
Singular Value Decomposition
(SVD)

Y. Kotidis

Athens University of Economics and Business



Acknowledgments

• Some examples adapted from Christos 
Faloutsos’ class material (CMU) and also from 
the following work:

– Quantifiable Data Mining Using Ratio Rules. 

F. Korn, A. Labrinidis, Y. Kotidis, C. Faloutsos. The 
VLDB Journal, Volume 8(3+4), February 2000. 

(available at http://pages.aueb.gr/users/kotidis/Publications/index.html)

http://pages.aueb.gr/users/kotidis/Publications/index.html


Applications

• Find similar “concepts” in large datasets
– Basket analysis

• Explore customer-product relationships
• Find similar customers, products 

– Document indexing & retrieval

• Dimensionality reduction/feature selection
– Reduce data size by projecting items into a lower-

dimensionality concept-space

• Remove noise, detect outliers, visualization
• Web-link analysis

– Compute “importance” of web-pages



Basket Data Analysis
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Singular Value Decomposition (SVD)

• Factorization of matrix A into three matrices

A = U Λ VT

• Such that:
– A: n x m matrix (e.g. n customers, m products)

– U: n x r matrix  (customers to concepts)

– Λ: r x r diagonal matrix

– V: m x r matrix (products to concepts)

– U (resp. V) is a column-orthonormal matrix
• Its columns are mutually orthogonal unit vectors



Στα Ελληνικά…

• SVD - Παραγοντοποίηση Ιδιαζουσών Τιμών

• Concepts: Έννοιες

• Singular value: Ιδιάζουσα τιμή

• Eigen value: Ιδιοτιμή



SVD Example

1 1 1 0 0

2 2 2 0 0

1 1 1 0 0

5 5 5 0 0

0 0 0 2 2

0 0 0 3 3

0 0 0 1 1

0.18 0

0.36 0

0.18 0

0.90 0

0 0.53

0 0.80

0 0.27

0.58 0.58 0.58 0 0

0 0 0 0.71 0.71

9.64 0

0 5.29=
x x

vegetarians
concept meat-eaters

concept first 3 products relationship
to vegetarians concept

customer 4

cu
st

o
m

er
s

products

concepts to products

02

strength of
vegetarians concept

customers to concepts

Left Singular Vectors

Right Singular Vectors

Singular Values



Different Column Ratios
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Mixed preferences
(rounding near-zero values)
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What are the concepts now?
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Geometric Interpretation

• Recall V: products to concepts matrix

0.58 0.58 0.58 0 0

0 0 0 0.71 0.71

products

VT= concepts

“best” direction to
project customers
(vegetarians concept)

Each point is a customer
depicted in the products spaceSecond-best direction to

project customers
(meat-eaters concept) #dims = #products !

“Error”

(U Λ=AV) gives the 
coordinates of the projection



SVD using R



SVD in Python



Applications of SVD

• John : “I like tomatoes”
• Think of John as a customer (row) vector
• cJohn = [0 0 3 0 0]

• Mary : “I like lettuce and asparagus”
• cMary = [2 2 0 0 0]

• Vectors don’t look similar (inner-product = zero)
– Sim(cJohn,cMary) = 0*2+0*2+3*0+0*0+0*0 = 0
(equivalently their cosine similarity = 0)
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Building Recommendations

• John : “I like tomatoes”

• Think of John as a customer (row) vector

• cJohn = [0 0 3 0 0]

• Which additional products could John find 
appealing?



Map to the concepts space (a), and back (b)
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Map to the concepts’ space
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Rank of Matrix
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Dimensionality Reduction

1 1 1 0 0

2 2 2 0 0

1 1 1 0 0

5 5 5 0 0

0 0 0 2 2

0 0 0 3 3

0 0 0 1 1

0.18 0

0.36 0

0.18 0

0.90 0

0 0.53

0 0.80

0 0.27

0.58 0.58 0.58 0 0

0 0 0 0.71 0.71

9.64 0

0 5.29=
x x

vegetarians
concept meat-eaters

concept

cu
st

o
m

er
s

products

0

1 1 1 0 0

2 2 2 0 0

1 1 1 0 0

5 5 5 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

=

cu
st

o
m

er
s

products

Best 1-rank approximation



Truncated SVD

• Concentrate on the most important parts 
using a rank-k approximation of the matrix

• How to select the value of k?



