OIKONOMIKO
MANENIETHMIO

AOHNAON

ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

E¢opuén yvwonc amo Baoelc
Aebopevwyv kat tov NMNaykoopo loto

Evotnta # 7: Introduction to Big Data
Awdaokwv: MiyaAncg Ballpylavvng
TuApa: Mportuyloko Mpoypappa Zrovdwv “MAnpodoptkic”

* X %

* -

(OOO) K
* *

gk
Epum nEwn

Evpwnaiké

EMIXEIPHZIAKO NMPOrPAMMA
EKI'IAIAEYZH KAI AIA BIOY MAGHZH

YH[]‘IP H]HM EIAL & OPHEKEYMATAN, [IU\IT MOY & AG/\HT]WO

EIAIK YNHPEXZIA AIAXEIPIZHI

Me ™ ovyxpnparodétnon tng EAAadag kat t¢ Evpwnaikic Evwong

Xpnupatodotnon

e To mopoVv ekMALSEUTLKO UALKO €XEL avamtuxOel ota mAailola
Tou ekmatdevtikol £pyou tou dldaokovta.

* To €pyo «Avoilkta Akadnuaika Madnpata oto OLKOVOULKO
NavermotApo ABnvwv» £xeL XpNUOTOdOTHOEL LOVO TN
avadlapopPpwaon tou ekmatdeutikol VALKOU.

* To €pyo vAoroleital oto nAaiolo tou Emuxelpnotokou
Mpoypappoatog «Eknaidbevon kat Ao Biov Mabnon» kot

ocuvyxpnuatodoteital ano tnv Evpwnaikn Evwon (Evpwrmaiko
Kowvwviko Tapelo) kat armo eBvikol ¢ opouc.

EMIXEIPHYIAKO [TPOTPAMMA
EKIMAIAEYZH KAI AlA BIOY MAGHZH Ez rIA

= m npéypappa yia v avdnt§n

YNIOYPTEI MAIAEIAT & BPHEKEYMATON, MOAITIEMOY & ABAHTIEMOY
EvpwmaikiiEvwon EI!AIKH YMHPEZIA AIAXEIPIZHE

Eupwmnaiké Kowvwviko Tapeio 2 : e
Me tn ouyxpnpatrodotnon tn¢ EAAadag kai tn¢ Evpwmnaikng ‘Evwong

Abdeleg Xpnong

* To apOV eKTIALOEVUTLKO UALKO UTIOKELTOL OE AOELEC
xpnonc Creative Commons.

e OL €ELKOVEC TtpOEPYOVTAL

©OE0

2KOTtOL EVOTNTOC

Elcaywyn kot e€okelwaon pe tic pebodouc Map
reduce - distributed processing, technologies
(Hadoop, Map Reduce, NoSQL storage)

MepLexopeva evotntoC

Why Big data
Hadoop
MapReduce
HDFS

Hive, HIVE QL

ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

OIKONOMIKO
MANENIETHMIO
AOHNAON

Why Big data

MaOnpa: E€0puén yvwong amno Baoelg Aedopévwy Kot Tov MaykoouLo
loto

Evotnta # 7: Introduction to Big Data

Adaockwv: MixaAnc BadllpyLtavvng

TuApa: Npormtuylako Mpoypappa 2rtovdwv “MAnpodopiknc”

1GBB

Scaling up...

10 GB 100 GB 1TB

o = -

100 TB ???

We are flooding with data

The New York Stock Exchange generates about 1TB new trade data
/ day.

Facebook hosts approximately 10 billion photos, taking up 1PB
(1000TB) of storage.

ancestry.com, the genealogy site, stores around 2.5PB of data.

The Internet Archive stores around 2 PB data, and is growing at a
rate of 20TB/month.

The Large Hadron Collider near Geneva, Switzerland, will produce
about 15 PB data / year

Issues due to storage resources

Storage capacity have increased massively over the years,
BUT not access speeds

90’s: capacity 1,370 MB, speed:4.4 MB/s - (read a full drive
in ~5 mins)

2010’s: 1 TB, transfer, speed ~100 MB/s,

(> 2.5 hours to read a full drive)

writing is even slower.

to reduce read time -multiple disks at once.

