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NEAR-NEIGHBOR SEARCH

Slides adapted from Rajaraman and Ullman,
“Mining Massive Datasets”

http:/ /infolab.stanford.edu/~ullman /mmds.html



Goals

Many big-data mining problems can be expressed
as finding “similar” items:

Pages/documents/emails with similar words, e.g., for
classification, plagiarism detection.

Clustering of customers based on the products they buy

NetFlix users with similar tastes in movies, for
recommendation systems.
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Recommendation Systems

How can I cluster my users based on the
movies they have watched?
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E-shop Comparison

How similar

are they?
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Hierarchical Clustering




Helpful abstraction

Think of data as “Sets” of “ltems”
News article /document /e-mail: set of tokens/strings
E-shop: set of products

Netflix user: set of movies she watched



Problems

How to construct these sets?

How is similarity between sets defined?

Already know the answer to this question!
How to efficiently compute similarity between two
sets?

Manage data volume, computation cost

How to quickly locate similar sets on a datasets of
thousands/million entries?

Avoid computation of similarity between sets that are not
similar



Running Example: Finding Similar
Documents

Given a body of documents, e.g., the Web, find
pairs of docs that have a lot of text in common, e.qg.:
Mirror sites, or approximate mirrors.
Don’t want to show both in a search.

Plagiarism, including large quotations.

Similar news articles at many news sites.

Reflects importance of the news item.



Three Essential Techniques for Similarity
Testing

Shingling : convert documents, emails, etc., to sets.

Minhashing : convert large sets to short signatures,
while preserving similarity.

Faster computation of similarity using signatures instead
of the original docs

Locality-sensitive hashing : focus on pairs of
signatures likely to be similar.

Use as an index to locate (quickly) similar docs
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Comparing Documents

What makes documents “similar’?

Special cases are easy, e.qg., identical documents, or
one document contained character-by-character in
another.

General case, where many small pieces of one doc
appear out of order in another, is very hard.
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Working Assumption

Documents that have lots of shingles in common have
similar text, even if the text appears in different
order.

If k is too small, most docs will seem similar
If k is too large, most docs will seem dissimilar

k = 5 is OK for short documents; k = 10 is better for
long documents.



Shingles: Compression Option
s

71 Each shingle is a string of k characters

1 May be easier to conver’r/compress them into
integers via a hashing function h()

[ H_Xpn, |

_Xpno,
Xpnat,

;- oo ‘ (175,2816,91771,174,5,1882,...}

olgon,
IJoro, |
| ponoi,... |

Document is now a set of items (e.g. numbers) ‘



Note

The min-hashing scheme described next can do this
conversion to integers while also preserving
similarity among sets (as will be explained)



MINHASHING



: Sets

Many similarity problems can be couched as
finding subsets of some universal set that have
large intersection.

include:

Documents represented by their sets of shingles (or
hashes of those shingles).

Similar customers or products.



From Sets to Boolean Matrices
"2

1 Rows = elements of the universal set.
1 Columns = sets.

1 1 in the row for element e and the column for set S
iff e is a member of S.



In Matrix Form (won’t be used in practice)

Items (shingles)

00 N O O h W N —

Documents
S T U \'4 W
1 1 o) 1 0
1 o) 1 1 0
1 o) o) 1 0
o) 1 o) o) 1
1 o) 1 o) 1
1 1 o) 1 1
o) 1 o) 1 1
o) 1 0] 1 0

1

This row represents a
shingle (e.g. “Data_min")



|F> This column represents document T

In Matrix Form

Documents
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In Matrix Form

27 | Documents
S T U \' W
1 1 1 o) 1 0
2 1 o) 1 1 0
% 3 1 o) o) 1 0
% 4:Data_min| O 1 0 0 ]
;é; 5 1 0 1 0 1
- 6 1 1 o) 1 1
7 o) 1 o) 1 ]
8 o) 1 o) 1 0

T contains shingle “"Data_min”
(assume k=8)



Documents in Matrix Form

1 Rows = shingles (or hashes of shingles).
1 Columns = documents.
7 1 in row r, column ¢ iff document ¢ has shingle r.

0 This matrix has a very very very very very very
very very very large number of rows

Expect the matrix to be sparse.



We might not really represent the data by o
boolean matrix.

Sparse matrices are usually better represented
by the list of places where there is a non-zero
value.

E.g., movies rented by a customer, shingle-sets.

But the matrix picture is conceptually useful.



Jaccard Similarity

Remember: a column is the set of rows in which it
has 1.