Example (Image Compression)

Images from: Singular value decomposition in image noise filtering and reconstruction
T Workalemahu - 2008 



Another example*

* credit: https://towardsdatascience.com/understanding-singular-value-decomposition-and-its-application-in-data-science-388a54be95d



How do we achieve compression?

• Original image: n x m values

• By selecting the first k singular values we store

– k singular values

– First k columns of matrix U (n*k values)

– First k rows of matrix VT (m*k values)

– Thus, we need a total of k*(1+n+m) values

• Compare with n x m 



Scree plot

• Plot the value of successive singular values (or 
their squared values) against the rank order

– Decision is subjective

This part (often) 
represents random 
variation
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Use truncated SVD for removing noise

* credit: https://towardsdatascience.com/understanding-singular-value-decomposition-and-its-application-in-data-science-388a54be95d



More on denoising 
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Frobenious norm
(a.k.a. Euclidean Norm)
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𝐴 𝐹 v.s. singular values
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Select k based on 𝐴 𝐹
2

• Recall 𝐴 𝐹
2 = Σ(σi

2)

• List singular values in decreasing order:

σ1 , σ2 , σ3 ...

• Select k singular values such that the sum of their 
squares is (for example) ≥ 80% of the total sum of 
the squared singular values

– Ensures that 80% of the squared Frobenious norm is 
preserved
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1st-rank approximation preserves 
93/121=77% of the energy

Λ=



Consideration

• Results depend on magnitude of data values

• E.g.: first column is customer age (18..65)

second column is income (5000..100000)

• Then, income seems more important than age

– For some datasets this may be true, but not for all



Suggestion

• First do mean normalization (center to zero) 
by subtracting the mean value per column 

• Optionally do feature scaling

– e.g. divide by standard deviation (normalize 
magnitude) per column

– other approach is to reduce features with large 
magnitude (e.g. take square roots/logarithms) 



Mean Normalization
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Feature Scaling 
(e.g. standardization in this example)

𝑥′ =
𝑥 − 𝜇𝜒

𝜎𝜒

χ’

y y’

χ



Another interpretation: Ratio Rules

• RR1: “A (vegetarian)customer spends 
0.58:0.58:0.58 € on asparagus:lettuce:tomatoes”

• Ratio Rules Construction
– Obtain matrix A

– Compute Ac (zero mean) from A by subtracting 
column averages

– Compute C = Ac
TA product-to-product similarity matrix

– Ratio Rules in V are the eigenvectors of C
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What-if-Analysis

• Simple case: exactly-
specified

• Example
– RR1: bread:butter

– A customer spends 5$ 
on bread

– How much is she 
expected to spend on 
butter?



Harder cases*

over-specified

under-specified

*See: ”Quantifiable Data Mining Using Ratio Rules”



Other use: detect outlier values

• Inspect Customer x: 
– (5,2,3,0,51)

• Remove suspected value(s), replace with 
unknown (5,2,3,0,?)

• Run previous algorithm, reconstruct missing 
value from RRs
– (5,2,3,0,48)

• Compare against guessed value

Looks suspicious



Sample of V matrix for NBA 1991-2 
season stats

RR1: level of activity (stars vs bench players)
RR2: field position (offensive/defensive players)

defensive players are good rebounders but score less points per minutes played than offensive players
RR3: height of a players (tall guys get more rebounds but have less steals/assists



Visualization

outlier 1
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Latent Semantic Indexing
(Information Retrieval)

• Assume A is a (terms) x (documents) matrix
– Values denote the term frequencies (or e.g. tf*idf scores)

d1 d2 d3 …

Term1 4 0 2 …

Term2 0 2 0 …

Term3 3 2 0 …

Term4 2 0 1 …

Term5 11 7 0 …

… 0 0 0 …

… 0 0 1 …



d1 d2 d3 …

Term1 4 0 2 …

Term2 0 2 0 …

Term3 3 2 0 …

Term4 2 0 1 …

Term5 11 7 0 …

… 0 0 0 …

… 0 0 1 …

How to define similarity between docs?



