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Nonlinear Optimization under  
Constraints

Example:
Consider the problem

min x1 + 2x2
s.t.
x12 + x22 = 1

How do we handle nonlinear constraints?
• Once we have such constraints, we cannot a priori use the iterative 

methods we have seen so far
• We would need to ensure that the sequence of points produced 

satisfy the set of constraints
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Nonlinear Optimization under  
Constraints

Example:
Consider the problem

min x1 + 2x2
s.t.
x12 + x22 = 1

A first attempt: Lagrange method
• A method that can be applied when we have few variables and/or 

constraints
• Define the Lagrange function:

• λ is called the Lagrange multiplier
• Corresponds to a “dual” variable as we will see later
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Nonlinear Optimization under  
Constraints

Lagrange method:
•We now try to optimize the Lagrange function instead of the original 
one
•This is an unconstrained optimization problem
•Hence, at its minimum, it should hold that  ÑL(x1, x2; λ) = 0
•This will give us x1 and x2 as functions of λ
•The constraint will then tell us how to set λ

• Using now the constraint, we get a value for λ
• Substituting, we eventually have x1 = -2/sqrt(5) , x2 = 2/sqrt(5) 
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Nonlinear Optimization under  
Constraints

What if we have multiple equality constraints?
•We can now use one Lagrange multiplier per constraint
•Again, we will solve for ÑL(x; λ1, λ2,..., λp) = 0
•We will express x as a function of the multipliers
•The constraints will tell us the final solution

• Let λ = (λ1, λ2,..., λp)
• The Lagrange function becomes:

L(x; λ) = f(x) + Σi λi hi(x)

min f(x)
s.t.
hi(x) = 0, i=1,...,p

Þ
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Nonlinear Optimization under  
Constraints

• The method does not always succeed
• Need to be careful with the values of the multipliers

Theorem:
Given an optimization problem with equality constraints, let L(x; λ) be the 
Lagrange function
•If there exists a vector of Lagrange multipliers λ such that

minx L(x; λ) > -∞  and attained at some x*
•And if x* satisfies the equality constraints
Then x* is a solution to our original minimization problem

• Hence, need to determine first the acceptable range for λ
• In our example, we could not have accepted a negative value for λ
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Nonlinear Optimization under  
Constraints

• How was this method derived?
• What is the meaning of Lagrange multipliers?

Answer:
•It is a consequence of duality theory for nonlinear programs
•The multipliers correspond to “dual” variables



Lagrange Duality and the KKT 
Optimality Conditions
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Lagrange Duality
Consider again the more general form of optimization problems 
(not restricting ourselves to convex problems):

Lagrange multipliers: 
•λ = (λ1, λ2,..., λp) for the equality constraints
•μ = (μ1, μ2,..., μm) for the inequality constraints, with μi ≥ 0

The Lagrange function:
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Lagrange Duality
The dual function is now defined as:

Observation (essentially weak duality): 
If p* is the value of the optimal solution to the primal 
problem, then

d(λ, μ) ≤ p* for any λ and any μ ≥ 0

Note that it can be the case that d(λ, μ) = -∞ for some values of λ and μ

Proof: If x is any feasible solution to our problem, then 
L(x;λ, μ) ≤ f(x)

Then the infimum should also be  ≤ f(x) 
But this should also hold for the optimal x
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Lagrange Duality
Let us compare with linear programming duality 

• In linear programming, we started with a maximization primal 
problem

• We searched for upper bounds on the optimal solution
• Now we have a minimization primal program
• Hence, we are interested in finding lower bounds on the 

optimal solution
Q: What is the best lower bound that can be derived from the 
dual function?
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Lagrange Duality
The dual (maximization) problem corresponding to the primal

Observations:
•d(λ, μ) is concave
•Maximizing a concave function is equivalent to minimizing a convex 
function
•Hence, the Lagrange dual problem is a convex optimization problem 
even if the primal problem is not a convex one!
•Very useful property if the primal problem is not easy to handle
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Lagrange Duality
A pair (λ, μ) is called dual feasible if μ ≥ 0 and d(λ, μ) > -∞

