
Department of Management Science and Technology
Athens University of Economics and Business

Benders decomposition
Ioannis Avgerinos
iavgerinos@aueb.gr

Overview

2

• Real operations consist of multiple problems to
be jointly optimised.

• Such problems incur an intractable number of
variables/constraints – regular MILPs are not
efficient.

• Solving large optimisation problems is time-
consuming – decision-making requires agile
actions, facilitated by fast computational tools.

Overview

3

• Partition to smaller subproblems: each one of them is
more easily and quickly solved.

• Combining partial solutions of the subproblems construct
holistic solutions of the original problem.

• Exploitation of the structure of problems: each stage of
the problem is a distinct subproblem.

Overview

4

Decomposition methods:

A large and complicated optimisation problem:

𝑚𝑖𝑛 𝑓 𝑥 + 𝑔(𝑦)
𝐶 𝑥 , 𝐶 𝑦 , 𝐶(𝑥, 𝑦)
𝑥 ∈ 𝐷!, 𝑦 ∈ 𝐷"

is partitioned into:
• the master problem
• a (family of) subproblem(s)

Each counterpart is solved more easily, hence constructing a feasible solution of
the original problem.

Overview

5

Decomposition methods:

The master problem:

𝑚𝑖𝑛 𝑓 𝑥 + 𝑔(𝑦)
𝐶 𝑥 , 𝐶 𝑦 , 𝐶(𝑥, 𝑦)
𝑥 ∈ 𝐷!, 𝑦 ∈ 𝐷"

will only use less variables, constraints, costs.

It is easily seen that the master problem is a relaxation of the original one. The
optimal objective value is a lower bound of the optimal value.

Overview

6

Decomposition methods:

The master problem:

𝑚𝑖𝑛 𝑓 𝑥 + 𝑔(𝑦)
𝐶 𝑥 , 𝐶 𝑦 , 𝐶(𝑥, 𝑦)
𝑥 ∈ 𝐷!, 𝑦 ∈ 𝐷"

Let /𝒙 be the optimal solution and 𝑧 be the optimal value of the master problem.

Overview

7

Decomposition methods:

The subproblem:

𝑚𝑖𝑛 𝑓 /𝒙 + 𝑔(𝑦)
𝐶 /𝒙 , 𝐶 𝑦 , 𝐶(𝑥̅, 𝑦)
𝑦 ∈ 𝐷"

will restore the remaining variables, constraints and costs, given the partial
solution of the master problem.

It is easily seen that the solution of the subproblem is feasible for the original
one. The optimal objective value is an upper bound of the optimal value.

Overview

8

Decomposition methods:

The subproblem:

𝑚𝑖𝑛 𝑓 /𝒙 + 𝑔(𝑦)
𝐶 /𝒙 , 𝐶 𝑦 , 𝐶(𝑥̅, 𝑦)
𝑦 ∈ 𝐷"

Let 𝜁 be the optimal value of the subproblem.

If 4𝒛 is the optimal value of the original problem, then for all feasible solutions 𝑥 ∈
𝐷!, 𝑦 ∈ 𝐷":

𝒛 ≤ #𝒛 ≤ 𝜻

Overview

9

Decomposition methods:

The subproblem:

𝑚𝑖𝑛 𝑓 /𝒙 + 𝑔(𝑦)
𝐶 /𝒙 , 𝐶 𝑦 , 𝐶(𝑥̅, 𝑦)
𝑦 ∈ 𝐷"

Let 𝜁 be the optimal value of the subproblem.

If 4𝒛 is the optimal value of the original problem, then for all feasible solutions 𝑥 ∈
𝐷!, 𝑦 ∈ 𝐷":

𝒛 ≤ #𝒛 ≤ 𝜻

The partitioning scheme will provide a
feasible solution of the problem and an
optimality gap:

𝑮𝒂𝒑% = 𝟏𝟎𝟎 ⋅
𝜻 − 𝒛
𝒛

Logic-Based Benders Decomposition

10

An iterative exchange of knowledge between the counterparts of a partitioning
scheme:

𝑚𝑖𝑛 𝑓 𝑥
𝐶 𝑥
𝑥 ∈ 𝐷!

