are as dispersed as possible

 Move each representative points “inwards”, e.g.

towards the centroid of the cluster by a fixed

fraction a%

 Shrinking the representatives towards the centroid

(mean) by a factor a% helps get rid of surface

abnormalities and reduces the effect of outliers

Selection of Representatives

Shrinkage

centroid

CURE uses HAC for merging clusters

 At each step pick the closest pair of clusters

 Uses a priority queue and a k-d tree to speed up

processing

 Distance between two clusters is defined as the

minimum distance between their representative

points

Pre-processing (for large datasets)

 Take a random sample of the data that fits in main

memory

 Partition sample, form partial clusters

 Remove outliers, cluster partial clusters

 Use these clusters to initialize HAC

Martin Ester, Hans-Peter Kriegel, Jörg Sander,
Xiaowei Xu: A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with
Noise. KDD 1996: 226-231

DBSCAN

Density-based Clustering

 Intuition: clusters are formed in high density regions

and are separated from one another by regions of

low density.

Preliminaries of DBSCAN

 A density based algorithm

 density = number of points within a specified radius (ε)

 DBSCAN classifies points into three groups

 A point is a core point if it has more than a specified
number of points (MinPts) within distance ε
◼ Core points are at the interior of a cluster

 A border point has fewer than MinPts within distance ε,
but is in the neighborhood of a core point

 A noise point is any point that is not a core point nor a
border point

Assume MinPts=3

Core points

Border points

Noise points
ε

ε

Cluster

Core points

Border points

Noise points

Direct Density-Reachability

 An point q is directly density-reachable from a core

point p if it is within distance ε from q

 Relationship is asymmetric (e.g. when q is a border

point)

ε

q

Density-reachability

 A point p is density-reachable from q if there is a

chain of points p1,…,pn, with p1=q, pn=p such that

pi+1is directly density-reachable from pi for all 1≤ i

≤n

p q

Density-connectivity

 Point p is density-connected to point q if there is an

object x such that both p and q are density-

reachable from x

 Relationship is symmetric

xp
q

Cluster definition

 A cluster C in a set of points satisfying

 Maximality: For all p, q if p is in C and if q is density-

reachable from p then q is also in C

 Connectivity: for all p, q in C, p is density-connected to

q

 Noise objects which are not directly density-

reachable from at least one core object

DBSCAN Overview

 Core points within distance ε of one another are

assigned to the same cluster

 A border point that is in the neighborhood of a core

point is assigned to the same cluster

 Noise points are discarded

DBSCAN vs k-Means

(code available on eclass)

DBSCAN vs k-Means

(Wholesale customers data)

DBSCAN

How to measure distance/similarity

 Euclidean distance

 Generalization: Lp-norm

L1

L2

L∞

How to measure distance/similarity

 Cosine coefficient/similarity

 x and y are n-dimensional vectors





==

==•=
•

=
n

i i

n

i i

n

i ii

yx

yx

y

y

x

x

yx

yx
yx

1

2

1

2

1),cos(

How to measure distance/similarity

 What about interconnected data?

When two graph nodes are similar?

A B

1
5

4

6

9

7

2

3

10

8

Consider neighbors in-common

A B

1
5

4

9

7

2

3

10

86

Consider neighbors not in-common

A B

1
5

4

9

7

2

3

10

86

Combine using Jaccard

 Let N(u) = set of neighbors of node u

 sim(A,B) = Jaccard(N(A),N(B))

= (N(A)  N(B))/(N(A)  N(B)) = 20%

A B

1
5

4

9

7

2

3

1

0

86

How to apply this idea for clustering

 Define a distance metric based on Jaccard

similarity

 E.g. dist(u,v)=1-Jaccard(N(u),N(v))

 Then, any hierarchical clustering method will do

 E.g. bottom-up: merge nodes to form clusters

◼ Complication: what is a clustoid in this case?

A B

1
5

4

9

7

2

3

1

0

86

Merging of nodes

A B

2

3

1 4

A,B

2

3

1 4

5

5

Is it always good?

A B

sim(A,B)=0

A B

Simpler case:

common friend-of-friend

A Measure of Structural-Context Similarity

Glen Jeh and Jennifer Widom

Stanford University

ACM SIGKDD 2002

SimRank

In a nutshell

 SimRank: two objects are similar if they are

referenced by similar objects

u

b

a

Motivation

 A similarity measure that exploits the object-to-

object relationships found in many domains of

interest

 Web page X “points to” Web page Y

 customer “buys” product

 May be used to cluster objects, such as for

collaborative filtering in a recommender system

Intuition

 Concentrate on structural content

 Can be combined with other similarity metrics that

consider content similarity

 Two nodes are similar if they are referenced by

similar nodes

SimRank Recursive Computation

 Initialize:

 s(a,b) =

 Iteratively compute (a≠b):

 Where

 I(x) = in-neighbors of x

 Ii(x) = ith in-neighbor of x and C<1 (decay factor)

1, if a=b

0, otherwise

Explanation

 Nodes receive the average similarity of their in-

neighbors multiplied by the decay factor C

 Special case: s(a,b) = 0 if |I(a)| = 0 or |I(b)|=0

 i.e. nodes have no in-neighbors

Example

u

b

a x

y

Initialization

s(u,u)=1

s(a,b)=0

s(a,x)=0

s(x,y)=0

Assume C=0.8

Iterate

u

b

a x

y

Updated SimRank

s(u,u)=1

s(a,b)=0.8*s(u,u)=0.8

s(a,x)=0.8*s(u,a)=0

s(x,y)=0,8*s(a,b)=0,8*0,8=0,64

Assume C=0.8

C C2

SimRank propagation

u

b

a x

y

Assume C=0.8

C C2

u,u a,b x,y

*C *C2

Another View
94

 Let G2=(V2, E2) with

 V2=V x V, represents a pair (a,b) of nodes in G

 An edge from (a,b) to (x,y) exists in E2, iff the edges

<a,x> and <b,y> exist in G

 SimRank propagates through pairs in G2

SimRank in bipartite graphs

 Bipartie graph: two disjoint classes of nodes V1, V2

 e.g. V1={customers}, V2={items}

 Edges only between nodes in V1 to nodes in V2

V1 V2

Intuition-1

 People are similar if they purchase similar objects

Intuition-2

 Items are similar if they are purchased by similar

people

Bipartite SimRank
98

 SimRank between persons A and B, (A≠B)

 SimRank between items x and y, (x≠y)

 The similarity between persons A and B is the average similarity
between the items they purchased

 O(A) are the out-neighbors (items) for person A

 The similarity between items x and y is the average similarity
between the people who purchased them


==

=

)(

1

)(

1

1))(),((
)()(

),(

BO

j

ji

AO

i

BOAOs
BOAO

C
BAs


==

=

)(

1

)(

1

2))(),((
)()(

),(

yI

j

ji

xI

i

yIxIs
yIxI

C
yxs

Modified SimRank in bipartite graphs

