
M.Sc. Program in Data Science
Department of Informatics

Optimization Techniques
Flows, Matchings, and Covering

Problems

Instructor: G. ZOIS
georzois@aueb.gr

Outline
• Integrality of LP solutions

– Total unimodularity

• Flows and Matchings

– LP formulations

– Application of total unimodularity

• Vertex Cover and Set Cover

– Combinatorial algorithms with provable guarantees

– LP rounding: a technique for deriving approximation algorithms

2

3

Integrality of LP Solutions
Question:
•Suppose we have an integer program of the form

max { cT × x | A × x ≤ b, x integral}
•Take the LP relaxation by replacing the integrality constraints with xi ≥
0, for i = 1,..., n
•Under what conditions can we guarantee that all the corner points of
the polyhedron {A × x ≤ b, x ≥ 0} are integral?
•This would enable us to use simplex and solve the initial integer
program

4

Integrality of LP Solutions
Definition:
• Let A be a matrix with entries in {0, -1, +1}
• A is called totally unimodular if for every square submatrix T of A, we

have det(T) Î {0, -1, +1}

Example:

5

Integrality of LP Solutions

Can we test if a matrix is totally unimodular?
• Many times, we can argue by just inspecting the matrix
• But having an algorithm remained an open problem for many years
• [Seymour 1980]: the first polynomial time testing algorithm

Theorem [Hoffman, Kruskal 1956]:
Let A be an integer matrix. The polyhedron {A × x ≤ b, x ≥ 0} has integral
corner points for every integral vector b if and only if A is totally
unimodular

6

Total Unimodularity
Some useful properties

Lemma 1: Let A be a matrix with values in {0, -1, +1} and such that every
column has at most one +1 and at most one -1.
Then A is totally unimodular

Lemma 2: If A is totally unimodular, then adding a row of the form (0,
0,..., 1, 0,...,0) retains total unimodularity

Lemma 3: If the constraint matrix of a LP is totally unimodular, then the
dual LP also has integral optimal corner point solutions

77

Flows and Matchings

8

Flows in Networks
(informal) problem statement:
Suppose we want to transport some quantity of a good within a given
network, from some source to a destination
The good can be

– Oil to be transported through a network of oil pipes
– Information through a computer network
– Etc

Constraints: each edge in the network has a capacity, i.e., the
maximum quantity it can carry

• oil pipes have a volume capacity
• A link in a computer network has limits on its bandwidth

Goal: find a way to route the good through the network so as to
maximize the total quantity shipped

9

Flows in Networks
More formally:
Consider a graph G = (V, E), with a source node s Î V, and a sink node t Î V
Capacity constraints: for every edge e Î E, there is a capacity ce

A feasible flow is an assignment of a flow fe to every edge so
that
1.fe ≤ ce
2.For every node other than source and sink:

incoming flow = outgoing flow (preservation of flow)

Goal: find a feasible flow so as to maximize the total
amount of flow coming out of s (or equivalently going into t)

Flow going out of s: fsu
(s,u)∈E
∑

By preservation of flow this equals: fut
(u,t)∈E
∑

10

Flows in Networks
Example:
• Figure (a): network with capacities
• Figure (b): a feasible flow
• In fact, the flow in (b) is optimal (7 units)

11

Flows in Networks
Finding a max flow via Linear Programming:
• Suppose we use a variable fuv for the flow carried by each edge
• Then, the objective function and all the constraints are linear

Objective function:

Constraints
1.Capacity constraints: fuv ≤ cuv, for every (u, v) Î E
2.Non-negativity constraints: fuv ≥ 0, for every (u, v) Î E
3.Flow preservation: for every node u ≠ s, t:

fsu
(s,u)∈E
∑

fwu
(w,u)∈E
∑ = fuv

(u,v)∈E
∑

12

Flows in Networks
In the example of Figure (a):

max fsa + fsb + fsc

s.t.
11 capacity constraints
11 non-negativity constraints

5 flow preservation constraints
27 constraints in total

Solving this => max flow = 7

Note: There are more efficient algorithms for solving max flow (not covered
here)
•O(|V| |E|2) [Edmonds, Karp ’72]
•O(|V|2 |E|) [Goldberg ’87]
•O(|V| |E| log(|V|2/|E|)) [Goldberg, Tarjan ’86]

13

Flows in Networks
Certificates of optimality:

Suppose we have not solved the LP, but we have identified a feasible flow
Can we convince ourselves if it is optimal or not?

