
Department of Management Science and Technology
Athens University of Economics and Business

Benders decomposition
Ioannis Avgerinos
iavgerinos@aueb.gr



Overview

2

• Real operations consist of multiple problems to
be jointly optimised.

• Such problems incur an intractable number of
variables/constraints – regular MILPs are not
efficient.

• Solving large optimisation problems is time-
consuming – decision-making requires agile
actions, facilitated by fast computational tools.
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• Partition to smaller subproblems: each one of them is
more easily and quickly solved.

• Combining partial solutions of the subproblems construct
holistic solutions of the original problem.

• Exploitation of the structure of problems: each stage of
the problem is a distinct subproblem.
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Decomposition methods:

A large and complicated optimisation problem:

𝑚𝑖𝑛 𝑓 𝑥 + 𝑔(𝑦)
𝐶 𝑥 , 𝐶 𝑦 , 𝐶(𝑥, 𝑦)
𝑥 ∈ 𝐷!, 𝑦 ∈ 𝐷"

is partitioned into:
• the master problem
• a (family of) subproblem(s)

Each counterpart is solved more easily, hence constructing a feasible solution of
the original problem.
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Decomposition methods:

The master problem:

𝑚𝑖𝑛 𝑓 𝑥 + 𝑔(𝑦)
𝐶 𝑥 , 𝐶 𝑦 , 𝐶(𝑥, 𝑦)
𝑥 ∈ 𝐷!, 𝑦 ∈ 𝐷"

will only use less variables, constraints, costs.

It is easily seen that the master problem is a relaxation of the original one. The
optimal objective value is a lower bound of the optimal value.
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Decomposition methods:

The master problem:

𝑚𝑖𝑛 𝑓 𝑥 + 𝑔(𝑦)
𝐶 𝑥 , 𝐶 𝑦 , 𝐶(𝑥, 𝑦)
𝑥 ∈ 𝐷!, 𝑦 ∈ 𝐷"

Let /𝒙 be the optimal solution and 𝑧 be the optimal value of the master problem.
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Decomposition methods:

The subproblem:

𝑚𝑖𝑛 𝑓 /𝒙 + 𝑔(𝑦)
𝐶 /𝒙 , 𝐶 𝑦 , 𝐶(𝑥̅, 𝑦)
𝑦 ∈ 𝐷"

will restore the remaining variables, constraints and costs, given the partial
solution of the master problem.

It is easily seen that the solution of the subproblem is feasible for the original
one. The optimal objective value is an upper bound of the optimal value.
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Decomposition methods:

The subproblem:

𝑚𝑖𝑛 𝑓 /𝒙 + 𝑔(𝑦)
𝐶 /𝒙 , 𝐶 𝑦 , 𝐶(𝑥̅, 𝑦)
𝑦 ∈ 𝐷"

Let 𝜁 be the optimal value of the subproblem.

If 4𝒛 is the optimal value of the original problem, then for all feasible solutions 𝑥 ∈
𝐷!, 𝑦 ∈ 𝐷":

𝒛 ≤ #𝒛 ≤ 𝜻
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Decomposition methods:

The subproblem:

𝑚𝑖𝑛 𝑓 /𝒙 + 𝑔(𝑦)
𝐶 /𝒙 , 𝐶 𝑦 , 𝐶(𝑥̅, 𝑦)
𝑦 ∈ 𝐷"

Let 𝜁 be the optimal value of the subproblem.

If 4𝒛 is the optimal value of the original problem, then for all feasible solutions 𝑥 ∈
𝐷!, 𝑦 ∈ 𝐷":

𝒛 ≤ #𝒛 ≤ 𝜻

The partitioning scheme will provide a
feasible solution of the problem and an
optimality gap:

𝑮𝒂𝒑% = 𝟏𝟎𝟎 ⋅
𝜻 − 𝒛
𝒛
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An iterative exchange of knowledge between the counterparts of a partitioning
scheme:

𝑚𝑖𝑛 𝑓 𝑥
𝐶 𝑥
𝑥 ∈ 𝐷!

𝑚𝑖𝑛 𝑓 /𝒙 + 𝑔(𝑦)
𝐶 /𝒙 , 𝐶 𝑦 , 𝐶(𝑥̅, 𝑦)
𝑦 ∈ 𝐷"

A partial solution 𝑥̅
and a lower bound 𝑧

An upper bound 𝜁
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An iterative exchange of knowledge between the counterparts of a partitioning
scheme:

𝑚𝑖𝑛 𝑓 𝑥
𝐶 𝑥
𝑥 ∈ 𝐷!

𝑚𝑖𝑛 𝑓 /𝒙 + 𝑔(𝑦)
𝐶 /𝒙 , 𝐶 𝑦 , 𝐶(𝑥̅, 𝑦)
𝑦 ∈ 𝐷"

A partial solution 𝑥̅
and a lower bound 𝑧

An upper bound 𝜁
A mechanism should prevent the 

master problem from re-computing 
the same solution 𝑥̅.



