ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

M.Sc. Program in Data Science Department of Informatics

Optimization Techniques

George Zois

georzois@aueb.gr

Content – Topics to be covered

- Convex Optimization
 - Linear Programming
 - Models and Formulation
 - Simplex, variants and other algorithms
 - LP Duality Theory and applications
 - Convex Non-Linear Optimization
 - Convex sets and convex functions
 - Unconstrained convex optimization, descent methods
 - Constrained optimization
 - Applications to Machine Learning
 - Linear Regression
 - Support Vector Machines

Content – Topics to be covered

- Combinatorial Optimization
 - (Mixed) Integer Programming and exact methods
 - Integer Programming formulations
 - Branch and bound techniques
 - Efficient exact methods
 - Constraint Programming
 - Benders Decomposition
 - (Meta-)heuristics
 - Local Search Algorithms, Tabu search, Simulated Annealing, Genetic Algorithms
 - Reinforcement learning for combinatorial optimisation

Main focus & prerequisites

- Theoretical foundations
- Basic algorithmic ideas behind commercial optimization tools

Required background:

- There are no formal requirements to take the course
- It helps if you have taken undergrad courses on calculus, discrete math or algorithms
- Generally, it suffices if you have developed an elementary math background via courses in your undergrad program

Timeline

- Solving convex optimization (6 lectures)
 - Linear Programming: Lectures 1-3
 - Models and formulations
 - Simplex, variants and other algorithms
 - LP Duality Theory
 - Convex Optimization: Lectures 3-5
 - Unconstrained optimization, descent methods
 - Constrained optimization
 - Applications to Machine Learning: Lecture 6
 - Regression
 - Support Vector Machines

Timeline

- Solving combinatorial Optimization (6-10 lectures)
 - Combinatorial Optimization: Lectures 6-7
 - Integer Programming
 - Branch and bound
 - Integrated optimisation methods: Lect. 7-8
 - Benders Decomposition
 - Constraint Programming
 - Metaheuristics: Lect. 9-10
 - Local Search: Basic version, Tabu Search, Simulated Annealing, Genetic Algorithms
 - Reinforcement learning for combinatorial optimization⁶

Bibliography

Main Books:

 [HL] F. Hillier, G. Lieberman, "Introduction to Operations Research", 10th edition, [Chapters 2-4, 6, 12]

- For Linear Programming, Integer Programming, Branch and Bound

- [BV] S. Boyd, L. Vandenberghe, "Convex Optimization", [Chapters 1-4, 9-10]
 - For Convex optimization
- More material already provided in Syllabus and will also be provided throughout the lectures
- and many many resources on the WWW

Grading Scheme

 1 Programming project 35% You can work in groups of 2 people It will be announced by Lecture 6 Final exam 50% 1 Problem set 15% Individual Announced by Lecture 4. Half Course: 1 Problem Set 15% 5 Similar Set 15% 	Full Course			
 1 Problem set 15% 1 Individual - Announced by Lecture 4. Half Course: 1 Problem Set 15% 	•	 You can work in groups of 2 people 	35%	
 Individual Announced by Lecture 4. Half Course: 1 Problem Set 	•	Final exam	50%	
• 1 Problem Set 15%	•	– Individual	15%	
	Half Course:			
• Final Exam 85%	•	1 Problem Set	15%	
	•	Final Exam	85%	

Communication

- Office hours (Lefkados 33 & Evelpidwn 47A, 8th floor, office 801):
 - Tuesdays: 11:00 14:00
 - Or by appointment
- You can always email me regarding questions
- Eclass: Optimization Techniques 2025
 Please check for announcements in a regular basis