Definition: Given a graph G = (V, E), an s-t cut is a partition of the
vertices into 2 sets, say L, R, such that s Î L, t Î R

Capacity of an s-t cut: sum of capacities of edges crossing the cut in
the direction from L to R

14

Flows in Networks

Clearly:
max flow ≤ capacity of any s-t cut

(cannot send more flow to t than the capacity of the cut)
Hence:

max flow ≤ capacity of minimum s-t cut

capacity of cut = 7

15

Flows in Networks
In fact we have equality:

The max-flow min-cut theorem:
For any graph G = (V, E) with capacities on its edges,

max flow = capacity of minimum s-t cut

In our example, the cut (L, R) shows immediately that the flow of 7 units in
Figure (b) is optimal!

Note: One way to prove the max-flow min-cut theorem is by using LP-Duality

16

Flows in Networks
• Suppose that all the capacity constraints are integers
• Could we then ask for an integral flow?

Theorem:
For any directed graph G = (V, E), the constraint matrix of the
max flow LP is totally unimodular

Hence, the optimal solution is attained by an integral flow

17

Flows in Networks
Sketch of proof
•Let’s look at the constraint matrix of the LP
•Need to convert first the equality constraints into ≤-constraints

Definition: For a directed graph G, the node-arc incidence matrix is a n x m
matrix M where
• n = number of nodes
• m = number of edges
• For an edge e = (u, v), Mi, e =

• 0, if i is not an endpoint of e
• +1, if i = u (the tail of edge e)
• -1, if i = v (the head of edge e)

We can write the constraint matrix of our problem in terms of M

18

Flows in Networks
Sketch of proof

M

-M

I

• By Lemma 1, M is totally
unimodular

• By Lemma 2, M together with I
underneath is also totally
unimodular

• With a little more thought, it can
be shown that the whole matrix
is totally unimodular as well

19

Matching Problems

Consider an undirected graph G = (V, E)

Definition: A matching M is a collection of edges M Í E, such that no 2 edges
share a common vertex

Given a matching M, a vertex u is called matched if there exists an
edge eÎM such that e has u as one of its endpoints

20

Matching Problems
Examples

v8 v9

a matching in a
bipartite graph

A matching in
general graphs
(vertex v8 is
unmatched)

21

Matching Problems
Types of matching problems that arise in optimization:

• Maximal matching: find a matching where no more edges can be added
• Maximum matching: find a matching with the maximum possible number

of edges
• Perfect matching: find a matching where every vertex is matched (if one

exists)
• Maximum weight matching: given a weighted graph, find a matching with

maximum possible total weight
• Minimum weight perfect matching: given a weighted graph, find a perfect

matching with minimum cost

All the above problems can be solved in polynomial time (several algorithms
and publications over the last decades)

22

Matching Problems

• Trivial algorithm for maximal matching:
– Start from the empty set of edges
– Keep adding edges that do not have common endpoints to the current

solution
– Stop when it is not possible to add an edge that does not have any

common endpoint with the edges already picked
– The selected set of edges forms a maximal matching

• More sophisticated algorithms required for maximum
matching and perfect matching

23

Matching in Bipartite Graphs
An interesting special case for matching problems:
A graph G = (V, E) is called bipartite if V can be partitioned into 2 sets V1, V2
such that all edges connect a vertex from V1 with a vertex from V2

Q: How can we find a maximum matching in a bipartite
graph?

24

Matching in Bipartite Graphs
We can reduce this to a max-flow problem, and hence to Linear
Programming

• Orient all edges from left to right
• Add a source node s, connect it to all of U
• Add a sink node t, connect all of V to t
• Capacities: set them to 1 for all edges

25

Matching in Bipartite Graphs
Hence:
• a maximum matching for bipartite graphs can be computed in polynomial

time
• The graph has a perfect matching if and only if the max flow in the

modified graph equals n

But wait a minute...
What if the max flow we found assigns an outgoing flow of 0.65 to
an edge and 0.35 to another edge?