Cuts: A set of linear inequalities which restrict the computation of /𝒙.

The master problem is reformulated as:

Solving this problem to optimality will imply a different partial solution !𝒙2 ≠ /𝒙 and a new
lower bound 𝒛′ ≥ 𝒛.
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𝑚𝑖𝑛 𝑓 𝑥
𝐶 𝑥
𝒙 ≠ /𝒙
𝑥 ∈ 𝐷!
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The next iteration will be:

𝑚𝑖𝑛 𝑓 𝑥
𝐶 𝑥
𝒙 ≠ /𝒙
𝑥 ∈ 𝐷!

𝑚𝑖𝑛 𝑓 /𝒙′ + 𝑔(𝑦)
𝐶 /𝒙′ , 𝐶 𝑦 , 𝐶(/𝒙′, 𝑦)
𝑦 ∈ 𝐷"

A partial solution 𝑥̅′
and a lower bound 𝑧′

A new upper bound 𝜁′
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The next iteration will be:

𝑚𝑖𝑛 𝑓 𝑥
𝐶 𝑥
𝒙 ≠ /𝒙
𝑥 ∈ 𝐷!

𝑚𝑖𝑛 𝑓 /𝒙′ + 𝑔(𝑦)
𝐶 /𝒙′ , 𝐶 𝑦 , 𝐶(/𝒙′, 𝑦)
𝑦 ∈ 𝐷"

A partial solution 𝑥̅′
and a lower bound 𝑧′

A new upper bound 𝜁′
The new upper bound 𝜁′ is not 

necessarily improved. But eventually, 
as long as new partial solutions are 

provided, improved upper bounds will 
be explored.
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The next iteration will be:

𝑚𝑖𝑛 𝑓 𝑥
𝐶 𝑥
𝒙 ≠ /𝒙
𝑥 ∈ 𝐷!

𝑚𝑖𝑛 𝑓 /𝒙′ + 𝑔(𝑦)
𝐶 /𝒙′ , 𝐶 𝑦 , 𝐶(/𝒙′, 𝑦)
𝑦 ∈ 𝐷"

A partial solution 𝑥̅′
and a lower bound 𝑧′

A new upper bound 𝜁′
The new upper bound 𝜁′ is not 

necessarily improved. But eventually, 
as long as new partial solutions are 

provided, improved upper bounds will 
be explored.

On the contrary, the new lower 
bounds will always be improved at 
each iteration, gradually converging to 
optimality.



Cuts: A set of linear inequalities which restrict the computation of /𝒙.

The master problem is reformulated as:

The mathematical expression 𝑥 ≠ 𝑥̅ is non-linear – the master problem is usually a Mixed-Integer
Linear Program.

A cuts-generation scheme should construct linear expressions which restrict previous solutions.
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𝑚𝑖𝑛 𝑓 𝑥
𝐶 𝑥
𝒙 ≠ /𝒙
𝑥 ∈ 𝐷!



Theorem of Hooker:

Let 𝑧 be the objective function of the master problem, !𝒙𝒕 be the optimal solution of the master
problem, and 𝜁! be the upper bound at any iteration 𝑡.

If a bounding function 𝐵!(𝑥) has the following properties:
1. f x + g y ≥ B"(x) for all feasible solutions 𝑥, 𝑦
2. B" !x = ζ
then the cuts 𝑧 ≥ 𝐵!(𝑥) will converge to the optimal solution of the original problem after finitely
many steps.

In practice, we should construct a linear equality, for which:
• If 𝑥 = 𝑥̅!, then 𝑧 ≥ 𝜁.
• Otherwise, 𝑧 ≥ 0.
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The Classical Benders Decomposition:

In 1962, J.F.Benders designed a partitioning method, consisted of:
• a master problem, which is a Mixed-Integer Linear Program
• a subproblem, which is a Linear Program (strictly using continuous variables).

Assuming that the following LP is the subproblem:

𝑚𝑖𝑛 𝑐𝑦
𝐴𝑦 ≥ 𝑏
𝑦 ≥ 0

then, the dual would be:

𝑚𝑎𝑥 𝑢𝑏
𝑐 = 𝑢𝐴
𝑢 ≥ 0

Logic-Based Benders Decomposition
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The Classical Benders Decomposition:

In 1962, J.F.Benders designed a partitioning method, consisted of:
• a master problem, which is a Mixed-Integer Linear Program
• a subproblem, which is a Linear Program (strictly using continuous variables).

Assuming that the following LP is the subproblem:

𝑚𝑖𝑛 𝑐𝑦
𝐴𝑦 ≥ 𝑏
𝑦 ≥ 0

then, the dual would be:

𝑚𝑎𝑥 𝑢𝑏
𝑐 = 𝑢𝐴
𝑢 ≥ 0
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Exploiting the property of strong duality, we can generate
linear inequalities which always satisfy the properties of the
Theorem.