Weak Duality:
•The same as in linear programming
•The optimal solution to the dual is the best lower bound we can hope to 
get
•Hence, if p* and d* are the optimal solutions to the primal and dual 
respectively, then

d* ≤ p*

Notes:
• Weak duality holds even if the primal problem is not convex
• Inequality holds also when p* or d* are infinite
• E.g., if p* = -∞, then we must have that d* = -∞, hence there is no 

dual feasible solution, the dual problem is infeasible
• If d* = +∞, then the primal problem is infeasible
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Lagrange Duality
What about strong duality?

• Does it hold that p* = d*? 
• Unlike linear programming, strong duality does not hold in general
• p* - d* = duality gap

HOWEVER:
• When we have a convex optimization problem, strong duality holds in 

most cases
• There are various results specifying conditions under which strong 

duality holds

Slater’s condition:
•If we have a convex optimization problem, 
•and there exists a feasible point such that gi(x) < 0 for i=1,...,m, and 
hi(x) = 0 for i=1,...,p, then the dual optimal value is attained when d⋆ > 
−∞, i.e., there exists a dual feasible (λ*, μ*) such that:

d(λ*, μ*) = p* = d*
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Lagrange Duality
Example with LP
Consider the following form of a linear program

• The Lagrange function:

min cT x
s.t.
Ax = b
x ≥ 0

Þ

min cT x
s.t.
Ai x – bi = 0, i=1,...,m
-xi ≤ 0, i=1,...,n

Convert to the more 
convenient form
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Lagrange Duality
Example with LP

• The dual function:

d(λ, μ) = infx L(x; λ, μ)

• If c + ATλ – μ is not identically 0, then the infimum is –∞
• Otherwise, it is equal to –bT λ
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Lagrange Duality
Example with LP

• For the dual to be feasible, we need ATλ – μ + c = 0
• Since, we have the constraint μ ≥ 0, this means  AT λ + c ≥ 0
• The dual then becomes:

• Set now y = -λ
• We then get the same LP as we would get with the more 

standard way of producing the dual LP 
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Optimality Conditions

• duality framework Þ optimality conditions for 2 candidate 
primal and dual solutions (in analogy to the complementary 
slackness conditions in linear programming)

• Suppose all functions are differentiable and strong duality holds (duality gap 
is zero and the dual optimum is attained)

• Let x and (λ, μ) be primal and dual feasible solutions
• If they are optimal solutions, they must satisfy the KKT optimality 

conditions



20

Optimality Conditions
The KKT conditions
• Independently derived by Karush (1939, M.Sc. thesis) and by 

Kuhn and Tucker (1951). 
• For convex optimization problems where strong duality holds, 

these are necessary and sufficient conditions for optimiality

Condition (4) - Complementarity condition
•μi × gi(x) = 0
•Either the dual variable μi = 0, or the i-th inequality 
constraint must be tight
•In analogy to linear programming
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Optimality Conditions - Examples
1. Write the KKT conditions and find the optimal solution for the 
problem:

2. Write the KKT conditions for the problem:

min x – 2y
s.t.
x2 + 2y2 ≤ 1

min –Σi ln(αi + xi)
s.t.
Σi xi = 1
xi ≥ 0, i=1,..., n 



Convex Optimization Problems with 
Equality Constraints
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Optimization with equality 
constraints

• If the problem has a relatively simple form, we can use the 
KKT conditions to derive the optimal solution

• The complementarity condition is now absent, since we do 
not have inequality constraints

• All KKT conditions are equalities, hence we might hope to 
solve this system in simple cases

• We exhibit such a solution for convex quadratic programs
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Convex Quadratic Minimization with 
equality constraints

where
• x = (x1, x2, ..., xn)
• P is a symmetric PSD n x n matrix
• q is a n-dimensional vector
• r is a constant