The (Jaccard ) similarity of columns C1 and C2 =
Sim (C1,C2) = the ratio of the sizes of the
intersection and union of C1 and C2.

Sim (C1,C2) = |C1NC2|/|C1UC2].
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Example: Jaccard Similarity

C, C,
0o 1
g1 0
1 1 %% Sim(C,C,)=2/5=0.4=40%
50 O
%1 1 * x
0 1
0 O

Notice that rows with 0 0 do not
affect the Jaccard similarity



: Finding Similar Columns

Compute signatures of columns = small summaries of
columns.
Examine pairs of signatures to find similar signatures.

: similarities of signatures and columns are
related.

: check that columns with similar signatures
are really similar.

These methods can produce false negatives, and even
false positives (if the optional check is not made).



Comparing all pairs of signatures may take too
much time, even if not too much space.

Assume 10000 documents (signatures)
#pairs = 10000 * 9999/2 = 49,995,000
I msec for each test

All comparisons will take ~14hours

A job for Locality-Sensitive Hashing.



Signatures

: “hash” each column C to a small
signature Sig (C), such that:

Sig (C) is small enough that we can fit a signature
in main memory for each column.

Sim (C,, C,) is approximately the same as the
“similarity” of Sig (C,) and Sig (C,).

Sim (C,, C,) = Sim(Sig(C,),Sig(C,))



An idea that doesn’t work

Pick 100 rows at random and let the signature of
column C be the 100 bits of C in those rows.

Because the matrix is sparse, many columns would
have 00. . .0 as a signature, yet have Jaccard
similarity O, because their 1’s are in different rows.



Four types of rows for a pair of cols
35

o Given columns C, and C,, rows may be classified as:

C, C,
type a: 1 1
type b: 1 0
typec: O 1
typed: O 0

= Notation used: a = # rows of type a, etc.

7 Note Sim(C,, C,) = a /(a +b +c).



Minhashing

Imagine the rows permuted randomly.

Define “minhash” function h (C) = the number of the
first (in the permuted order) row in which column C

has 1.

Use several (e.g., 100) independent hash functions
to create a signature.



Minhashing Example

Signatures
Permutations S1 S2 S3 54 S1 S2 S3 S4
31 row = 3 1 O O 2 ‘ 1 ‘ 3 ‘ 1

0 1
1 1
1 1

1St row =
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Minhashing Example

Signatures
Permutations S1 S2 S3 54 S1 S2 S3 S4
4 10 |1 |0 > 11 13 11

2 |1 14 |1

= = O O O =
= 1 O O O OO

1
1
1
1
0
0
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Minhashing Example

Signatures
Permutations S1 S2 S3 54 S1 S2 S3 S4
1 110 |1 |0 > 11 13 11
2 |1 14 |1

1 |2 |1 (2

AT OTITN O NN W
= = O O O =
= 1 O O O OO
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1
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Minhashing Example: All Signatures

Signatures
§\1 S2 S3 S4

2,11 |3 |1

Permutations S1 S2 S3 54
1{14(3 (1 (0O |1 |0
3(12(|4] |1 |0 |0 |1
711117 (O (1 |0 |1
6 |3/6/ [0 |1 (0 |1
2116((1] [0 |1 |0 |1
S((71(2] [1 |0 |0 |0
4((5](5 [1 |0 |1 |O

j>2141

112 11 |2

e.g. sig(S1)=[2,2,1]

Note signature is a list of
minhashes (not a set)



Surprising Property

The probability that h(C,)=h(C,) is the same as
Sim(C,, C,)

a
Both are

a+b+c

e
Look down columns C, and C, until we see a 1.
If it’s a type-a row, then h(C,) = h(C,). If a type-b
or type-c row, then not.

Thus, P[h(C,) = h(C,)] = —

a+b+c




Estimating similarity from Signatures

The similarity of signatures is the fraction of the rows
in which they agree.

Remember, each row corresponds to a permutation or
“hash function.”

Signatures
S1 S2 S3 S4
Sim(S1,S3) is
X 2 1 3 1 estimated as
x |2 |1 (4 |1 /3




Min Hashing — All estimates

Input matrix Signature matrix M

11(4(3] |11 [0 |1 |0 > 11 13 |1
311214 |1 (0 |0 |1 5> 11 |4 |1
7111171 |0 (1 |0 |1 T 12 11 12
6/|3][6] [0 [t [0 [1 |2
21161(1] |10 (1 |0 |1 Similarities:

1-3 2-4 1-2 34
37112 |1 [0 |0 |0 | coycoll050 075 0 o0
4l[slis] 11 1o [1 |0 | Sig/Siglo33 1.00 0 0




Minhash Signatures

Pick (say) 100 random permutations of the rows.
Think of Sig(C) as a column vector.
Let Sig(C)[i] =

according to the i th permutation, the number of the
first row that has a 1 in column C.



