ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

M.Sc. Program in Data Science Department of Informatics

Optimization Techniques Convex Optimization

Problems with Constraints – Optimality Conditions

Instructor: G. ZOIS georzois@aueb.com

Optimization Problems with Constraints

Example:

Consider the problem

min $x_1 + 2x_2$ s.t. $x_1^2 + x_2^2 = 1$

How do we handle nonlinear constraints?

- Once we have such constraints, we cannot a priori use the iterative methods we have seen so far
- We would need to ensure that the sequence of points produced satisfy the set of constraints

Example:

Consider the problem

min $x_1 + 2x_2$ s.t. $x_1^2 + x_2^2 = 1$

A first attempt: Lagrange method

- A method that can be applied when we have few variables and/or constraints
- Define the Lagrange function:

$$L(x_1, x_2, \lambda) = x_1 + 2x_2 + \lambda(x_1^2 + x_2^2 - 1)$$

- λ is called the Lagrange multiplier
- Corresponds to a "dual" variable as we will see later

Lagrange method:

•We now try to optimize the Lagrange function instead of the original one

•This is an unconstrained optimization problem

- •Hence, at its minimum, it should hold that $\nabla L(x_1, x_2; \lambda) = 0$
- •This will give us x_1 and x_2 as functions of λ
- $\bullet \mbox{The constraint}$ will then tell us how to set λ

 $\nabla L(x_1, x_2; \lambda) = 0 \Rightarrow (1 + 2\lambda x_1, 2 + 2\lambda x_2) = (0, 0) \Rightarrow (x_1, x_2) = (-\frac{1}{2\lambda}, \frac{1}{\lambda})$

- Using now the constraint, we get a value for λ
- Substituting, we eventually have $x_1 = -2/sqrt(5)$, $x_2 = 2/sqrt(5)$

What if we have multiple equality constraints?

- •We can now use one Lagrange multiplier per constraint
- •Again, we will solve for $\nabla L(x; \lambda_1, \lambda_2, ..., \lambda_p) = 0$
- •We will express x as a function of the multipliers
- •The constraints will tell us the final solution

min f(x)

s.t. ⇒

h_i(x) = 0, i=1,...,p

Let
$$\lambda = (\lambda_1, \lambda_2, ..., \lambda_p)$$

• The Lagrange function becomes:

 $L(x; \lambda) = f(x) + \Sigma_i \lambda_i h_i(x)$

- The method does not always succeed
- Need to be careful with the values of the multipliers

Theorem:

Given an optimization problem with equality constraints, let $L(x; \lambda)$ be the Lagrange function

 \bullet If there exists a vector of Lagrange multipliers λ such that

 $\min_{x} L(x; \lambda) > -\infty$ and attained at some x^*

And if x* satisfies the equality constraints
 Then x* is a solution to our original minimization problem

- Hence, need to determine first the acceptable range for λ
- In our example, we could not have accepted a negative value for λ

- How was this method derived?
- What is the meaning of Lagrange multipliers?

Answer:

- It is a consequence of duality theory for nonlinear programs
- •The multipliers correspond to "dual" variables

Lagrange Duality and the KKT Optimality Conditions

Consider again the more general form of optimization problems (not restricting ourselves to convex problems):

min f(x)s. t.: $g_i(x) \le 0, \quad i = 1, 2, ..., m$ $h_i(x) = 0, \quad i = 1, 2, ..., p$

Lagrange multipliers:

 $\begin{aligned} \bullet \lambda &= (\lambda_1, \lambda_2, ..., \lambda_p) \text{ for the equality constraints} \\ \bullet \mu &= (\mu_1, \mu_2, ..., \mu_m) \text{ for the inequality constraints, with } \mu_i \geq 0 \end{aligned}$

The Lagrange function:

$$L(x;\lambda,\mu) = f(x) + \sum_{i=1}^{p} \lambda_{i}h_{i}(x) + \sum_{i=1}^{m} \mu_{i}g_{i}(x)$$