Observation: Because of total unimodularity, we get an integral
flow as a solution, and hence a proper matching as our output

26

Matching in Bipartite Graphs
An approach without going through flows
•Start with the integer program that describes the matching problem
•Integer programming formulation:

– Use an integer variable xe for every edge eÎE
– Let δ(v) = set of edges that have v as one of their endpoints, (the matching should select

at most one of them for every node v)

LP relaxation:
•just set xe ≥ 0
•No need to add xe ≤ 1, it is implied by the other constraints

27

Matching in Bipartite Graphs
Constraint matrix of the LP relaxation
• We only have the constraints

• This yields precisely the node-arc incidence matrix for undirected graphs
• Given a node k, and an edge e = (u, v), the entry at row k and column e

equals
– 0, if k ≠ u, k ≠ v
– 1, if k =u, or k = v

Theorem:
The node-arc incidence matrix of an undirected graph is totally
unimodular if and only if the graph is bipartite (do it as an exercise)

Hence, solving the LP will give us an integer solution, i.e., a
maximum matching

2828

Approximation Algorithms for
Vertex Cover and Set Cover

29

Approximation Algorithms

• Matchings and flows (integral or not) are tractable problems
• 1 call to an LP solver suffices
• What about harder problems (e.g. NP-complete problems)
• Can we still use LP methods to find a solution?

– We do not expect to always find an optimal solution
– But we could hope to prove bounds on the approximation quality

• For more on LP-based methodologies for approximation
algorithms, see
– D. Shmoys, D. Williamson. The Design of Approximation Algorithms,

Cambridge University Press, 2011

30

Approximation Algorithms

Recall the definitions from last lecture

ΟPT

MinMax

Definition: An algorithm A, for a minimization problem Π, achieves an
approximation factor of ρ (ρ ≥ 1), if for every instance I of the problem,
A returns a solution with:

C(I) ≤ ρ OPT(I)

(analogous definition for maximization problems)

Given an instance I of an optimization problem:
• OPT(I) = optimal solution
• C(I) = cost of solution returned by the algorithm under consideration

3131

Recall the (optimization) version:

VERTEX COVER (VC):
I: A graph G = (V,E)
Q: Find a cover C Í V of minimum size, i.e., a set C Í V, s.t. " (u, v) Î E, either

u Î C or v Î C (or both)

Weighted version:

WEIGHTED VERTEX COVER (WVC):
I: A graph G = (V,E), and a weight w(u) for every vertex uÎV
Q: Find a subset C Í V covering all edges of G, s.t. is minimized

Many different approximation techniques have been “tested” on vertex cover

Vertex Cover (VC)

W = w(u)
u∈C
∑

32

Vertex Cover in Bipartite Graphs
Let’s start again with this special case
•Take the LP relaxation of maximum matching
•Find the dual linear program
•Make the variables of the dual then to be in {0, 1}

The integer version of the dual LP is precisely the vertex cover
problem!

Primal LP Dual LP

33

Vertex Cover in Bipartite Graphs
An application of LP Duality + Total Unimodularity

• Hence, the problem can be solved efficiently for bipartite
graphs (no need for approximation algorithms)

• Equality no longer holds for general, non-bipartite graphs

By Lemma 3, the dual LP of matching also has integer optimal
solutions

Theorem (König):
In a bipartite graph G,
Maximum Matching = Minimum Vertex Cover

3434

We will focus first on the unweighted version

Natural greedy algorithms: start picking nodes according to some criterion until
all edges are covered

1st approach:
Greedy-any-node
C := Æ ;
while E ¹ Æ do
{ choose arbitrarily a vertex u Î V;
delete u and its incident edges from G;
Add u to C }

What is the approximation ratio of this algorithm ?

Vertex Cover (VC)

3535

2nd natural approach: start picking nodes and at each step choose the node
with the maximum degree

Greedy-best-node
C := Æ ;
while E ¹ Æ do
{ choose the vertex u Î V with the largest degree; (break ties arbitrarily)
delete u and its incident edges from G;
Add u to C }

Theorem: Greedy-best-node is an O(log n)-approximation algorithm

Vertex Cover (VC)

3636

Q: Are there constant factor approximation
algorithms?

• The O(logn) ratio of Greedy-best-node is tight
• Can you find an example?