Implementation — (1)

Suppose 1 billion rows.

Hard to pick a random permutation from
1...billion.

Representing a random permutation requires 1
billion entries.

Accessing rows in permuted order leads to
thrashing.



Implementation — (2)

: pick
“100” hash functions.

For each column ¢ and each hash function h.,
keep a “slot” M (i, ¢ ) for that minhash value.



Implementation — (3)

for each row r
for each column ¢
ifchas 1 inrow r

for each hash function h. do

if h.(r ) is a smaller value than

M (i, c ) then
M (i, c¢):=h;(r);



Example

Assume 5 rows and h,(r)=(2r+1) mod 5

h,(r) implies a “random” permutation of the rows
Sig(C1)=2 (first “1” in the order implied by h,(r))

To compute Sig(C1) we evaluate h,(r) for the rows
that contain “1 and keep the minimum value

h;(r) Row
31 @ o
0 0

= 2
4 4

1 0

—_ O =




Note that “row r” represents an item stored in the set,
thus we are essentially hashing the set elements

Example

Assume 5 rows and h,(r)=(2r+1) mod 5

h,(r) implies a “random” permutation of the rows
Sig(C1)=2 (first “1” in the order implied by h,(r))

To compute Sig(C1) we evaluate h,(r) for the rows
that contain “1 and keep the minimum value

h;(r) Row
3 1 1 0
0 0 -

i Sig(C,)=2
i tehase ot ) L1 e
position of first “1” 4 4 1 O g 2

1 0 1
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Final outcome
T

Row C,

1 [1 0 G G
27 |0 1 Signatures: 1 0 X
3 1 1 2 0 X
4 |1 0 6 0~
5 0 1

Our estimate: 1/3
Actual similarity: 1/5



Minhash on Shingles
s

71 Hash each shingle into an integer

1 Keep minimum value

Donel

H_Xpn

_Xpno

Xpnoal

pnoiy hs) > {175,2816,91771,174,5,1882,...}
NOIJO

olporn Think of h(s) as a random permutation of the shingles
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In other wor

ds....

Have two sets A, B.

Reorder items on both sets based on a hash

function.

Keep the minim

um value.

Recall that the hash function “randomly” shuffles

the items in bot
Probability of t

n sets.

ne min hashes being equal =

probability of t

ne random permutation imposed

by the hash returns the same item at the top =

intersection ove

r union = jaccard similarity.



E.g. apply a family of (string) hash functions

Doc:

H_Xpn hi () > {175,2816,91771,174,5,1882,...}

_Xpno

Xpno h,(s) > {25,216,151,317,52,84,...}

pPNoIK

NOIYO

olpon hs(s) > {6521,635,9002,412,884,}

IHONo
Monol Minhash(doc)=[5,25,412]




Implementation — (4)

If data is stored row-by-row, then only one pass is
needed.

If data is stored column-by-column

E.g., data is a sequence of documents

represent it by (row-column) pairs and sort once by
row.

Saves cost of computing h.(r ) many times.



Additional Examples: Uses of
Minhashing

: looking for sets with a relatively
large intersection.

Represent a customer, e.g., of Netflix, by the set of
movies they rented.

Similar customers have a relatively large fraction
of their choices in common.



LOCALITY-SENSITIVE HASHING

Focusing on Similar Minhash Signatures

Other Applications Will Follow



Finding Similar Pairs

Suppose we have, in main memory, data
representing a large number of objects.

May be the objects themselves.
May be signatures as in minhashing.

We want to compare each to each, finding those
pairs that are sufficiently similar.



Candidate Generation From Minhash

Signatures
65

71 Pick a similarity threshold s < 1

71 A pair of columns ¢ and d is a candidate pair if
their signatures agree in at least fraction s of the
rows

l.Le, M (i, c)=M{i, d) for at least fraction s values
of i



Signature matrix reminder

Prob[Sig(S’,i) == Sig(S,i)] = sim(S’,S)

Sig(S’,i) Si9(5/)

hash function i

n hash functions

Sig(S):
signature for set S

v

signature for set S’ Matrix M




Checking All Pairs is Hard

While the signatures of all columns may fit in main
memory, comparing the signatures of all pairs of
columns is quadratic in the number of columns.