The dual function is now defined as:

$$d(\lambda,\mu) = \inf_{x} L(x;\lambda,\mu)$$

Note that it can be the case that $d(\lambda, \mu) = -\infty$ for some values of λ and μ

Observation (essentially weak duality):

If p* is the value of the optimal solution to the primal problem, then

d(
$$\lambda$$
, μ) ≤ p* for any λ and any $\mu \ge 0$

Proof: If x is any feasible solution to our problem, then $L(x;\lambda, \mu) \le f(x)$ Then the infimum should also be $\le f(x)$ But this should also hold for the optimal x

Let us compare with linear programming duality

- In linear programming, we started with a maximization primal problem
- We searched for upper bounds on the optimal solution
- Now we have a minimization primal program
- Hence, we are interested in finding lower bounds on the optimal solution

Q: What is the best lower bound that can be derived from the dual function?

The dual (maximization) problem corresponding to the primal

 $\max d(\lambda, \mu)$ s. t.: $\mu_i \ge 0, \quad i = 1, 2, \dots, m$

Observations:

•d(λ , μ) is concave

•Maximizing a concave function is equivalent to minimizing a convex function

•Hence, the Lagrange dual problem is a convex optimization problem even if the primal problem is not a convex one!

•Very useful property if the primal problem is not easy to handle

A pair (λ , μ) is called dual feasible if $\mu \ge 0$ and d(λ , μ) > - ∞

Weak Duality:

- •The same as in linear programming
- •The optimal solution to the dual is the best lower bound we can hope to get

•Hence, if p* and d* are the optimal solutions to the primal and dual respectively, then

$d^* \le p^*$

Notes:

- Weak duality holds even if the primal problem is not convex
- Inequality holds also when p* or d* are infinite
- E.g., if p* = -∞, then we must have that d* = -∞, hence there is no dual feasible solution, the dual problem is infeasible
- If $d^* = +\infty$, then the primal problem is infeasible

What about strong duality?

- Does it hold that p* = d*?
- Unlike linear programming, strong duality does not hold in general
- p* d* = duality gap

HOWEVER:

- When we have a convex optimization problem, strong duality holds in most cases
- There are various results specifying conditions under which strong duality holds

Slater's condition:

• If we have a **convex optimization problem**,

•and there exists a feasible point such that $g_i(x) < 0$ for i=1,...,m, and $h_i(x) = 0$ for i=1,...,p, then the dual optimal value is attained when d* > $-\infty$, i.e., there exists a dual feasible (λ^* , μ^*) such that:

 $d(\lambda^*, \mu^*) = p^* = d^*$

Example with LP

Consider the following form of a linear program

- min $c^T x$ min $c^T x$ s.t.Convert to the more
convenient forms.t.Ax = b \Longrightarrow $A_i x b_i = 0, i=1,...,m$ $x \ge 0$ $-x_i \le 0, i=1,...,n$
- The Lagrange function:

$$L(x;\lambda,\mu) = c^T \cdot x + \sum_{i=1}^m \lambda_i (A_i \cdot x - b_i) - \sum_{i=1}^n \mu_i x_i$$
$$= -b^T \cdot \lambda + c^T \cdot x + \lambda^T \cdot A \cdot x - \mu^T \cdot x$$
$$= -b^T \cdot \lambda + (c + A^T \cdot \lambda - \mu)^T \cdot x$$

Example with LP

• The dual function:

 $d(\lambda, \mu) = inf_x L(x; \lambda, \mu)$

- If $c + A^T \lambda \mu$ is not identically 0, then the infimum is $-\infty$
- Otherwise, it is equal to $-b^T \lambda$

$$d(\lambda,\mu) = \begin{cases} -b^T \cdot \lambda, & \text{if } A^T \cdot \lambda + c - \mu = 0\\ -\infty & \text{otherwise} \end{cases}$$