- Assume 100 drives, each holding 1/100 of data.

- Working in parallel, read the data in less than 2 minutes

Issues due to storage resources

hardware failure: many pieces of hardware used result in
fairly high fail probability

replication: redundant copies of the data are kept
in the event of failure another copy available.
Hadoop Distributed Filesystem (HDFS) does replication.

most analysis tasks combine the data; data read from one
disk need to be combined with the data from other disk(s).

MapReduce provides a programming model that
abstracts the problem from disk reads and writes.

ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

OIKONOMIKO
MANENIETHMIO
AOHNAON

Hadoop

MaOnpa: E€0puén yvwong amno Baoelg Aedopévwy Kot Tov MaykoouLo
loto

Evotnta # 7: Introduction to Big Data

Adaockwv: MixaAnc BadllpyLtavvng

TuApa: Npormtuylako Mpoypappa 2rtovdwv “MAnpodopiknc”

Successful Big Data cases with
Hadoop

IBM Watson

Watson, a super computer developed by IBM competed in the
popular Question and Answer show “Jeopardy!”.

Watson beat the two most popular players in that game.

used input approximately 200 million pages of text using
Hadoop to distribute the workload for loading this
information into memory.

Successful Big Data cases with
Hadoop

China Mobile

telecom industry in China, built a Hadoop cluster to perform data mining on Call
Data Records.

China Mobile was producing 5-8TB of these records daily.

Hadoop-based system enables process 10 times as much data as when using their
old system, and at 1/5 of the cost.

New York Times
wanted to host on their website all public domain articles from 1851 to 1922.
They converted articles from 11 million image files to 1.5TB of PDF documents.

implemented by one employee - ran a job in 24 hours on a 100-instance Amazon
EC2 Hadoop cluster at a very low cost

Basic components of Big Data
management

HDFS: A distributed file system that runs on large
clusters of commodity machines.

MapReduce: A distributed data processing model and

execution environment running on large commodity _-
machines clusters.

MAPREDUCE

Pig: data flow language and execution environment for
exploring very large datasets. Pig runs on HDFS and

MapReduce clusters.

Hive: distributed data warehouse, managing data
stored in HDFS. Provides a query language based on
SQL (translated by the runtime engine to MapReduce

jobs) for querying the data.

HBase: A distributed, column-oriented database.
HBase uses HDFS for its underlying storage, and
supports both batch-style computations using
MapReduce and point queries (random reads).

ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

OIKONOMIKO
MANENIETHMIO
AOHNAON

MapReduce

MaOnpa: E€0puén yvwong amno Baoelg Aedopévwy Kot Tov MaykoouLo
loto

Evotnta # 7: Introduction to Big Data

Adaockwv: MixaAnc BadllpyLtavvng

TuApa: Npormtuylako Mpoypappa 2rtovdwv “MAnpodopiknc”

Introduction to Map Reduce

MapReduce - programming model developed
at Google

decomposes large data manipulation jobs into
individual tasks

executed in parallel across a cluster of servers.

the results of the tasks can be joined together

Introduction to Map Reduce

two fundamental data-transformation operations:

map operation: converts the elements of a
collection from one form to another - input and
output values might be completely different.

all the key- values pairs for a given key are sent to
the same reduce operation - the key and a
collection of the values are passed to the reducer.

Reduce operation: convert the values corresponding
to a key a value — by summing or averaging a
collection of numbers, or to another collection.

Each reducer produces one final key-value pair

Again, the input versus output keys and values may
be different. Note that if the job requires no
reduction step, then it can be skipped.

....................

abaw
<
abw

Led - e

Si0H €——

uonedydas

u i |

uonedyd
S4QH

ndino

CUUSION
indui

Hadoop automates the process

Hadoop handles most of details
required to make jobs run successfully.

- determines how to decompose the
submitted job into individual map and
reduce tasks to run,

110S

¢-

:::::'m‘n"‘ OIHdS

schedules those tasks given the available
resources, e :

decides where to send a particular task e * 2
in the cluster to minimize network '
overhead (data locality)

monitors each task to ensure successful
completion, and it restarts tasks that fail.

