CLUSTERING



What is clustering: general idea

Given a collection of data objects, put them into groups
so that

members of each group are similar to each other (cohesion)

members of different groups are dissimilar (separation)

Examples
Cluster together customers based on their purchases
Intuition: products explain customers habits

Cluster together documents that are on the same topic

Intuition: terms relate documents to topics



Before you start

Choose a convenient representation

Example: treat your data objects as high-dim vectors/points

Customers represented as vectors, coords denote number of products
they buy

Customer’s vector @ time t
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Alternatively, represent a customer as a set (or bag) of products

Documents may also be represented as bags of words

Choice depends on the data and the techniques used and
will affect the outcome of the analysis



Need to quantify similarity

Select an appropriate similarity /distance measure
Euclidian or cosine distance for customer vectors?

Jaccard similarity for baskets /sets /documents?

Different distance measures lead to different cluster
formations



Dimensionality curse

In some application the number of dimensions is in
the order of hundreds or thousands

Number of different products, customers, words etc

High-dimensionality affects
Memory requirements, efficiency of computations

Quality of resulting clusters: it becomes harder to
distinguish clusters

Also clusters are less meaningful



In high dimensions

Most pairs of points are at about the same distance
from each other

The distance to the nearest neighbor and the

distance to the farthest neighbor tend to converge
as dim—2inf

Nearest neighbor computations become harder and
less meaningful



Dimensionality reduction/sub-space
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1 Map points into lower-dimensionality spaces
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Clustering in two dimensions
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Elliptical shapes/rotated axes
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Non-convex shapes




Clusters within clusters
—

9,

What do they mean?



k-Means Algorithm

Assume n points in the Euclidian space and a user-defined
value of k=#clusters

Pick k points (centroids), one per cluster
Assign remaining points to closest centroid

In each cluster update location of its centroid
Reassign points, if necessary

Repeat steps 3-4 until clusters stabilize

k-Means seeks to minimize the sum of squared distances
(thus the variance of the distances) from the centroids

the algorithm always converges to some (local) minimum solution



Example for k=3
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New centroids + reassignment
=

updated centroids may not
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Performance considerations

Quality: initial selection of centroids affects cluster
discovery

Intuition: pick points as further apart as possible
Pick first centroid c; at random

At step i<k, pick i centroid ¢, so that the minimum distance
to ¢;, ¢,,.. €1 is maximized

Speed: assume m steps for convergence
Assume initial centroids are given
Each step takes O(k*N) time
O(k*m*N) complexity, what if m is large?



Final clusters
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What is a good value for k¢

Small k: few large clusters with large intra-cluster
distances

Large k: many small clusters

Solution: try different values of k

Plot average distance to centroids for different k

>

This seems a good choice

avg dist to centroids
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Silhouette Coefficient (e.g. combine
cohesion and separation)

o o9 ¢ b, = avg distance of i
© from members of
another cluster Silhouette, = (b.-a.)/max(a,b,)
a; = avg distance of i (consider cluster that
from members of its minimizes this value)

own cluster
<0 is really bad (wrong assignment)

Silhouette coefficient in [-1..+1] == O means point is borderline
close to 1 is best

Silhouette of a cluster = avg silhouette of its points
Silhouette of a solution = avg silhouette of proposed clusters



Look at the following online example

Snex’r slidest
—

1 http:/ /scikit-
learn.org/stable /auto_examples/cluster /plot_kme
ans_silhouette_analysis.html



The silhouette plot for the various clusters.
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Silhouette analysis for KMeans clustering on sample data with n_clusters = 2
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Silhouette analysis for KMeans clustering on sample data with n_clusters = 3

The silhouette plot for the various clusters.
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Silhouette analysis for KMeans clustering on sample data with n_clusters = 4

The silhouette plot for the various clusters. The visualization of the clustered data.
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Silhouette analysis for KMeans clustering on sample data with n_clusters = 5

The silhouette plot for the various clusters.
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Silhouette analysis for KMeans clustering on sample data with n_clusters = 6

The silhouette plot for the various clusters.
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Shape of clusters




Hierarchical clustering

Start assuming each point is a cluster
Repeatedly merge clusters
Look for clusters that are “close”