Example with LP

- For the dual to be feasible, we need $A^T \lambda \mu + c = 0$
- Since, we have the constraint $\mu \ge 0$, this means $A^T \lambda + c \ge 0$
- The dual then becomes:

$$\max \ -b^T \cdot \lambda$$

s. t.:
$$A^T \cdot \lambda + c \ge 0$$

- Set now $y = -\lambda$
- We then get the same LP as we would get with the more standard way of producing the dual LP

$$\begin{array}{l} \max \ b^T \cdot y \\ \text{s. t.:} \\ A^T \cdot y \leq c \end{array}$$
 18

Optimality Conditions

- duality framework ⇒ optimality conditions for 2 candidate primal and dual solutions (in analogy to the complementary slackness conditions in linear programming)
- Suppose all functions are differentiable and strong duality holds (duality gap is zero and the dual optimum is attained)
- Let x and (λ, μ) be primal and dual feasible solutions

m

 \boldsymbol{n}

If they are optimal solutions, they must satisfy the KKT optimality conditions

$$g_i(x) \le 0, \quad i = 1, 2, \dots, m$$
 (1)

$$h_i(x) = 0, \quad i = 1, 2, \dots, p$$
 (2)

$$\mu_i \ge 0, \quad i = 1, 2, \dots, m$$
 (3)

$$\mu_i \cdot g_i(x) = 0, \quad i = 1, 2, \dots, m$$
 (4)

$$\nabla f(x) + \sum_{i=1}^{P} \lambda_i \nabla h_i(x) + \sum_{i=1}^{m} \mu_i \nabla g_i(x) = 0,$$
(5)

Optimality Conditions

The KKT conditions

- Independently derived by Karush (1939, M.Sc. thesis) and by Kuhn and Tucker (1951).
- For convex optimization problems where strong duality holds, these are necessary and sufficient conditions for optimiality

Condition (4) - Complementarity condition

- $\bullet \mu_i \cdot g_i(x) = 0$
- •Either the dual variable $\mu_i = 0$, or the i-th inequality constraint must be tight
- •In analogy to linear programming

Optimality Conditions - Examples

1. Write the KKT conditions and find the optimal solution for the problem:

min x - 2y
s.t.
 $x^2 + 2y^2 \le 1$

2. Write the KKT conditions for the problem:

 $\begin{aligned} \min &-\Sigma_i \ln(\alpha_i + x_i) \\ \text{s.t.} \\ &\Sigma_i x_i = 1 \\ &x_i \geq 0, \ i=1,..., \ n \end{aligned}$

Convex Optimization Problems with Equality Constraints

Optimization with equality constraints

- If the problem has a relatively simple form, we can use the KKT conditions to derive the optimal solution
- The complementarity condition is now absent, since we do not have inequality constraints
- All KKT conditions are equalities, hence we might hope to solve this system in simple cases
- We exhibit such a solution for convex quadratic programs

Convex Quadratic Minimization with equality constraints

A convex quadratic program:

min
$$f(x) = \frac{1}{2}x^T \cdot P \cdot x + q^T \cdot x + r$$

s. t.:
 $A \cdot x = b$

where

•
$$\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$$

- P is a symmetric PSD n x n matrix
- q is a n-dimensional vector
- r is a constant

Convex Quadratic Minimization with equality constraints

• The KKT conditions yield:

 $Px + q + A^T\lambda = 0$

Ax = b

In a more concise form:

$$\left[\begin{array}{cc} P & A^T \\ A & 0 \end{array}\right] \cdot \left[\begin{array}{c} x \\ \lambda \end{array}\right] = \left[\begin{array}{c} -q \\ b \end{array}\right]$$

- Called the KKT matrix
- If non-singular, we have a unique solution

Solving the dual

- Another approach would be to construct the dual
- Useful in certain cases but not always successful
- Advantage: since we have no inequalities, the dual is an unconstrained optimization problem!
 - Recall the dual requires that $\mu \ge 0$ only when we have inequality constraints
- Disadvantages: It may not be easy to describe the dual
- It may also not be easy to recover the primal solution from the dual