Issue 1: Synonymy

• Different words with the same meaning

d1 d2 d3 …

Car 4 0 2 …

Term2 0 2 0 …

Automobile 3 2 0 …

Term4 2 0 1 …

Term5 11 7 0 …

… 0 0 0 …

… 0 0 1 …



Issue 2: Polysemy

• The same word having other meanings

d1 d2 d3 …

Term1 4 0 2 …

Term2 0 2 0 …

Term3 3 2 0 …

Term4 2 0 1 …

Apple 11 7 0 …

… 0 0 0 …

… 0 0 1 …

mentioned as a fruit mentioned as a technology company



Latent Semantic Indexing

• SVD (LSI) discovers the “topics” (=concepts) 
discussed

• Handle synonymy: e.g. car, automobile, 
αυτοκίνητο, αμάξι all refer to the same topic

• Handle polysemy: if apple is mentioned along 
with other fruits in a document it will be 
mapped to the apple-the-fruit concept (crude 
analogy)



SVD vs PCA

• SVD: A=U Λ VT

• PCA : A=X L XT

– A is symmetric

– U, V, X are orthonormal → XTX=I, VTV=I, UTU=I

• Given a non-symmetric matrix A
– ATA is symmetric (thus PCA applies)

– ATA= VΛT U T(UΛVT) = V Λ2 VT = X L XT

• for X = V, L= Λ2

• also, li = λι
2

singular-valueseigen-values



Quick Note: table multiplication

• Let Mnxm= Χnxl * Υlxm

• Then: 

Mij = ෍

𝑘=1

𝑙

(Xik∗Ykj)

= xi . yj

.

=

i

j
X

Y

Mij



Dot products

• x . y =Σ(xk * yk)

• Example:

• Then:

x . y=1*1+3*0+0*1+5*6=31

= |x|*|y|*cos(θ(x, y))

x= (1,3,0,5)
y= (1,0,1,6)

θ



More interesting properties of SVD

• Recall An x m : 
customers to products 
matrix

• SVD: A = U Λ VT

• Then ATA= V Λ2 VT

(product-to-product 
similarity matrix)
– Similarity based on 
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Exploring User’s similarities

• Let v’ be a mx1 
vector denoting 
the preferences of 
customer “John”

• What is Av’ ?

A v’

=

Customer X preferences

Customer X

John’s preferences

Av’ denotes similarities of customers to John

x



Exploring User’s similarities

• Av’ denotes similarities 
of customers to John

• What is AT(Av’) ?

• Products that 
customers similar to 
John buy
– a high value indicates 

that the customers for 
this product are 
similar to the 
customers that are 
similar to John

customers

products

Av’

=

In “facebook terms” what friends of John like
(assuming “friend of John” means similar to John)

x

Thus, AT(Av’) measures how the “friends” of John like each product

AT



Take it further

• (ATA)v’ = what the friends of John like

• Via similar arguments:

• (ATA)2v ‘ = what the friends of the friends of 
John like

• (ATA)kv ‘ = what k-hops away friends like



Visually

WHAT IS THIS?



Interesting property

• Computation converges to a vector parallel to v1

– (ATA)k = V Λ2k VT =~ v1  λ1
2k v1

T for k>>1 
• Recall that v1 is also the 1st eigenvector of ATA

• By definition (ATA)v1 = λ1
2 v1 

– Therefore: (ATA)kv ‘ =~ constant * v1

• After k steps it doesn’t matter where we started 
from. Will converge to the first (strongest) 
eigenvector
– property used for computing pageRank (A is derived 

from the adjacency matrix of the web)
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PageRank* (informal)

x

y

Page x is important if many 
important pages link to it

(recursive def)

Page y has more incoming links but 
lower PageRank than page x

*Larry Page and Sergey Brin



PageRank
(less informal but not complete)

• Let matrix W denote the 
web graph

• Look for vector p such 
that W.p = 1.p

1
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Complications

• Some (even important) pages may have no 
outgoing links
– PageRank leaks out from these nodes instead of 

being re-distributed back to the net

• Existence of cycles
– spider traps/closed communities

– PageRank get’s “trapped” A B

1
2

3

4

C



Summary

• SVD: algebraic tool that has many potential 
uses

– Dimensionality reduction

– Indexing (LSI)

– Visualization/clustering of high-dimensional 
objects

– Similarity computations/outlier detection

– Rule mining, treatment of missing/wrong values
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