Stop when resulting clusters are “bad”
Or use a pre-defined value k

Above method is “bottom-up” (hierarchical
agglomerative clustering)

It is possible to start from a single cluster of all points
and repeatedly split it into smaller clusters

This “top-down” approach is often called divisive clustering



When two clusters are close?
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11 Idea 1: measure (Euclidian) distance of their
centroids



When two clusters are close?
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0 ldea 2: measure maximum pair-wise distance

o1 This will reduce the diameter of the resulting merged cluster



When two clusters are close?
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0 ldea 3: measure minimum pair-wise distance

o1 More ideas: average distances between points, etc



Cluster cohesion:
Tell whether resulting cluster is good or bad

Sum of Squared Distances



HAC example




Euclidean space

In a Euclidean space you may compute the
“average” of two points, thus their “centroid”
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Non-Euclidean space

In a non-Euclidean space we can not “average” two
or more points

e.g. we can define a distance between two documents
but we cannot take their average in a meaningful

manner

_________ @
______________ Document-2
o

Document-1



How to represent a cluster in a non-

Euclidean space?®
-_

-1 Assume depicted points are documents



How to represent a cluster?

Select as a representative (often termed “clustoid”)
the document that is closest to all other docs

e.g. clustoid minimizes average distance to all other
docs in the cluster



Bisecting k-Means algorithm

An example of divisive clustering
E.g. start from a single cluster

Repeatedly split clusters until k clusters are formed

Bisecting k-Means: Divisive step using 2-Means to
split a cluster in two pieces



Algorithm
N

Bisecting k-Means:
Initialize set of clusters C= {c,} // ¢, contains all points

Do
Select a cluster ¢ from C

For i=1 to ITER //try different bisections of c
Bisect c using k’-Means (k’'=2)

Pick best bisection, replace ¢ with its sub-clusters
Until |C| =k

1 Issues:

2 Which cluster to splite
® Pick the largest?
w Pick “worst” (less coherent?)
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Back to k-means

k-means updates centroid locations at each iteration

New centoids are computed by taking the arithmetic
mean on each dimension

Taking the means minimizes the sum of the squared
distances from the centroids, thus the within-cluster
variance



Analysis of Mean

Mean is sensitive to outliers
Dataset D = {1,2,3,4,5,7,48}
Mean = (1+2+3+4+5+7+48)/7=10
Avg dist from mean = 10.9
Avg squared dist from mean = 244

00000 @ ©



Mean vs Median

Mean is more sensitive to outliers
Dataset D = {1,2,3,4,5,7,48}
Mean = (1+2+3+4+5+7+48)/7=10
Avg dist from mean = 10.9
Avg squared dist from mean = 244

Alternative idea: use median
Dataset D = {1,2,3,4,5,7,48}
Median = 4
Avg dist from median= 7.9
Avg squared dist from mean = 292.7



Mean vs Median

- Avg dist from mean = 10.9

1 Avg squared dist from mean = 244

7 Avg dist from median= 7.9

1 Avg squared dist from mean = 292.7

00000 @ ©
000006 @

¢



k-median algorithm

k-median algorithm uses the median on each
dimension to update the centoids

Selection of median minimizes the sum of the distances
instead of the sum of the squared distances

Resulting values on each dimension are from the
dataset but the centroids may not exist in the original
dataset (as in k-means)

Minimizing the sum of the distances relates to the
facility location problem



Facility location Problem

Input
A set of demand points D
A set of candidate locations L where facilities can be opened
Assumptions
Each demand point is serviced by the closest facility
Opening a facility incurs a cost f

Goal

Pick a subset F of facilities to open, to minimize the sum of distances
from each demand point to its nearest facility, plus the sum of opening
costs of the facilities.