- Suppose now we have a non-quadratic problem
- We will see a generalization of Newton's method in the presence of equality constraints
- Almost the same approach except that:
 - We now need to start with a feasible solution
 - We need to ensure the update will continue to be feasible
- We will use the fact that quadratic problems can be solved via the KKT conditions
- We typically write the problem in the form:

min f(x) s.t. Ax = b

- We start with an initial feasible solution
 - Hence we first pick a point $x^{(0)}$ such that $Ax^{(0)} = b$
- How can we perform the updates and maintain feasibility?
 - Idea: it suffices to ensure in every iteration k that $A \cdot \Delta x^{(k)} = 0$
 - Then $A \cdot x^{(k+1)} = A \cdot (x^{(k)} + \alpha_k \Delta x^{(k)}) = A \cdot x^{(k)} = b$

Recall the 2nd order Taylor approximation for a function of n variables, at a given point x^(k)

 $f(x^{(k)} + \delta) = f(x^{(k)}) + \nabla f(x^{(k)})^{\mathsf{T}} \cdot \delta + \frac{1}{2} \delta^{\mathsf{T}} \cdot \mathsf{H}(f, x^{(k)}) \cdot \delta$

• Hence each step of the procedure reduces to:

min $f(x^{(k)} + \delta)$ min $f(\delta)$ s.t. \Rightarrow s.t. $A(x^{(k)} + \delta) = b$ $A \cdot \delta = 0$

- But this is precisely a quadratic program with linear constraints
- When the KKT matrix is non-singular, we can solve this

- Finding the search direction (or Newton step) for the next iteration
- We need to solve

$$\begin{bmatrix} H(f, x^{(k)}) & A^T \\ A & 0 \end{bmatrix} \cdot \begin{bmatrix} \Delta x^{(k)} \\ \lambda \end{bmatrix} = \begin{bmatrix} -\nabla f(x^{(k)}) \\ 0 \end{bmatrix}$$

- If the KKT matrix is not invertible, we can make some small perturbation on the values
- We can then use backtracking line search to determine the step size
- If the problem is quadratic we will be done in 1 iteration
- If the function is nearly quadratic, we have made good progress towards the optimal solution

- Convergence analysis similar to the unconstrained case
- For strongly convex functions, the analysis yields upper bounds on the number of iterations till we are ε-close to the optimal solution
- Usually very high accuracy with only few iterations
- Infeasible start Newton method:
 - A variant where the initial point is not a feasible solution

Convex Optimization Problems with Inequality Constraints

Optimization under inequality constraints

Consider again the general form of convex optimization problems

min f(x)s. t.: $g_i(x) \le 0, \quad i = 1, 2, ..., m$ $h_i(x) = 0, \quad i = 1, 2, ..., p$

- Where each h_i is a linear function
- Each g_i is a convex function
- The main problem in solving this comes from the inequality constraints

Optimization under inequality constraints

Interior Point Methods

Main ideas:

- We want to prevent each g_i from becoming positive
- We will work with feasible solutions that are "away from the boundary" of the feasible region
- How can we enforce this?
 - We will incorporate into the objective a function of the inequality constraints
 - The function will be appropriately chosen so that it "penalizes" solutions close to the boundary
 - The new objective is usually referred to as the barrier function

Interior point methods for linear programming

- It is convenient to illustrate the main ideas for solving LPs
- Suppose we have a LP in the form

min $c^T x$ s.t. $A \cdot x \ge b$ $x \ge 0$

• Let's add slack variables and bring it into the form:

min $c^T x$ s.t. A·x = b x ≥ 0

Interior point methods for linear programming

- How could we enforce that each $x_i > 0$?
- Idea: For each constraint x_j > 0, we add to the objective function the term -log(x_i)
- This penalizes each x_i from going close to 0
 - For a minimization problem, x_j should better be away from 0 if we have the negative of a logarithm into the objective function
- The barrier function with parameter $\mu > 0$:

 $B_{\mu}(\mathbf{x}) = \mathbf{c}^{\mathsf{T}}\mathbf{x} - \mu \Sigma_{j} \log(\mathbf{x}_{j})$

Logarithmic barrier functions

• The barrier function with $\mu > 0$:

 $B_{\mu}(\mathbf{x}) = \mathbf{c}^{\mathsf{T}}\mathbf{x} - \mu \Sigma_{j} \log(\mathbf{x}_{j})$