: 10° columns implies 5*10'!" comparisons.

At 1 microsecond /comparison: 6 days.



Locality-Sensitive Hashing
oa

Overview Visualization

71 Partition columns of
signature matrix into
bands (mini signatures)

o1 Arrange that (only)
similar bands are likely
to hash to the same
bucket

1 Candidate pairs are
those that hash (at least
once) to the same bucket

@
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Partitioning into bands

n = b*r hash functions

I FTOWS
per band

b bands

b mini-signatures <

// L

Matrix Sig



Partition into Bands — (2)

Divide matrix M into b bands of r rows.

For each band, hash its portion of each column to a
hash table with k buckets.

Candidate column pairs are those that hash to the
same bucket for = 1 band.

Tune b and r to catch most similar pairs, but few
nonsimilar pairs.



72

Hash

Tab

el Columns 2 and 6

/ iR are (almost certainly) identical.

Columns 6 and 7 are
surely different.

F rOWS b bands




Simplifying Assumption

There are enough buckets that columns are unlikely
to hash to the same bucket unless they are identical
in a particular band.

Hereafter, we assume that “same bucket” means
“identical in that band.”



. Effect of Bands

Suppose 100,000 columns.

Signatures of 100 integers.

Therefore, signatures take 100000*100 = 40Mb.
Want all 80%-similar pairs.

4,999,250,000 pairs of signatures can take a while
fo compare.

Choose b=20 bands of r=5 integers/band.



Suppose S1, S2 are 80% Similar
Prob[Sig(S,i) == Sig(S’,i)] = sim(S,S’)=0,8

We want all 80%-similar pairs.
Assume 20 bands of 5 integers/band.

Probability S1, S2 identical in one particular band:
(0.8)°> = 0.328 (mini-signatures agree in all 5 digits)

Probability S1, S2 are not similar in any of the 20 bands:
(1-0.328)2° = 0.00035

i.e., about 1/3000-th of the 80%-similar column pairs are false negatives.

Probability ST, S2 are similar in at least one of the 20 bands:
1-0.00035 = 0.99965
So with 99.965% probability we will get them!



Suppose S1, S2 Only 20% Similar
(we do not want them in the result)

Probability S1, S2 identical in any one particular band:
(0.2)° = 0.00032

Probability S1, S2 identical in = 1 of 20 bands:
< 1-(1-0.00032)%°=0.6%
So with probability 0.6% we will get them (false positives)

But will can still discard them if we make the optional test in
the end using the real sets

False positives much lower for similarities << 20%.

It becomes very unlikely that we will retrieve really
dissimilar sets via LSH



LSH Involves a Tradeoff

Pick the number of minhashes, the number of bands,

and the number of rows per band to balance false

positives /negatives.

Recall that space required by minhashes is O(b*r)
More bands (increase b)—> fewer false negatives
Larger bands (increase r) =2 fewer false positives

: if we had fewer than 20 bands (increased
size of mini signatures), the number of false positives
would go down, but the number of false negatives
would go up.



Analysis of LSH — What We Want

Probability
=1ifs>t¢
Probability No chance
of sharing ifs<t
a bucket
t~_

Our desired similarity threshold

Similarity s of two sets ——




What One Band of One Row Gives

You
T

Probability © Remember:
of sharing : probability of
a bucket : equ_al_ha;h-values
| = similarity
|
|
|
I
L Prob[Sig(S,i) == Sig(S’,i)] = sim(S,S’)

Similarity s of twosets ——*



What b Bands of r Rows Gives You
a1

( At least
one band No bands

identical  identical

[

~nJ l/r 1 = 1 = Sr b
Probability t~ (1/b) ( )

|

of sharing —
a bucket |
|

Some row All rows
E— — of a band of a band

t unequal are equal

Similarity s of twosets ——*



Example:b = 20;r =5

1-(1-s")b

.006

.04/

.186

470

.802

975

©ONO|u[D W|N|@

.9996

t= 0.5
x/
T /
||II
Probability |
of becoming '
a candidate f.-"
/ /
0 Jaceard similarity 1

of documents

This part of the area
bellow the curve =
probability of false
positives

RS

This part of the area
above the curve =
probability of false
negatives



LSH Summary (Document Similarity)

Tune to get almost all pairs with similar signatures
but eliminate most pairs that do not have similar
signatures.

Check in main memory that candidate pairs
really do have similar signatures.

: In another pass through the data, check
that the remaining candidate pairs really
represent similar setfs.

This way we avoid false positives