Variation: pick facilities from demand points D
Neat online version: demand points are presented as a stream
Check out http://web.cs.ucla.edu/~awm /papers/ofl.pdf



Facility Location Problem for clustering
—

7 Medians are from original point set
1 No k is given, but pay f for each median

1 Cost function is

Sum of assignment distances + (# medians) X f

{ i

Reduced when more clusters are used Reduced when fewer clusters are used



k-Median vs. Facility Location
Slides from Liadan O’Callaghan: Clustering Data Streams

Demand Point ‘

k-median:
cost = sum of distances

Cost is 2+2+3+4=11

Facility Location (or centroid) ‘

facility location: also include
facility cost

Facility cost f = 1

il
e O O
2
2

o
® O

Cost is 1+2+2+(3x1)=8



Meyerson’s Algorithm

A facility location algorithm
Let f denote

Assumption: consider points in

First point becomes a median

If x = i™ point, d = distance from x to closest existing
median:

“open” x as a median with prob. d /f

else assign x to nearest median



Examples

- Let f =10

O
assigned
(prob 1 - .4 =.6)

O

Lo |
4 \
“opened” (prob .9)




Local Search Algorithm

Suggested k-median algorithm will be based on local
search, i.e.:

Start with (medians + assignment
function)
lteratively make to solution

After some number of iterations, your solution is
provably good



Local Search Algorithm

1. Find (Meyerson)

2. : Check each point,
“opening,” “closing,” or reassigning so as to lower
total cost

3. If #medians # k, adjust facility cost and repeat
step 2.

4. At the end: k medians, approx. optimal



Local Search Algorithm

Initial
Solution

# medians?

#* k

Adjust f

=k

Done



1. Initial
Solution

| |

H#medians = k

2. lterative
Improvement

1 |

Success!



Local Search Algorithm Speedup

Instead of considering as feasible
facilities, take a sample at the beginning, and only
let be medians

Fewer potential medians to search through

Solution converges faster
...And should still be good



Sudipto Guha, Rajeev Rastogi, Kyuseok Shim:

Cure: An Efficient Clustering Algorithm for Large
Databases. Inf. Syst. 26(1): 35-58 (2001)



Clustering Using REpresentatives

SCUREE
—

01 Uses multiple representatives to represent clusters

01 This allows clusters to assume complex forms

71 Also lees sensitive to outliers




Representatives

From each cluster select ¢ “well scattered points” as
representatives

Representatives are as dispersed as possible

Move each representative points “inwards”, e.g.
towards the centroid of the cluster by a fixed

fraction a%

Shrinking the representatives towards the centroid
(mean) by a factor a% helps get rid of surface
abnormalities and reduces the effect of outliers



Selection of Representatives
N




Shrinkage
B




CURE uses HAC for merging clusters

At each step pick the closest pair of clusters

Uses a priority queue and a k-d tree to speed up
processing

Distance between two clusters is defined as the
minimum distance between their representative
points



Pre-processing (for large datasets)

Take a random sample of the data that fits in main
memory

Partition sample, form partial clusters

Remove outliers, cluster partial clusters

Use these clusters to initialize HAC



T [osscan

Martin Ester, Hans-Peter Kriegel, Jorg Sander,
Xiaowei Xu: A Density-Based Algorithm for

Discovering Clusters in Large Spatial Databases with
Noise. KDD 1996: 226-231



Density-based Clustering
N

0 Intuition: clusters are formed in high density regions
and are separated from one another by regions of
low density.



Preliminaries of DBSCAN

A density based algorithm
density = number of points within a specified radius (€)
DBSCAN classifies points into three groups

A point is a core point if it has more than a specified
number of points (MinPts) within distance €
Core points are at the interior of a cluster

A border point has fewer than MinPts within distance g,
but is in the neighborhood of a core point

A noise point is any point that is not a core point nor a
border point



Assume MinPts=3

‘ Core points
‘ Border points

‘ Noise points



Cluster
e

‘ Core points
‘ Border points

LTI ‘ TS ‘ Noise points



Direct Density-Reachability
—

7 An point q is directly density-reachable from a core
point p if it is within distance € from q

Relationship is asymmetric (e.g. when g is a border
point)



Density-reachability

A point p is density-reachable from q if there is a

chain of points p,...,p,, with p;=q, p,=p such that

P+ is directly density-reachable from p; for all 1< i
<n



Density-connectivity
—

0 Point p is density-connected to point q if there is an
object x such that both p and g are density-
reachable from x

Relationship is symmetric

O g

P



Cluster definition

A cluster C in a set of points satisfying

Maximality: For all p, q if p isin C and if q is density-
reachable from p then q is also in C

Connectivity: for all p, q in C, p is density-connected to
g
Noise objects which are not directly density-
reachable from at least one core object