𝑚𝑖𝑛 𝑓 /𝒙 + 𝑔(𝑦)
𝐶 /𝒙 , 𝐶 𝑦 , 𝐶(𝑥̅, 𝑦)
𝑦 ∈ 𝐷"

A partial solution 𝑥̅
and a lower bound 𝑧

An upper bound 𝜁

Logic-Based Benders Decomposition

11

An iterative exchange of knowledge between the counterparts of a partitioning
scheme:

𝑚𝑖𝑛 𝑓 𝑥
𝐶 𝑥
𝑥 ∈ 𝐷!

𝑚𝑖𝑛 𝑓 /𝒙 + 𝑔(𝑦)
𝐶 /𝒙 , 𝐶 𝑦 , 𝐶(𝑥̅, 𝑦)
𝑦 ∈ 𝐷"

A partial solution 𝑥̅
and a lower bound 𝑧

An upper bound 𝜁
A mechanism should prevent the

master problem from re-computing
the same solution 𝑥̅.

Cuts: A set of linear inequalities which restrict the computation of /𝒙.

The master problem is reformulated as:

Solving this problem to optimality will imply a different partial solution !𝒙2 ≠ /𝒙 and a new
lower bound 𝒛′ ≥ 𝒛.

Logic-Based Benders Decomposition

12

𝑚𝑖𝑛 𝑓 𝑥
𝐶 𝑥
𝒙 ≠ /𝒙
𝑥 ∈ 𝐷!

Logic-Based Benders Decomposition

13

The next iteration will be:

𝑚𝑖𝑛 𝑓 𝑥
𝐶 𝑥
𝒙 ≠ /𝒙
𝑥 ∈ 𝐷!

𝑚𝑖𝑛 𝑓 /𝒙′ + 𝑔(𝑦)
𝐶 /𝒙′ , 𝐶 𝑦 , 𝐶(/𝒙′, 𝑦)
𝑦 ∈ 𝐷"

A partial solution 𝑥̅′
and a lower bound 𝑧′

A new upper bound 𝜁′

Logic-Based Benders Decomposition

14

The next iteration will be:

𝑚𝑖𝑛 𝑓 𝑥
𝐶 𝑥
𝒙 ≠ /𝒙
𝑥 ∈ 𝐷!

𝑚𝑖𝑛 𝑓 /𝒙′ + 𝑔(𝑦)
𝐶 /𝒙′ , 𝐶 𝑦 , 𝐶(/𝒙′, 𝑦)
𝑦 ∈ 𝐷"

A partial solution 𝑥̅′
and a lower bound 𝑧′

A new upper bound 𝜁′
The new upper bound 𝜁′ is not

necessarily improved. But eventually,
as long as new partial solutions are

provided, improved upper bounds will
be explored.

Logic-Based Benders Decomposition

15

The next iteration will be:

𝑚𝑖𝑛 𝑓 𝑥
𝐶 𝑥
𝒙 ≠ /𝒙
𝑥 ∈ 𝐷!

𝑚𝑖𝑛 𝑓 /𝒙′ + 𝑔(𝑦)
𝐶 /𝒙′ , 𝐶 𝑦 , 𝐶(/𝒙′, 𝑦)
𝑦 ∈ 𝐷"

A partial solution 𝑥̅′
and a lower bound 𝑧′

A new upper bound 𝜁′
The new upper bound 𝜁′ is not

necessarily improved. But eventually,
as long as new partial solutions are

provided, improved upper bounds will
be explored.

On the contrary, the new lower
bounds will always be improved at
each iteration, gradually converging to
optimality.

Cuts: A set of linear inequalities which restrict the computation of /𝒙.

The master problem is reformulated as:

The mathematical expression 𝑥 ≠ 𝑥̅ is non-linear – the master problem is usually a Mixed-Integer
Linear Program.

A cuts-generation scheme should construct linear expressions which restrict previous solutions.

Logic-Based Benders Decomposition

16

𝑚𝑖𝑛 𝑓 𝑥
𝐶 𝑥
𝒙 ≠ /𝒙
𝑥 ∈ 𝐷!