- Lued 4

L oued -
T,

ndino

SGH 4——
94

uonedyd
S4GH

indu

MapReduce: Motivating example

National Climatic Data Center(NCDC, http://www.ncdc.noaa.gov/).
Rich set of meteorological elements,
basic elements, such as temperature - fixed width

Data files are organized by date and weather station — for 100 years
(1901 —2001)

Assuming tens of thousands of stations, total number (small) files:
100*365*10% ~ 10°

more efficient to process a smaller number of relatively large files,
so the data concatenated into a single file.

The objective is to make a list: {<year, max temperature>}

Solution with Unix Tools

Example 2-2. A program for finding the maximum recorded temperature by year from NCDC weather
records

#!/usr/bin/env bash

for yearin all/*

do
echo -ne ‘basename Syear .gz™"\t"
gunzip -c Syear | \
awk '{ temp = substr(S0, 88, 5) + 0;
q = substr(S0, 93, 1);
if (temp 1=9999 && q ~ /[01459]/ && temp > max) max =
temp }
END { print max }'
Done

* The complete run for the century took 42 minutes in one run on a single EC2 High-CPU Extra Large
Instance

* Trying to run the task in parallel incurs several difficulties.

Analyzing the Data with Hadoop

MapReduce breaks the processing into two
phases: map phase and reduce phase.

Each phase has key-value pairs as input and
output, the types of which may be chosen by
the programmer.

The programmer specifies two functions:

the map function and the reduce function

Analyzing the Data with Hadoop

* map function

- We pull out the year and the air temperature
from the file setting up the data in such a
way that the reducer function can do its work
on it: finding the maximum temperature for
each year.

- The map function is also a good place to drop
bad records: here we filter out temperatures
that are missing, suspect, or erroneous.

Map function

INPUT - the key-value pairs:
0, 0067011990999991950051507004...9999999N9+00001+99999999999...)
106, 0043011990999991950051512004...9999999N9+00221+99999999999...)

318, 0043012650999991949032412004...0500001N9+01111+99999999999...)

(
(
(212, 0043011990999991950051518004...9999999N9-00111+99999999999...)
(
(424, 0043012650999991949032418004...0500001N9+00781+99999999999...)

MAP function:

i. extracts the year and the air temperature (indicated in bold text),

ii. emits them as its output (the temperature values have been interpreted as
integers):

OUTPUT: (1950, 0), (1950, 22), (1950, -11), (1949, 111), (1949, 78)

Mapper maximum temperature example

public class NewMaxTemperatureMapper {
static class NewMaxTemperatureMapper

extends Mapper <LongWsritable, Text, Text, IntWritable> {
private static final int MISSING = 9999;

/[map function parameters: input key/value, output key/value types

Il in this case: input file offset/text line , output year/max-temperature

public void map(LongWritable key, Text value, Context context) throws IOEXxception
InterruptedException {

String line = value.toString(); //Retrieve text line @ key position
String year = line.substring(15, 19); //isolate the year value

int airTemperature; _ _ _
if (line.charAt(87) == '+') {//[parselnt doesn't like leading + signs

airTemperature=Integer.parselnt(line.substring(88, 92)); } else {
airTemperature = Integer.parselnt(line.substring(87, 92)); }

o String quality = line.substring(92, 93);
if (airTemperature !'= MISSING && quality.matches("[01459]")) {

Il context writes the to the output: year, max_temperature
context.write(new Text(year), new IntWritable(airTemperature));

}}

Reduce function

. (1950, 0), (1950, 22), (1950, -11), (1949, 111), (1949, 78)

* jterate through the list and pick up the maximum
reading:

(1949, 111), (1950, 22) @

* final output: the maximum global temperature recorded
in each year.