Vertex Cover (VC)

3737

A different approach:
• To design an approximation algorithm for a minimization problem, we need

to find a good lower bound on the optimal solution, for every instance
• We will resort to matching
• Consider an instance of Vertex Cover on a graph G
• Let M be any matching in the graph
• Observation: OPT ≥ |M|

– The optimal solution needs at least one vertex to cover each of the matched
edges

• But we cannot just pick any matching, since it may not be a cover

Matching-based VC
C = Æ;
Find a maximal matching M;
For every (u, v) Î M, add both u and v to C
Output C

Vertex Cover (VC)

3838

Theorem: Matching-based VC is a 2-approximation algorithm

Proof:
Claim: The solution returned by the algorithm is a vertex cover
• Suppose not
• Then there is an uncovered edge (u, v)
• But then we could add this edge to the matching M
• Contradiction with the fact that M is a maximal matching

Cost of the solution: |C| = 2 |M| ≤ 2 OPT (by the observation)
Hence a 2-approximation

Vertex Cover (VC)

3939

A way to implement the maximal matching based algorithm

Greedy-any-edge
C := Æ ;
while E ¹ Æ do
{ choose arbitrarily an edge (u,v) Î E ;

delete u and v and their incident edges from G;
Add u and v to C; }

The edges selected by the algorithm form a maximal matching (no 2 edges
share a common vertex)

Vertex Cover (VC)

Remark: In contrast to greedy-any-node, greedy-any-edge achieves a
constant factor approximation

4040

Tightness of the 2-approximation

Example:

1
2
3
4

n

G

C = 2n

OPT = n

Vertex Cover (VC)

4141

Vertex Cover (VC)
Greedy-any-edge is almost the best known algorithm for VC

Is there a better approximation algorithm ?

We know a lower bound of 1.36 on the approximation factor for VC,
i.e.,
Unless P=NP, VC cannot be approximated with a ratio smaller than 1.36

1.36 ?
BEST KNOWN
LOWER BOUND

BEST KNOWN
APPROXIMATION RATIO

)log/1(2 nQ-

Big open problem!!

4242

• The algorithms we have seen so far do not apply to the weighted case
• A maximal matching does not guarantee anything about the total weight

of the solution returned
• Can we have constant approximations here as well?
• For this, we will resort to techniques from Linear and Integer

Programming

Weighted Vertex Cover (WVC)

43

• Modeling Vertex Cover as an integer program:

Integer Programming Formulations

Weighted Vertex Cover

min Σu w(u) xu
s.t.

xu + xv ≥ 1 " (u, v) Î E
xu Î {0,1} " u Î V

LP relaxation: Set xu Î [0,1]
Recall main observation from last week:
•For minimization problems: LP-OPT ≤ IP-OPT

44

• Solving the LP, we get a fractional solution
• But what can we do with it? It is after all not a valid solution for our original

problem
• E.g., what is the meaning of having xu = 0.8 for a vertex cover instance?
• LP-rounding: the process of constructing an integral solution to the original

problem, given an optimal fractional solution of the corresponding LP
• The process is problem-specific, but there are some general guidelines
• A natural first idea: objects with a high fractional value may be preferred

(e.g., if in the LP, xu = 0.8, it may be beneficial to include vertex u in an
integral solution)

LP Relaxations and Rounding

45

LP Relaxations and Rounding

General scheme for LP rounding:

1. Write down an IP for the problem we want to solve
2. Convert IP to LP
3. Solve the LP to obtain a fractional solution

• If the solution is integral, we are done
4. Find a way to convert the fractional solution to an integral one

• The constructed solution should not lose much in the objective
function from LP-OPT

5. Prove that the integral solution has a good approximation
guarantee
• Exploit the main observation to derive bounds with respect to

OPT

LP Rounding for WVC

46

min Σu w(u) xu

s.t.
xu + xv ≥ 1 " (u, v) Î E
xu Î [0,1] " u Î V

1. First solve:

2. Let {xv}vÎV be the optimal fractional solution

3. Rounding: Include in the cover all vertices v, for which xv ≥ ½
Rationale: Vertices with a high fractional value are more likely to be
important for the cover. We also stay “close” in value to LP-OPT

Theorem: The LP rounding algorithm achieves a 2-approximation for
the Weighted Vertex Cover problem

Rounding for WVC

47

Let C be the collection of vertices picked

Claim 1: C is a valid vertex cover
•We started with a feasible LP solution
•Hence, for every edge (u, v), xu + xv ≥ 1
•Thus either xu ≥ ½ or xv ≥ ½
•By the way we constructed our solution, either u or v belongs to C
•Hence, every edge is covered

Rounding for WVC

48

Claim2: C achieves a 2-approximation for WVC

Let C be the collection of vertices picked
C corresponds to the integral solution: yu = 1 if u Î C, yu = 0 otherwise
Note: yu ≤ 2 xu, for every u Î V

Given this and the main observation:

Set Cover
SET COVER (SC):
I: a set U of n elements

a family F = {S1, S2, …,Sm} of subsets of U
Q: Find a minimum size subset C Í F covering all elements of U, i.e.:

Weighted version:

WEIGHTED SET COVER (WSC):
I: a set U of n elements

a family F = {S1, S2, …, Sm} of subsets of U
a weight w(Si) for each set Si

Q: Find a minimum weight subset C Í F covering all elements of U, i.e.,

4949

minimized is)(Wand SwUS
CS

i
CS

i
ii

å
ÎÎ

==

minimized is |C| and US
CS

i
i

=
Î


50

• (weighted) vertex cover is a special case of (weighted) set cover
• Consider a vertex cover instance on a graph G = (V, E)
• Let U = E (i.e., we need to cover the edges)
• One set per vertex, Su ={(u,v) | (u,v) Î E }, |F| = |V|
• In the weighted case, weight of set Su = w(u)

WSC

WVC

SC

VC

Set Cover vs Vertex Cover

51

• fu = frequency of an element u Î U = # of sets Si that u belongs to

• f = maxu ∈ U { fu } = frequency of the most frequent element

• If f=2 (and w(Si) =1) then (W)SC reduces to (W)VC:
– G = (V, E), F = V, U = E
– We want to cover the edges by nodes
– Su is the set of edges covered by node u

There are approximation algorithms for WSC,
and hence, for SC, WVC and VC, of ratios:

– O(log n) (n: the size of the universe U) by a greedy approach
– f, using an LP rounding approach

• Extending the 2-approximation for weighted vertex cover

Set Cover vs Vertex Cover

5252

In a similar spirit as for Vertex Cover:

Greedy-best-set
C := Æ ;
while C ¹ U do
{ choose the best set S;

remove S from F;
C := C U S ; }

Q: What does “best set” mean ?
S covers |S-C| new elements
Covering those elements costs w(S)
Every element x Î S essentially costs

Best set: the set with the smallest cost-effectiveness

C: elements covered before iteration i
S: Set chosen at iteration i

)(
||
)(xp
CS
Sw

=
-

Weighted Set Cover (WSC)

= “cost-effectiveness” of S

5353

Approximation analysis of Greedy-best-set
Let x1, x2, …, xk, …, xn be the order in which the elements of U are covered

S1, S2, … Si, … be the order in which sets are chosen by the algorithm
Suppose set Si covers element xk

Claim:

elements covered by iterations 1,2,…,i-1

• U-C: uncovered elements before iteration i
• |U-C| ≥ n-k+1, since element xk is covered in iteration i

1

)(
+-

£
kn

OPTxp k


1

1

-

=

=
i

j
jSC

Weighted Set Cover (WSC)

5454

• These elements of U-C are covered in the optimal solution by some sets at
a cost of at most OPT

• Among them there must be one set with cost-effectiveness at most

• the set Si was picked by the algorithm as the set with the best cost-
effectiveness at that moment (and it covered xk)

• that is

1|| +-
£

-
£

kn
OPT

CU
OPT

1
)(

+-
£

kn
OPTxp k

OPTnOHOPT
k

OPT
kn

OPTxpW n

n

i

n

k

n

k
k)(log1

1
)(

111
=×==

+-
£= ååå

===

Weighted Set Cover (WSC)

LP Rounding for WSC

55

LP relaxation of Set Cover:

min xS
S
∑

s.t.

xS ≥1, ∀u∈U
u:u∈S
∑

xS ≥ 0, ∀S ∈ F

Q: How should we round a fractional solution?

Rounding for WSC

56

Theorem: The LP Rounding algorithm achieves an
approximation ratio of f for the WSC problem

LP rounding:

•Solve the LP relaxation
•Fractional solution x = {xS}sÎF of cost LP-OPT
•Rounding: if xS ≥ 1/f, then include S in the cover

Rounding for WSC
Proof:
Let C be the collection of sets picked

Claim 1: C is a valid set cover

57

 xS <
1
f

| {S :u∈ S} |
S:u∈S
∑ =

1
f
fu ≤

1
f
f =1

Assume not
• Then there exists some u that is not covered
• => For each set S for which uÎS, xS < 1/f
• But then:

• a contradiction since we found a violated LP constraint

Rounding for WSC
Proof:
Let C be the collection of sets picked

Claim 2: C achieves an f-approximation

Proof very similar to the proof for WVC

58