A convex quadratic program:
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Convex Quadratic Minimization with 
equality constraints

• The KKT conditions yield:
Px + q + ATλ = 0
Ax = b
In a more concise form:

• Called the KKT matrix
• If non-singular, we have a unique solution
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Solving the dual
• Another approach would be to construct the dual
• Useful in certain cases but not always successful
• Advantage: since we have no inequalities, the dual is an 

unconstrained optimization problem!
– Recall the dual requires that μ ≥ 0 only when we have inequality 

constraints

• Disadvantages: It may not be easy to describe the dual
• It may also not be easy to recover the primal solution from 

the dual
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Newton’s Method
• Suppose now we have a non-quadratic problem
• We will see a generalization of Newton’s method in the 

presence of equality constraints
• Almost the same approach except that:

– We now need to start with a feasible solution
– We need to ensure the update will continue to be feasible

• We will use the fact that quadratic problems can be solved via 
the KKT conditions

• We typically write the problem in the form: 
min f(x)
s.t.
Ax = b
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Newton’s Method
• We start with an initial feasible solution

– Hence we first pick a point x(0) such that Ax(0) = b

• How can we perform the updates and maintain feasibility? 
– Idea: it suffices to ensure in every iteration k that A × Δx(k) = 0
– Then A × x(k+1) = A × (x(k) + αkΔx(k)) = A × x(k) = b  
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Newton’s Method
• Recall the 2nd order Taylor approximation for a function of n 

variables, at a given point x(k)

f(x(k) + δ) = f(x(k)) + Ñf(x(k))T × δ + ½ δΤ × H(f, x(k)) × δ
• Hence each step of the procedure reduces to:

min f(x(k) + δ)
s.t.
A(x(k) + δ) = b

Þ
min f(δ)
s.t.
A × δ = 0

• But this is precisely a quadratic program with linear 
constraints

• When the KKT matrix is non-singular, we can solve this
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Newton’s Method
• Finding the search direction (or Newton step) for the next 

iteration
• We need to solve

• If the KKT matrix is not invertible, we can make some small 
perturbation on the values

• We can then use backtracking line search to determine the step size
• If the problem is quadratic we will be done in 1 iteration
• If the function is nearly quadratic, we have made good progress 

towards the optimal solution
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Newton’s Method
• Convergence analysis similar to the unconstrained case
• For strongly convex functions, the analysis yields upper 

bounds on the number of iterations till we are ε-close to the 
optimal solution 

• Usually very high accuracy with only few iterations
• Infeasible start Newton method:

– A variant where the initial point is not a feasible solution



Convex Optimization Problems with 
Inequality Constraints
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Optimization under inequality 
constraints

Consider again the general form of convex optimization 
problems

• Where each hi is a linear function
• Each gi is a convex function
• The main problem in solving this comes from the inequality 

constraints
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Optimization under inequality 
constraints

Interior Point Methods
Main ideas:

• We want to prevent each gi from becoming positive
• We will work with feasible solutions that are “away from 

the boundary” of the feasible region
• How can we enforce this?

- We will incorporate into the objective a function of the 
inequality constraints

- The function will be appropriately chosen so that it 
“penalizes” solutions close to the boundary

- The new objective is usually referred to as the barrier 
function
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Interior point methods for linear 
programming

• It is convenient to illustrate the main ideas for solving LPs
• Suppose we have a LP in the form

min cTx
s.t.
A×x ≥ b
x ≥ 0

• Let’s  add slack variables and bring it into the form:

min cTx
s.t.
A×x = b
x ≥ 0
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Interior point methods for linear 
programming

• How could we enforce that each xj > 0?  
• Idea: For each constraint xj > 0, we add to the objective 

function the term  –log(xj)
• This penalizes each xj from going close to 0

- For a minimization problem, xj should better be away 
from 0 if we have the negative of a logarithm into the 
objective function