- When μ becomes large, the logarithmic terms are dominating
- As μ approaches 0, the logarithmic terms become negligible and we are back to the original problem

Barrier problems

 Family of non-linear optimization problems, parameterized by μ>0 (called barrier problems):

min
$$B_{\mu}(x) = c^{T}x - \mu \Sigma_{j} \log(x_{j})$$

s.t.
 $A \cdot x = b$
 $BP(\mu)$

Facts:

•BP(μ) always has a unique optimal solution, because B $_{\mu}(x)$ is strongly convex

- Given μ , let $x(\mu)$ be the optimal solution of BP(μ)
- $\lim_{\mu\to 0} x(\mu)$ = optimal solution to the initial LP problem

Barrier problems

- As μ varies from +∞ down to 0, the optimal solution x(μ) moves along a trajectory called the central path
- When $\mu = +\infty$, the problem becomes equivalent to:

$$A \cdot x = b$$

• The optimal solution to this problem is called the analytic center of the feasible region

Barrier problems

 The central path starts at the analytic center and ends at the optimal solution that we want to compute for the initial LP problem

[Reading material: Sections 11.2,11.3 from the book of Boyd & Vandenberghe, and Lecture notes from the course on Machine Learning by Ryan Tibshirani: https://www.stat.cmu.edu/~ryantibs/convexopt/lectures/barr-method.pdf]

Path following interior point algorithms

- The barrier problem is non-linear
- BUT: it is a convex optimization problem with linear equality constraints
- We could solve it with Newton's method
- It suffices to come close to $x(\mu)$ for any fixed $\mu>0$
- This means we stay "near" the central path
- By decreasing μ and repeating the process, we gradually approach the optimal solution

Path following interior point algorithms

Description of path following algorithms

•Initialization: Start with a feasible solution in the interior of the feasible region, and fix a value for μ

•Repeat:

- Check if the stopping criterion is met
- If not, find x(μ) (perhaps approximately) using
 Newton's method
 - Called the centering step
- Update μ : Set μ = $\alpha\mu$, for α with 0 < α < 1
 - μ is decreasing geometrically
 - Typically $\alpha \in [1/20, 1/10]$

Path following interior point algorithms

Main properties

•Can be adjusted to solve together the primal and the dual LP

- •Several variants for the initial choice of primal and dual feasible solutions
- Choice of α : it involves a trade-off
 - If α is small, µ decreases fast but we may do more
 Newton iterations in each step
 - If α is large, µ decreases slowly, we need a higher number of updates on µ, but fewer Newton iterations within each step
 - In practice, it works well if $\alpha = 1/t$, with $t \in \{10, 11, ..., 20\}$

Geometric interpretation

- We may not be able to compute the exact value of x(μ), for μ>0
- We may also run just a few Newton iterations in each step
- So, we may not be moving on the central path
- But, we always move very close to the central path
- We call such algorithms path following algorithms

Path following algorithms for convex problems

• The idea for solving LPs can be used for convex optimization problems as well

min f(x)s. t.: $g_i(x) \le 0, \quad i = 1, 2, ..., m$ $h_i(x) = 0, \quad i = 1, 2, ..., p$

- We need now to produce a path in the interior of the feasible region
 - Maintain < in the inequality constraints

Path following algorithms for convex problems

min f(x)

s. t.:

 $g_i(x) \le 0, \quad i = 1, 2, \dots, m$ $h_i(x) = 0, \quad i = 1, 2, \dots, p$

• New barrier function:

 $B_{\mu}(x) = c^{T}x - \mu \Sigma_{i} \log(-g_{i}(x))$

- The central path and the analytic center are defined in the same way
- We can again use Newton's method within each iteration

Conclusions on interior point algorithms

- Initial variants not as fast
- Currently, for LPs they have comparable performance with simplex
- For convex optimization, one of the best methods to solve non-quadratic problems
- Provably polynomial running time
 - For the exact solution in LP
 - For an ε-approximate solution in general convex problems