Theorem of Hooker:

Let 𝑧 be the objective function of the master problem, !𝒙𝒕 be the optimal solution of the master
problem, and 𝜁! be the upper bound at any iteration 𝑡.

If a bounding function 𝐵!(𝑥) has the following properties:
1. f x + g y ≥ B"(x) for all feasible solutions 𝑥, 𝑦
2. B" !x = ζ
then the cuts 𝑧 ≥ 𝐵!(𝑥) will converge to the optimal solution of the original problem after finitely
many steps.

In practice, we should construct a linear equality, for which:
• If 𝑥 = 𝑥̅!, then 𝑧 ≥ 𝜁.
• Otherwise, 𝑧 ≥ 0.

Logic-Based Benders Decomposition

17

The Classical Benders Decomposition:

In 1962, J.F.Benders designed a partitioning method, consisted of:
• a master problem, which is a Mixed-Integer Linear Program
• a subproblem, which is a Linear Program (strictly using continuous variables).

Assuming that the following LP is the subproblem:

𝑚𝑖𝑛 𝑐𝑦
𝐴𝑦 ≥ 𝑏
𝑦 ≥ 0

then, the dual would be:

𝑚𝑎𝑥 𝑢𝑏
𝑐 = 𝑢𝐴
𝑢 ≥ 0

Logic-Based Benders Decomposition

18

The Classical Benders Decomposition:

In 1962, J.F.Benders designed a partitioning method, consisted of:
• a master problem, which is a Mixed-Integer Linear Program
• a subproblem, which is a Linear Program (strictly using continuous variables).

Assuming that the following LP is the subproblem:

𝑚𝑖𝑛 𝑐𝑦
𝐴𝑦 ≥ 𝑏
𝑦 ≥ 0

then, the dual would be:

𝑚𝑎𝑥 𝑢𝑏
𝑐 = 𝑢𝐴
𝑢 ≥ 0

Logic-Based Benders Decomposition

19

Exploiting the property of strong duality, we can generate
linear inequalities which always satisfy the properties of the
Theorem.

The Classical Benders Decomposition:

The presented method, namely the Benders Decomposition is one the most
popular partitioning methods for complicated Mixed-Integer Linear Programs.

However, its inapplicability for schemes of integer subproblems is restrictive for
real industrial problems, which usually require programs of integer variables.

Logic-Based Benders Decomposition

20

Logic-based extension:

In 2000, J.N.Hooker extended the framework, presenting the Logic-Based
Benders Decomposition.
LBBD provides flexibility:

• Subproblems of integer variables are allowed.
• Subproblems could be solved by any optimizing method (as long as this will

compute the optimal solution of the subproblem).

For LBBD, the bounding functions are problem-specific. However, a globally valid
function is:

𝐵! 𝑥 = ; 𝜁
!, if 𝑥 = 𝑥̅!

0, otherwise

Logic-Based Benders Decomposition

21

A minimal example of a cut:

Let 𝜁@ be the upper bound at any iteration 𝑡, given a partial solution:

!𝒙𝒕 = {𝒙𝟏 = 𝟏, 𝒙𝟐 = 𝟏, 𝒙𝟑 = 𝟎, 𝒙𝟒 = 𝟎}

If 𝑧 is the objective function of the master problem, then the following inequality:

𝒛 ≥ 𝜻𝒕 − 𝜻𝒕 ⋅ (𝒙𝟏 + 𝒙𝟐 − 𝒙𝟑 − 𝒙𝟒 − 𝟐)

will ensure that:

• if 𝑥 = 𝑥̅! → 𝑥(= 1, 𝑥) = 1, 𝑥* = 0, 𝑥+ = 0, then 𝑧 ≥ 𝜁!.
• otherwise, 𝑥(+ 𝑥) − 𝑥* − 𝑥+ < 2 → 𝑧 ≥ 0.

Logic-Based Benders Decomposition

22

Manufacturing – a case in Textile industry

23

A textile industry in Italy
manufactures woolen fabrics.