- The barrier function with parameter μ > 0:
Bμ(x) = cTx – μ Σj log(xj)
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Logarithmic barrier functions

• The barrier function with μ > 0:
Bμ(x) = cTx – μ Σj log(xj)

• When μ becomes large, the logarithmic terms are 
dominating

• As μ approaches 0, the logarithmic terms become 
negligible and we are back to the original problem
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Barrier problems
• Family of non-linear optimization problems, parameterized 

by μ>0 (called barrier problems):

min Bμ(x) = cTx – μ Σj log(xj)
s.t.

A×x = b

Facts:
•BP(μ) always has a unique optimal solution, because Bμ(x) is 
strongly convex 
•Given μ, let x(μ) be the optimal solution of BP(μ)
• limμ→0 x(μ)  = optimal solution to the initial LP problem

BP(μ)
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Barrier problems
• As μ varies from +∞ down to 0, the optimal solution x(μ) 

moves along a trajectory called the central path
• When μ = +∞, the problem becomes equivalent to:

• The optimal solution to this problem is called the analytic 
center of the feasible region

min - Σj log(xj)
s.t.

A×x = b
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Barrier problems

• The central path starts at the analytic center and ends at 
the optimal solution that we want to compute for the initial 
LP problem

[Reading material: Sections 11.2,11.3 from the book of Boyd & Vandenberghe, and 
Lecture notes from the course on Machine Learning by Ryan Tibshirani: 
https://www.stat.cmu.edu/~ryantibs/convexopt/lectures/barr-method.pdf]

x* = optimal 
solution of the LP

The central path
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Path following interior point 
algorithms

• The barrier problem is non-linear
• BUT: it is a convex optimization problem with 

linear equality constraints
• We could solve it with Newton’s method
• It suffices to come close to x(μ) for any fixed μ>0 
• This means we stay “near” the central path
• By decreasing μ and repeating the process, we 

gradually approach the optimal solution
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Path following interior point 
algorithms

Description of path following algorithms
•Initialization: Start with a feasible solution in the 
interior of the feasible region, and fix a value for μ
•Repeat: 
- Check if the stopping criterion is met
- If not, find x(μ) (perhaps approximately) using 

Newton’s method
• Called the centering step

- Update μ: Set μ= αμ, for α with 0 < α < 1
• μ is decreasing geometrically
• Typically α Î [1/20, 1/10]
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Path following interior point 
algorithms

Main properties
•Can be adjusted to solve together the primal and 
the dual LP
•Several variants for the initial choice of primal and 
dual feasible solutions
•Choice of α: it involves a trade-off

- If α is small, μ decreases fast but we may do more 
Newton iterations in each step

- If α is large, μ decreases slowly, we need a higher 
number of updates on μ, but fewer Newton iterations 
within each step

- In practice, it works well if α = 1/t, with t Î {10, 11, ..., 
20}
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Geometric interpretation

• We may not be able to compute the exact value of x(μ), for 
μ>0

• We may also run just a few Newton iterations in each step
• So, we may not be moving on the central path
• But, we always move very close to the central path
• We call such algorithms path following algorithms

x* = optimal 
solution of the LP
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Path following algorithms for convex 
problems

• The idea for solving LPs can be used for convex 
optimization problems as well

• We need now to produce a path in the interior of 
the feasible region
• Maintain < in the inequality constraints
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Path following algorithms for convex 
problems

• New barrier function:
Bμ(x) = cTx – μ Σi log(-gi(x))

• The central path and the analytic center are 
defined in the same way

• We can again use Newton’s method within each 
iteration
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Conclusions on interior point 
algorithms

• Initial variants not as fast
• Currently, for LPs they have comparable 

performance with simplex
• For convex optimization, one of the best methods 

to solve non-quadratic problems
• Provably polynomial running time
• For the exact solution in LP
• For an ε-approximate solution in general convex 

problems


