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Linear Regression



Linear Regression

Suppose we are given a dataset in the form
- (x, yD), (x2), y2)) ., (x(m), y(m)
- x: typically a vector with the values of the features for the i-th
data point

V) = (Igi), ;lfgi), e ,;E('i))
-yl the label of the i-th data point (a real number)

Goal: Learn the function that best describes the
dependence of y on the features

Linear Regression: We try to learn a linear function in the form
h(x) =w, x; + W, X, + ... + W, X, + W,

* h(x)is then called a linear hypothesis



Linear Regression

A classic example
e Consider a 1-dimensional problem

e Supppose we want to predict the rent for apartments in
a specific area of Athens

e X, =area of the apartment in sq. meters
v A

* Dataset:
— 1 feature (area)
o? - yl) = price
We want to find a
function in the form
h(x,) = wyx; + w, that
. best fits the data




Linear Regression

How shall we decide which
linear function fits best?




Linear Regression

e There is no unigue answer, every line will miss several
points

e We need to select a loss function to evaluate the quality
of the line picked

A
y Idea: Pick the line that

minimizes the (squared)
distances from the data
points




Linear Regression

e |f the sum of the squared distances is small, we can say
that we achieve a good approximation by a linear
function

y |dea: Pick the line that
minimizes the (squared)
distances from the data
points




Linear Regression

* When we have n features (i.e. n variables), let w = (w,, w;, w,,..., w_)
e Loss function:

m

Clw) = 53 [ha®) - 4]

" 2m
i=1

2

* We assumed m data
points

* The division by 2m is for
normalization




Linear Regression

This is a “least squares problem”
In more detail:

* |In problems with one feature:

1 m 'i 'i 5
Cw) = 2= 3 [wiel? + wo — 4]
i=1

* In problems with multiple features:

m

1 t z i i
C(w) = Y. Z [ww(l) + wQIé) +...+ wn-.cﬁz) + wg — ' ')]
i=1

* We want to find the vector w that minimizes C(w)

2
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Least Squares Problems

* |In some cases, we may have some extra constraints, e.g. some

upper bound on ||w||
* If not then this is an unconstrained convex quadratic problem

« Homework: check that C(w) is a convex function

* Analytic solution obtained by:
VC(w) =

=
~

oc o _ 1y (D) Q
f)ur 277222[ ] &) _Eg[ ]

i=1
 The partial derivatives lead to linear equations
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Least Squares Problems

In more concise form:
*  For convenience, set x,// = 1 for each data point

() = (;L'(()i), ;Lt(lli), ;Ltg'), e ,17$1i)) = (1, ;Eg’i),'lf(;), s ,;E(i))

 Grouping together the equations
—  We can then write h(x/) as wTx{
— Let X be the matrix where the i-th row contains the i-th data
point
— Lety be the column vector with all the labels of the data
points

e Then
VC(w)=0=X""X-w=X"T-y=w=(X"-X)1-X"-y



Least Squares Problems

What if the matrix X" - X is not invertible?
« Ofif we want to avoid solving a linear system with a large number
of equations?

Gradient descent works very fast in this setting

* If the current solution is w = (w,, w,, w,,..., w, ), then the update in
iteration k for each wj, j=1,..., n, is (with step size a,):

ok m i .i i
i=1
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Polynomial Regression

In some problems a linear hypothesis does not suffice
Next step would be to move to a polynomial
hypothesis
E.g. For one variable: we may want to search for a
hypothesis of the form

h(x) = w3x3 + w,x? + w,x + w,
We can create polynomial features
Each x{) can be transformed into a new vector that
includes these features
We can apply linear regression on this transformed
data set

14



Polynomial Regression

If we have many variables to begin with?

Again we can think of polynomials in all variables
Hence, we can have features like x,x, or x,x, etc
Suppose we want to fit the data with a polynomial of
degree 2

If we want to include all possible monomials, then for
every data point x, we can define the transformation:

(D(I) — (11 Il: e _-.In: I‘%v 1'.11721 171173: e _-.I'll'-n.-. I’%v L2IL3,... 317;21)

We can then do linear regression with the data set
(d(x1), y)) for i=1,...,m
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Regularized Regression

Overfitting:

It can happen when we have too many features and small
number of training examples

Or if we use a polynomial of high degree, when a smaller
one suffices

What can we do?

It is observed that in the presence of overfitting, the
parameters have very high absolute values

Large variance

Hence, we can “punish” large values in our objective

function
16



Regularized Regression

New objective:

1 — . A12 0 A
C(w) = 5 Zl [h'(f(z)) — o )] T %Hw“2

Experimentation needed for choosing appropriate values
of A

How do we minimize the new C(w)?