Reduce

import java.io.lOException; import java.util.lterator;
import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;

import org.apache.hadoop.mapred.Reporter;

// reducer inputs must match the output types of the
mapper

// for each year: compute max temperature
Static class NewMaxTemperatureReducer

extends Reducer <Text, IntWritable, Text, IntWritable>
{

// for each key (year) compute the max temperature
from values

function

// and write the pair key (year), value (max_temprature) to
the context/output

public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException {

int maxValue =
Integer.MIN_VALUE;

for (Intwritable value :
values) {

maxValue

= Math.max(maxValue, value.get());

}

context.write(key, new
IntWritable(maxValue)); }

}

MAX TEMPERATURE APPLICATION

import java.io.lOException;import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.FilelnputFormat; import org.apache.hadoop.mapred.FileOutputFormat; import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;

public class NewMaxTemperature {

public static void main(String[] args) throws Exception {

if (args.length !=2) {
System.err.println("Usage: MaxTemperature <input path> <output path>");
System.exit(-1); }

// object to run the job

Job job = new Job();

Job.setJarByClass(NewMaxTemperature.class);

FilelnputFormat.addInputPath(conf, new Path(args[0])); //input data location

FileOutputFormat.setOutputPath(conf, new Path(args[1])); //output data path

job.setMapperClass(NewMaxTemperatureMapper.class); // set the map process

job.setReducerClass(NewMaxTemperatureReducer.class); // set the reduce process

job.setOutputKeyClass(Text.class); //type of the output key objects job.setOutputValueClass(IntWritable.class); //output value objects type
JobClient.runlob(conf);

System.exit(job.waitForCompletion(true) ? 0: 1);

1

MapReduce lifecycle

input | | reduce > output

0067011990
0043011990..
0043011990..
0043012650..
0043012650..

7

(0, 0067011990.

)
(106, 0043011990..)
(212, 0043011990..) P+
(318, 0043012650..)
(424, 0043012650..)

(1949, 111)
(1950, 22)

(1949, [111,78])

. p] 1949111
(1950, [0, 22, -11])

» 1950,22

cat * | mp.xb | sort | reduce.rb > output

Data Flow

A MapReduce job is a unit of work to be performed and
consists:

input data, the MapReduce program, and configuration
information.

Hadoop runs the job by dividing it into tasks, of which there
are two types: map tasks and reduce tasks.

two types of nodes control the job execution process:

a jobtracker: i. coordinates all the jobs run on the system by
scheduling tasks to run on tasktrackerswhich ii. keeps a
record of the overall progress of each job. If a task fails, the
jobtracker can reschedule it on a different tasktracker.

Map task

- Hadoop splits input in fixed size splits

- Map task runs on the same node

input
HDFS

1 split b

...

split2 &

merge
L L -pi part0 E—~—p HDFS
i replication

Data flow with multiple reduce
tasks

* When there are multiple reducers, the map
tasks partition their output, each creating one
partition for each reduce task.

input
HDFS

—*—b HDFS
. replication

—% HDFS
. replication

Another example of an application
for MapReduce

* |nverted index creation of a search engine:

 Dataset of 1TB, 25 million Web pages

«(GOV2 -
http://ir.dcs.gla.ac.uk/test collections/access to data.htm

l)
* Cluster of 5 machines (Intel Core 2, 4GB of RAM)

e 10 hours needed instead of 72 hours

http://ir.dcs.gla.ac.uk/test_collections/access_to_data.html
http://ir.dcs.gla.ac.uk/test_collections/access_to_data.html
http://ir.dcs.gla.ac.uk/test_collections/access_to_data.html
http://ir.dcs.gla.ac.uk/test_collections/access_to_data.html

ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

OIKONOMIKO
MANENIETHMIO
AOHNAON

HDFS

MaOnpa: E€0puén yvwong amno Baoelg Aedopévwy Kot Tov MaykoouLo
loto

Evotnta # 7: Introduction to Big Data

Adaockwv: MixaAnc BadllpyLtavvng

TuApa: Npormtuylako Mpoypappa 2rtovdwv “MAnpodopiknc”

Hadoop Distributed File System -
HDFS

 Node: a single — commodity - computer

e Rack: a collection of 30 or 40 nodes physically stored close together all
connected to the same network switch). Network bandwidth between
any two nodes in rack is greater than bandwidth between two nodes on
different racks.