DBSCAN Overview

Core points within distance € of one another are
assigned to the same cluster

A border point that is in the neighborhood of a core
point is assigned to the same cluster

Noise points are discarded



DBSCAN vs k-Means
code available on eclass

DBScan result k-means result (k=2)
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DBSCAN vs k-Means

- SWholesqle customers dc:’rc:t

DBSCAN
k-means result(k=2, plotting scaled dataset)
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How to measure distance /similarity
—

1 Euclidean distance

1 Generalization: Lp-norm

k
[ellp = () laiP)!/P
i=1




How to measure distance /similarity
—

1 Cosine coefficient /similarity

x and y are n-dimensional vectors

r
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How to measure distance /similarity
N

1 What about interconnected data?



When two graph nodes are similar?
—
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Consider neighbors in-common
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Consider neighbors not in-common
=
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Combine using Jaccard
N

71 Let N(u) = set of neighbors of node u
11 sim(A,B) = Jaccard(N(A),N(B))
= (N(A) N N(B))/(N(A) U N(B)) = 20%

_‘




How to apply this idea for clustering

Define a distance metric based on Jaccard
similarity

E.g. dist(u,v)=1-Jaccard(N(u),N(v))
Then, any hierarchical clustering method will do

E.g. bottom-up: merge nodes to form clusters

Complication: what is a clustoid in this case?



Merging of nodes
(2
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s it always good?
N

sim(A,B)=0

Simpler case:
common friend-of-friend




o

A Measure of Structural-Context Similarity
Glen Jeh and Jennifer Widom

Stanford University

ACM SIGKDD 2002



In a nutshell

SimRank: two objects are similar if they are
referenced by similar objects



Motivation

A similarity measure that exploits the object-to-
object relationships found in many domains of
interest

Web page X “points to” Web page Y

customer “buys” product

May be used to cluster objects, such as for
collaborative filtering in a recommender system



Intuition

Concentrate on structural content

Can be combined with other similarity metrics that
consider content similarity

Two nodes are similar if they are referenced by

similar nodes ProfA StudentA

Univ “
‘-0

ProfB StudentB



SimRank Recursive Computation

0 Initialize: { 1, if a=b
s(a,b) = :
O, otherwise

0 Iteratively compute (a#b):

o @)
()| [I(0)] = =

s(a,b) =

1 Where
|(x) = in-neighbors of x
l(x) = i in-neighbor of x and C<1 (decay factor)



Explanation  **? =) & & *H@L0)

Nodes receive the average similarity of their in-
neighbors multiplied by the decay factor C

Special case: s(a,b) = 0 if |I(a)| =0 or |I(b)|=0

i.e. nodes have no in-neighbors



Assume C=0.8

Initialization

s(u,u)=1

s(a,b)=0
s(a,x)=0
s(x,y)=0




lterate

C c?
S/ Updated SimRank
\
II a : II X !

s(u,u)=1
s(a,b)=0.8%s(u,u)=0.8
(b)yr(y) ! s(a,x)=0.8%s(u,a)=0

7 s(x,y)=0,8%s(a,b)=0,8*0,8=0,64

e T

Assume C=0.8



SimRank propagation

Assume C=0.8



Another View

Let G2%=(V?, E?) with
V2=V x V, represents a pair (a,b) of nodes in G

An edge from (a,b) to (x,y) exists in E?, iff the edges
<a,x> and <b,y> exist in G

SimRank propagates through pairs in G2
G G’

1
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SimRank in bipartite graphs

Bipartie graph: two disjoint classes of nodes V,, V,
e.g. V,={customers}, V,={items}

Edges only between nodes in V, to nodes in V,
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Intuition-1
—

11 People are similar if they purchase similar objects




Intuition-2
N

7 ltems are similar if they are purchased by similar
people




Bipartite SimRank

SimRank between persons A and B, (A#B)
C, O(A)] [0(B)|

s(O,(A),O,(B
o) 2 Z Z (G:(A).0;(B))

s(A,B) =

SimRank between items x and y, (x#y)

C, 1)) 1Y)

The similarity between persons A and B is the average similarity
between the items they purchased

O(A) are the out-neighbors (items) for person A

The similarity between items x and y is the average similarity
between the people who purchased them



Modified SimRank in bipartite graphs
—
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