Again a convex problem
Gradient descent still works quite well

This method is also referred to as Ridge Regression
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Support Vector Machines
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Support Vector Machines

e One of the best families of supervised learning algorithms

e Big advantage: easily applicable in very high dimensional
feature spaces

e Lagrange duality provides many insights for building SVMs
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A

Classification Problems

e To begin with, suppose we have a linearly separable

data set
e 2 labels: {-1, +1}

Red class: label -1

Blue class: label +1

In 2 dimensions, there is a line
of the form w x; + w,x,+ b =0
that separates the 2 classes
w' - x + b <0 for every point x
in the red class

w' - x + b > 0 for every point x
in the blue class

where w = (W, w,)

20



Classification Problems

e |f each data point had n features: then there exists a
hyperplane in R" that separates the 2 classes:

W X; + WoX, +.+ W X +b =0
e Goal: Find w = (w,, w,, ..., w,) and b so that we correctly
4 classify the data set

21



Classification Problems

e The problem may admit many solutions
— There can be too many lines that separate the 2 classes

e |sthere a solution that is better than the others?

Which of these lines is a better
choice for future predictions on
non-training data?

22



Classification Problems

e Suppose we pick a line very close to the red class
e And suppose 2 new points, A and B, arrive for

classification
— Not part of the initial data set

For B we can be pretty sure it
should be classified as +1

What about A?

We can label it as -1 but we might
not be sure about it

For Point A: w'x + b is close to O

23



Classification Problems

e |deally, we would like a line, given by w, and b, such that:
e w':x+b<<0forevery point x in the red class
e w'-x+b>>0 for every point x in the blue class

A
. What is the criterion we should
o ° optimize to achieve the best
o [ . 3
e o ° possible results:
¢ (
o ° ‘
L 4 ¢ 'S
*
>
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The Optimal Margin Classifier

e Pick the line that maximizes the margins
e Margin of a data point: distance from the line selected

Hence: pick a line that maximizes the
. minimum margin from the data points

Minimum
\ .
smargins

wWix+b=0

- >

X1 25



The Optimal Margin Classifier

e Support vectors: The vectors formed by the data points
with the minimum margins

e Will see later why they are useful

26



The Optimal Margin Classifier

Defining the optimization problem we care about:
e Suppose the data set is (x1), y(1), (x2), y(2),..., (x(m), y(m))
e yiin{-1, +1}

Given a possible solution w and b:
R « Distance of point xl! from the line
N ° wh-x+b=0
d=|wr-x0+b|/|w]
* Ifthelineis a correct classifier
dy=y0- (W= x+b) / |[w]
* We want to find:
max,, , min; d,

Minimum

\ .
\[narglns
wix+b=0

> >

X1 27



The Optimal Margin Classifier

First attempt to bring the problem to an amenable form:

max d max r/||w]|
s.t. = s.t.
d >d,i=1,...,m yi - (wT-x+b)/||lw|| = r/||w]]
max r/||w]|
= s.t.

yO e (wh-xW+b)>r

* Problem: Objective function is nasty (non-convex)
* No techniques known tailored for such functions

28



The Optimal Margin Classifier

Normalization:
* No need to have r as a variable, we can assume without loss

of generality that r=1
* Suppose not
* Consider a solution w, b, such that min, |[w™-xW +b| =a#1
* Thensetw:=w/a, b:=b/a
* This is a new valid solution that satisfies what we want

Hence:

* We need to maximize 1/ ||w||

* Instead: we can minimize ||w||

* To bring the problem to a more familiar form, we will use as
our objective function: 1/2 ||wl||?

29



The Optimal Margin Classifier

1

: 2
min —||w
>l

S. L
y(z) . (le . '.lf(i) + b) > 1

fore=1,...,m

* Convex quadratic objective function
* Linear inequality constraints
* We can solve it with various ways
— |If we add slack variables, we have seen how to solve it
using the KKT conditions
— Otherwise interior point methods can also solve it quickly
— There are also commercial tools specific for Quadratic

Programming

30



The Optimal Margin Classifier

We could consider the problem solved at this point

BUT:

We can exploit Lagrange duality to derive the dual problem
The dual will allow us to solve this much more efficiently
Solving the dual works well even for very high dimensional
spaces

This also provides intuition regarding the support vectors and
why it is useful that we usually have only “few” support
vectors

31



The Dual Problem

 The Lagrange function:
 We only have Lagrange multipliers for the inequality
constraints
* Leta=(ay, a,,..., a,) be the vector of Lagrange multipliers

L(w,b; ) ——||u|| —Za[y“ -z +b) — 1]

e The dual function
* We need to compute inf, , L(w, b; a)
* To minimize L, we use the condition VL =0

32



The Dual Problem

Deriving the dual function:

oL m N
— § y(2) (%)

610 =0 fOI'] = 1 = w = 2 a;y’x

8L m '

il E (1) —

Plug in (1) into the Lagrangian function
o After some algebraic manipulationS'

L(w,b; a) = zaz—-zzw 0

i=1 j=1

* By using (2), the last term vanishes

(2)

T 2@ b3 agy®
j=1
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The Dual Problem

 Summarizing, we arrive at the following dual problem:

max W(a) = Z a; — = ZZ Y )y(j)a:,-aj(-.zr(i), 7))

i=1 j=1
S. L.:

zm: az-y(i) =0

alZO fore=1,...,m

* Notation: for convenience, we denote by (x{!, x0)) the inner
product of the 2 vectors, i.e., (x¥)T - x0)

34



Lessons and insights learnt from the

dual

1. If we manage to solve the dual, we can easily use (1) and (2)
to compute the optimal solution w* and b* for the primal
2. Why could it be easier to solve the dual?