 Hadoop Cluster is a collection of racks

 Hadoop major components:
- Hadoop Distributed File System (HDFS)

- MapReduce component, which is a framework for performing
computations on the data in the distributed file system.

HDFS Design

HDFS designed for

storing very large files (currently handles up to
Petabyte files)

streaming data access patterns

analysis tasks on large files involve a large proportion,
if not all, of the dataset,

time to read/scan the whole dataset is more
important than the latency to seek the first record.

running on clusters of commodity hardware.

Can handle failures via replication

HDFS design

« HDFS is NOT designed for:
- Direct access to files (Hbase does..)
- Lots of small files
- namenode holds file system metadata in memory,

- number of files in a filesystem constrained by the memory on the
namenode.

- afile or directory name ~150 bytes. For 1M files, need ~300 MB of
memory.

- handling millions of files feasible, billions is beyond current hardware
capacities

Multiple and arbitrary file modifications

- Files in HDFS may be written to by a single writer and always at the end of
the file.

Large Blocks in HDFS ...

HDFS blocks are large compared to disk blocks (few KB)

- to minimize the cost of seeks. By making a block large enough, the
time to transfer the data from the disk can be made to be
significantly larger than the time to seek to the start of the block.

- thus time to transfer a large file made of multiple blocks operates at
the disk transfer rate — few seeks

Example:
seek time ~10 ms, transfer ~100 MB/s,
seek time <=1% transfer time -> block size ~100 MB.

the default ~ 64 MB, although many HDFS installations use 128 MB
blocks.

Block size is expected to grow as new generations of disk drives provide
faster transfer rates.

HDFS design

* Name node (master) — data nodes (the workers)

 Data nodes store and retrieve blocks when they are told
to (by clients or the name node), and report back to the
name node periodically with lists of blocks that they are

storing.

"',"""-::-".'..' FsData namenode
InputStream

§ rEarj

datanmh datanode datanude

HDFS — network topology

Need to place data such that
bandwidth between nodes for an

analysis is optimal

distance(/d1/r1/n1, /d1/r1/n1)=0 = rtu -

(processes on the same node) o2

distance(/d1/r1/n1, /d1/r1/n2) =2

|
|
(different nodes on the same rack) :

rack

distance(/d1/r1/n1, /d1/r2/n3) =4 — PE——

(nodes on different racks in the same
data center)

distance(/d1/r1/n1, /d2/r3/nd) =6
(nodes in different data centers)

HDFS - replication

3 copies:

Same node

Rano
anot

Rano

om node n, in
1errackrj

om node n,in

same rack r;

node |

rack

data center

ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

OIKONOMIKO
MANENIETHMIO
AOHNAON

Hive, HIVE QL

MaOnpa: E€0puén yvwong amno Baoelg Aedopévwy Kot Tov MaykoouLo
loto

Evotnta # 7: Introduction to Big Data

Adaockwv: MixaAnc BadllpyLtavvng

TuApa: Npormtuylako Mpoypappa 2rtovdwv “MAnpodopiknc”

Introduction to Hive

* more and more data becoming available
every day, the need to deploy a distributed
framework becomes apparent.

* need to keep things simple and allow users
to (continue to) interact with the data using
SQL (which is easy and intuitive)

* avoid having developers writing long and
difficult programs in map-reduce

Hive

Hive (by facebook) is a database

provides an abstraction layer between the user
and tha data stored in hadoop

allows quering and analyzing that data using a
SQL dialect (quite similar to MySQL)

Suited for applications that require a data warehouse
with

- relatively static data

- no need for a fast response time.

Hive abilities
Hive can facilitate:

developers in porting current code
using traditional databases to hadoop.

Ease users in the transition as it uses a
SQL dialect. (no new languages-or tools required)

Be extended by new user-defined functions(UDF)
Integrated with Amazon's Services (i.e.Elastic Mapreduce)
Hive is not made for:
transactions management (record-level, updates,inserts or deletions)

Providing “realtime” usage due to the mapreduce overhead and the
amount of data.