The scheduling of the
manufacturing line is an

optimisation problem

Manufacturing – a case in Textile industry

24

The industry has a set of weaving looms, which can operate in parallel.

Loom 1

Loom 2

Loom 3

Time

Manufacturing – a case in Textile industry

25

Textiles should be processed to the weaving looms. The duration of each process
depends on the speed of the loom and the size of the product to be
manufactured. E.g., for the same textile, the processing time to each loom is
different:

Time

Loom 1

Loom 2

Loom 3

Manufacturing – a case in Textile industry

26

Each textile should be set up to the loom, before the processing begins. The
setup procedure is sequence-dependent:

Time

Loom 1

Manufacturing – a case in Textile industry

27

The daily schedule of the industry includes the assignment of textiles to looms
and their sequencing to minimise critical metrics:

Time

Loom 1

Loom 2

Loom 3

Manufacturing – a case in Textile industry

28

Limited resources: The setup is conducted by a set of 𝑅 working groups.
During a setup, one working group is occupied – no more than 𝑅 setup
operations can be executed simultaneously. E.g., if 𝑅 = 2:

Time

Loom 1

Loom 2

Loom 3

Manufacturing – a case in Textile industry

29

The described problem resembles with the Parallel Machines
Scheduling Problem:

𝐽: Jobs – Orders of the textile industry
𝑀: Machines – Weaving looms, which operate in parallel

• All jobs must be assigned to one machine.
• Each machine can be occupied by no more than one job at the same

time.

Manufacturing – a case in Textile industry

30

Position-based MILP

1 2 3 4 5
𝑚! - - 𝑗! 𝑗" 𝑗#

𝑚" - - - 𝑗$ 𝑗%

For a minimal example of 5 jobs to 2 machines:

• Each machine has a number of empty slots (positions) – as many as the
number of jobs.

• Each job should be assigned to one slot – each slot can be either remain
vacant or be occupied by one job.

Manufacturing – a case in Textile industry

31

Manufacturing – a case in Textile industry

32

• Any scheduling objective could be set to 𝑧 (e.g., makespan, total completion
times, total tardiness etc.)

• Each job must be assigned to one slot of any machine.
• Each slot can be occupied by one job at most.

Manufacturing – a case in Textile industry

33

• The processing time of each slot is determined by the processing time of the
assigned job. If no jobs are assigned to the slot, then the processing time is
set to 0.

• Big-M constraint: If a variable 𝑥EFG is set to 1 (i.e., job 𝑗 is assigned to slot 𝑖
of machine 𝑚), then the setup of the slot is equal/greater than the
sequence-dependent setup time of job 𝑗. Otherwise, the left-hand side is
always valid.

Manufacturing – a case in Textile industry

34

• The completion time of each slot is equal with the completion time of the
preceding one, added by the processing and setup times.

• For the first slot of a machine, the completion time is equal with the sum of
the processing and the setup time.

Manufacturing – a case in Textile industry

35

• No intermediate slots remain vacant.

1 2 3 4 5
𝑚! - - 𝑗! - 𝑗"

𝑚! - - - 𝑗! 𝑗"

Manufacturing – a case in Textile industry

36

Limited resources:
The linearisation of resource constraints requires the construction of t-index
variables:

𝑥EFG@ = A1, if job 𝑗 is processed at slot 𝑖 of machine 𝑚 at time instance 𝑡
0, otherwise

meaning that the number of variables is multiplied by 𝑡 times – the number of
distinct time instances.

For a dataset of medium scale (e.g., 50 jobs on 5 machines of 50 slots), a working
shift of 8 hours requires 480 minutes - 𝑡 indices.

50×50×5×480 = 6.000.000 𝑥EFG@ variables

Manufacturing – a case in Textile industry

37

Decomposition:

Master problem: The position-based MILP, assuming that an infinite number of
resources is available.

This is a relaxation of the original problem:
• All constraints of the master problem are valid for the original problem.
• A part of the constraints of the original problem are not considered for the master

problem.

Therefore, the solution of the master problem is a lower bound of the global
optimal solution.