Let us look at the KKT conditions
Because we have inequalities in the primal, we have the
complementarity conditions:

o - [y (wh-x+b)-1]=0
Hence for all data points where y! - (W' x +b)>1=a, =0
a, > 0 only for data points with the minimum margin
These are the points corresponding precisely to the support vectors!
In practice, we do not expect too many points to attain the
minimum margin
Hence, even with thousands of training data, we expect to have few

support vectors = few non-zero variables in the dual
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Lessons and insights learnt from the

dual

3. The dualis written in terms of the inner products

Suppose we solve the dual

Suppose also we now want to make a prediction for a
new data point x

We should calculate w'x + b and decide which label to
give

But by (1) this is

m

wl -z 4+b= Z iy ) + b
=1

If many a’s are zero, this needs only a few inner product
calculations

No need to calculate w and b to make the prediction
36



Almost Separable Data

 Some times the data may not be linearly separable even

though it is obvious that there are 2 separable classes of data

Tl

* In this example, the dataset is almost linearly separable
 We will treat some (few) examples as “outliers”

37



Almost Separable Data

* We cannot demand that yt) - (w"- xl) +b) >1
e But we can relax the constraints

Tl

* Askforyl)-(w'-x+b) >1-s (slack variable s, > 0)
* Penalize the sum

38



Almost Separable Data
* The new primal problem

1 .
min §||w||’~’+czs,-
i=1
S. L:
y(z)(wTJ;(z)—{—b)Z],—Sz. i=1,....m
SZ'ZO, z'=1,...,m

 And the new dual problem

max W(a) = Z a; — — ZZ y Wy D a,a;(z®, £09))

Z—l] 1
S. L.:

in: ay” =0

O<az§C fore=1,...,m
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Almost Separable Data

Lagrange duality works almost in the same way as before
Only difference is the upper bound on each «,
Sanity check: Derive the new dual on your own

Again equations (1) and (2) still valid
Hence, again predictions on new data points can be made
using inner products

40



Kernels

 What happens when the data are not even close to linearly
separable?

Separable by a curve
but not by a line

e We cantry to find a polynomial that separates the 2 classes
e Similar in spirit to polynomial regression

* This is where the real power of SVMs arises »



Kernels

 We can create polynomial features

* Each xl) can be transformed into a new vector that includes
these features, say ¢(x™)

* Instead of the inner products (x1, xi), we will now have
(bx), b(xh) )

If we are careful, this can be done very efficiently

Definition: Given ¢(x), a kernel is a function K such that

K(x, 2) = ($(x), $(2) )

42



Kernels

e Itisinstructive to look at some examples of kernels
1. Suppose  ¢(z) = (1,V2x1, V2,27, V2r1x0, 73)

Observation: K(x, z) =(x, z)? = (x'z)?

2. Suppose now

¢(x) = (z1, T1T9, T1T3, ToT1, T3, TOT3, T3T1, T3T2, T3

Again K(x, z) = (x'z)?

If we had n variables instead of 3:

« Computing ($(x), d(z)) takes O(n?) time
 Computing K(x, z) takes only O(n) time

)

43



Kernels

In general we can pick our transformation so that

K(x, z) = [B (X, z) + y]P

For appropriately chosen B3, y

New objective function in the dual

m m m

:Zai Zzy (Jaa]\( (2) 2(9))
i=1

21]1

Main Conclusions:

We can incorporate high dimensional feature spaces

All we need is inner product computations

No need to compute $p(x), we only need to compute K
Hence: we can learn in a high dimensional feature space
without the need to explicitly represent the new features

44



Solving the dual

* How can we actually solve the dual?

 The best approach is via the SMO algorithm (Sequential
Minimal Optimization)

* Derived by Platt (1998)

Main ideas:

* Alocal search approach

e Suppose we keep all variables fixed and try to update a single
variable a.

* By (2) we cannot do that, if we fix m-1 variables, this fixes the
last variable as well

 We do local search on pairs of variables
- Pick a pair of variables, and keep the other m-2 variables fixed

- Find a way to update these 2 variables so as to make progress 45



Reading Material

e |Lecture Notes on Support Vector Machines from the
machine learning course of Andrew Ng (Stanford):
https://sgfin.github.io/files/notes/CS229 Lecture Notes.pdf

e Technical report by Platt on the SMO algorithm:
https://www.microsoft.com/en-
us/research/uploads/prod/1998/04/sequential-minimal-
optimization.pdf

e Machine Learning on Coursera by Andrew Ng also very
illustrative
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