Hive Interaction

Hive can be accessed the command line interface (CLI)
Using the CLI :
S hive -e “select id from users limit 10”
(displays at most 10 ids)
S hive -S -f query.sqgl > query_results
S cat query_results
(-S doesn't display mapreduce messages
and -f selects a sql file)
S hive --help (for more)

HiveQL

Primitive Data Types : Collection Data Types :
TINYINT Struct : like a ¢ struct
SMALLINT Map : collection of key-value
INT tuples
BIGINT Array: arrays for a column
BOOLEAN
FLOAT Using collections in fields may
DOUBLE appear wrong as it violates
STRING normalization. But in our case
TIMESTAMP (Bi.g Djta), wehhavg hugeI Sﬁeej
BINARY gains due to the minimal “hea

seeks” we need to find our
data.

Feature
Updates

Transactions
Indexas
Latemcy

Data types

Functions

Multitable inserts

Create table as
seleot

Select

Joins

Subgueries

Extension poimts

S0L

UFDATE, INSERT,
DELETE

Suppormed

Suppormed

Sub—second

Integral, floating point,
fizeed pizint, text and binary
strings, tempaoral
Hundreds of built-in
functions

Hot supported

Not walid SOL-%2, but Fouwnd
in some databases

SOl-92

S0L-92 or variants (join t=-
bldes in the F ROM cause, join
condition in the WHERE
clams=)

Im any clawse. Correlated or
noncormelated .

Updatable. Materialized or
nonmeaterialized.

U=ar-defimed fumnctions.
Stored procedures.

SQL vs. HiveQL

HiweQL

INSERT OWERWRITE
TAE LE (populates whaole ta-
ble or partition}

Mot supported
Mot supported
Minutes

Imtegral, floating point, boo-
lean, strimg, anray, map, stmct

Dorems of buwilt-in functions

Supported
Supported

Single rtable or view im the
FREOM dause. SOET BY for
partial orderng. LTMIT to
limmit mumb-er of rows re-
turmeed. HaW TG not
supported.

Immer poins, outer joins, semi
joins, map joins. S0L-92 syn-
tax, with himting.

Only inthe FROM dause. Cor-
related subgueries mot sup-
peorited

Read-ondy. Materialized
wiews not supportaed

User-diefimnedfunctions. Map-
Reduce scripts.

HiveQL

Hive> CREATE DATARASE ecole;
Hive> USE ecole;
Hive> CREATE TABLE students (

name STRUCT<f:STRING; 1:STRING>,
grade MAP<STRING, INT>,
age INT);

Hive> select “Big Data”, avg(grade[“Big
Data”]) from students where age
> 23 limit 1;

Complex Types

Hive has three complex types: ARRAY, MAP, and STRUCT.
ARRAY and MAP are like their respective in Java
STRUCT is a record type which encapsulates a set of named fields.
Complex types permit an arbitrary level of nesting.
CREATE TABLE complex (
coll ARRAY<INT>,
col?2 MAP<STRING, INT>,

col3 STRUCT<a:STRING, b:INT,
c: DOUBLE>

) 7
Sample Query:
hive> SELECT coll[0], col2['b'], col3.c FROM complex;

1 2 1.0

Multitable Insert

FROM records2

INSERT OVERWRITE TABLE stations by year
SELECT year, COUNT(DISTINCT station)
GROUP BY year

INSERT OVERWRITE TABLE records by year
SELECT year, COUNT (1)
GROUP BY year

INSERT OVERWRITE TABLE good records by year
SELECT year, COUNT (1)

WHERE temperature != 9999

AND (quality = 0 OR quality = 1 OR quality

quality = 9)

GROUP BY year;

4 OR quality

5 OR

multitable insert is more efficient than multiple INSERT statements, since the source table
need only be scanned once to produce the multiple, disjoint outputs.

Querying Data

Sorting data in Hive: ORDER BY clause, but there is a catch. ORDER BY produces a result
that is totally sorted - sets the number of reducers to one, thus very inefficient for large
datasets.