Manufacturing – a case in Textile industry

38

Decomposition:

Subproblem: Given a set of sequences of jobs, as acquired by the master problem,
the actual number of available resources is imposed.

• The sequences of jobs will remain intact.
• The completion times of jobs will be extended, since a limited number of

resources is now considered.
• The solution will be feasible – an upper bound is computed.

Manufacturing – a case in Textile industry

39

Decomposition:

Subproblem: Given a set of sequences of jobs, as acquired by the master problem,
the actual number of available resources is imposed.

Constraint Programming

40

An exact solving method for maximisation/minimisation problems, using global
functions as constraints:

Interval variables: Variables which receive two – start time, end time

intervalVar: startOf, endOf, sizeOf

Sequence variables: Variables of multiple intervals

sequenceVar: [intervalVari|i∈I]
A sequence of interval variables for processes 𝐼.

Constraint Programming

41

An exact solving method for maximisation/minimisation problems, using global
functions as constraints:

Interval variables: Variables which receive two – start time, end time

intervalVar: startOf, endOf, sizeOf

Global functions: reserved expressions which indicate specific constraints

Cumulative(intervalVari|i∈I, di|i∈I, ci|i∈I, C)
If each process 𝑖 of duration 𝑑E consumes 𝑐E resources, and 𝐶 resources are
available, then the Cumulative constraints restricts the violation of resource
availability.

Constraint Programming

42

An exact solving method for maximisation/minimisation problems, using global
functions as constraints:

Interval variables: Variables which receive two – start time, end time

intervalVar: startOf, endOf, sizeOf

Scheduling constraints:

startAtEnd(intervalVari, intervalVarj)
Process 𝑖 will start at the end of process 𝑗.

Constraint Programming

43

An exact solving method for maximisation/minimisation problems, using global
functions as constraints:

Interval variables: Variables which receive two – start time, end time

intervalVar: startOf, endOf, sizeOf

Scheduling constraints:

noOverlap(sequenceVar)
No interval variables of the sequence will overlap.

Constraint Programming

44

An exact solving method for maximisation/minimisation problems, using global
functions as constraints:

Interval variables: Variables which receive two – start time, end time

intervalVar: startOf, endOf, sizeOf

Scheduling constraints:

previous(sequenceVar,intervalVari, intervalVarj)
Process 𝑖 and process 𝑗 will be successive in a sequence.

Manufacturing – a case in Textile industry

45

Decomposition:

Subproblem: Given a set of sequences of jobs, as acquired by the master problem,
the actual number of available resources is imposed.

Given that the sequences of jobs
are defined by the solution of the
master problem, using a CP
formulation implies a more easily
solved problem than using an
equivalent MILP.

Manufacturing – a case in Textile industry

46

Decomposition:

Benders cuts: After the computation of the upper bound, a set of constraints is
added to the master problem.

If /𝒙𝒊𝒋𝒎 are the solutions of variables 𝑥EFG, then:

𝑧 ≥ 𝜁 − 𝜁 ⋅ (𝐽 − c
!%&':!̅%&'LM

1 − 𝑥EFG)

• If ∑!%&':!̅%&'LM 1 − 𝑥EFG = |𝐽| (i.e., all jobs are assigned to the same slots), then
the objective of the master problem 𝑧 will receive the value of the upper bound 𝜁.

• If ∑!%&':!̅%&'LM 1 − 𝑥EFG < |𝐽| (i.e., at least one job is assigned to a different slot),
then a new solution is obtained, and 𝑧 ≥ 0.

Programming tools

47

• Open-source Python package to formulate optimisation problems (Linear
Programs, Mixed-Integer Linear Programs)

• Syntax which is close to the natural language

Programming tools

48

Programming tools

49

Programming tools

50

Programming tools

51

Programming tools

52

• Commercial solver for (Mixed-Integer) Linear Programs
• Python API

The master problem is formulated using Pyomo and solved using Gurobi.

Programming tools

53

• Commercial solver for (Mixed-Integer) Linear Programs, Constraint Programming
models

• Python API

The DOCplex component provides a Python API for Constraint Programming models.

Programming tools

54

Programming tools

55

Programming tools

56