When a globally sorted result is not Hive’s nonstandard extension, SORT BY producing a
sorted file per reducer.

to control which reducer a particular row goes to, to perform some subsequent
aggregation: DISTRIBUTE BY.

Example: sort the weather dataset by year and temperature - ensure all the rows for a
given year are sent to the same reducer:

hive> FROM records?

> SELECT year, temperature

> DISTRIBUTE BY year

> SORT BY year ASC, temperature DESC;
1949 111

1949 78

1950 22

1950 O

1950 -11

Joins

hive> SELECT name,prod_id FROM sales;
Joe 2
Hank 4
Ali O
Eve 3

Hank 2

hive> SELECT prod_id, prod name FROM things;
2 Tie
4 Coat
3 Hat

1 Scarf

hive> SELECT sales.*, things.¥*

> FROM sales JOIN things ON (sales.id = things.id);
Joe 2 2 Tie

Hank 2 2 Tie

Eve 3 3 Hat

Hank 4 4 Coat

This is because HIVE allows only ONE table in the FROM

HIVE - QL

CREATE TABLE records (year STRING, temperature
INT, quality INT)

ROW FORMAT DELIMITED
FIELDS TERMINATED BY '"\t';

LOAD DATA LOCAL INPATH 'input/ncdc/micro-
tab/sample.txt’

OVERWRITE INTO TABLE records;

\O

> 1s /user/hive/warehouse/record/

sample.txt

HIVE - QL

hive> SELECT year, MAX (temperature)
> FROM records
> WHERE temperature != 9999

> AND (quality = 0 OR quality = 1 OR quality = 4
OR quality = 5 OR quality = 9)

> GROUP BY vyear;

Hive transforms this query into a MapReduce job, then prints the results
to the console:

1949 111
1950 22

Alternative approaches

HIVE is easy to learn and use but not suited for Big Data
real time applications.

. Pig
- suitable for various consecutive transformations to
input data to produce a new set of output data.
- data flow language rather than a query language

- much easier to think of transformations as a flow
instead of queries.

o Hbase
provides features that Hive doesn't:

o row-level updates, MAPREDUCE

o rapid query times and transactions.

o Itis also distributed.

o Butit doesn't offer an SQL like query language

O

References and useful links

“Hadoop the Definitive Guide”, T. White, O-Reilly media

The architecture of HDFS is described in “The Hadoop Distributed File System” by
Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler
(Proceedings of MSST2010, May 2010,
http://storageconference.orq/2010/Papers/MSST/Shvachko.pdf).

“Programming Hive, Data Warehouse and Query Language for Hadoop”, O'Reilly
Media

https://cwiki.apache.org/Hive/home.html

http://hbase.apache.org/

http://pig.apache.org/

http://storageconference.org/2010/Papers/MSST/Shvachko.pdf
https://cwiki.apache.org/Hive/home.html
https://cwiki.apache.org/Hive/home.html
http://hbase.apache.org/
http://hbase.apache.org/
http://pig.apache.org/
http://pig.apache.org/
http://pig.apache.org/

OIKONOMIKO
MANENIETHMIO

AOHNAON

ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

TEAoc Evotnroc # 7

Malnua: E€opuén yvwonc ano Baoelg Asbopévwy Kat tov MNaykoouLo
loto, Evotnta # 7: Introduction to Big Data
Adaokwv: MixaAnc Balipyiavvng, Tuquo: Mpomtuyioko Mpoypappa
2riovdwv “NMAnpodopiknc”

EMIXEIPHXIAKO MPOIPAMMA
‘ \ EKMAIAEYZH KAl AIA BIOY MAGHZH s Ez nA
@ ® @ @ - ’ e = npdypappa yia v avanun
YNOYPTEIO MAIAEIAL & BPHEKEYMATQON, NOAITIZMOY & ABAHTIZMOY 0

Evpwnaiki 'Evwon EIATKH YNHPEXZIA AIAXEIPIZHE
Evpwmaiké 6 i

K T
pRomsmoIapso Me t ouyxpnuarodoétnon tng EAAadag kai Tn¢ Evpwnaikic Evwong