The Classical Benders Decomposition:

The presented method, namely the Benders Decomposition is one the most
popular partitioning methods for complicated Mixed-Integer Linear Programs.

However, its inapplicability for schemes of integer subproblems is restrictive for
real industrial problems, which usually require programs of integer variables.

Logic-Based Benders Decomposition
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Logic-based extension:

In 2000, J.N.Hooker extended the framework, presenting the Logic-Based
Benders Decomposition.
LBBD provides flexibility:

• Subproblems of integer variables are allowed.
• Subproblems could be solved by any optimizing method (as long as this will

compute the optimal solution of the subproblem).

For LBBD, the bounding functions are problem-specific. However, a globally valid
function is:

𝐵! 𝑥 = ; 𝜁
!, if 𝑥 = 𝑥̅!

0, otherwise

Logic-Based Benders Decomposition
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A minimal example of a cut:

Let 𝜁@ be the upper bound at any iteration 𝑡, given a partial solution:

!𝒙𝒕 = {𝒙𝟏 = 𝟏, 𝒙𝟐 = 𝟏, 𝒙𝟑 = 𝟎, 𝒙𝟒 = 𝟎}

If 𝑧 is the objective function of the master problem, then the following inequality:

𝒛 ≥ 𝜻𝒕 − 𝜻𝒕 ⋅ (𝒙𝟏 + 𝒙𝟐 − 𝒙𝟑 − 𝒙𝟒 − 𝟐)

will ensure that:

• if 𝑥 = 𝑥̅! → 𝑥( = 1, 𝑥) = 1, 𝑥* = 0, 𝑥+ = 0, then 𝑧 ≥ 𝜁!.
• otherwise, 𝑥( + 𝑥) − 𝑥* − 𝑥+ < 2 → 𝑧 ≥ 0.

Logic-Based Benders Decomposition
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Manufacturing – a case in Textile industry
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A textile industry in Italy 
manufactures woolen fabrics.

The scheduling of the 
manufacturing line is an 

optimisation problem
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The industry has a set of weaving looms, which can operate in parallel.

Loom 1

Loom 2

Loom 3

Time
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Textiles should be processed to the weaving looms. The duration of each process
depends on the speed of the loom and the size of the product to be
manufactured. E.g., for the same textile, the processing time to each loom is
different:

Time

Loom 1

Loom 2

Loom 3
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Each textile should be set up to the loom, before the processing begins. The
setup procedure is sequence-dependent:

Time

Loom 1
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The daily schedule of the industry includes the assignment of textiles to looms
and their sequencing to minimise critical metrics:

Time

Loom 1

Loom 2

Loom 3
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Limited resources: The setup is conducted by a set of 𝑅 working groups.
During a setup, one working group is occupied – no more than 𝑅 setup
operations can be executed simultaneously. E.g., if 𝑅 = 2:

Time

Loom 1

Loom 2

Loom 3
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The described problem resembles with the Parallel Machines
Scheduling Problem:

𝐽: Jobs – Orders of the textile industry
𝑀: Machines – Weaving looms, which operate in parallel

• All jobs must be assigned to one machine.
• Each machine can be occupied by no more than one job at the same

time.
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Position-based MILP

1 2 3 4 5
𝑚! - - 𝑗! 𝑗" 𝑗#

𝑚" - - - 𝑗$ 𝑗%

For a minimal example of 5 jobs to 2 machines:

• Each machine has a number of empty slots (positions) – as many as the
number of jobs.

• Each job should be assigned to one slot – each slot can be either remain
vacant or be occupied by one job.
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• Any scheduling objective could be set to 𝑧 (e.g., makespan, total completion
times, total tardiness etc.)

• Each job must be assigned to one slot of any machine.
• Each slot can be occupied by one job at most.
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• The processing time of each slot is determined by the processing time of the
assigned job. If no jobs are assigned to the slot, then the processing time is
set to 0.

• Big-M constraint: If a variable 𝑥EFG is set to 1 (i.e., job 𝑗 is assigned to slot 𝑖
of machine 𝑚 ), then the setup of the slot is equal/greater than the
sequence-dependent setup time of job 𝑗. Otherwise, the left-hand side is
always valid.
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• The completion time of each slot is equal with the completion time of the
preceding one, added by the processing and setup times.

• For the first slot of a machine, the completion time is equal with the sum of
the processing and the setup time.
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• No intermediate slots remain vacant.

1 2 3 4 5
𝑚! - - 𝑗! - 𝑗"

𝑚! - - - 𝑗! 𝑗"
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Limited resources:
The linearisation of resource constraints requires the construction of t-index
variables:

𝑥EFG@ = A1, if job 𝑗 is processed at slot 𝑖 of machine 𝑚 at time instance 𝑡
0, otherwise

meaning that the number of variables is multiplied by 𝑡 times – the number of 
distinct time instances.

For a dataset of medium scale (e.g., 50 jobs on 5 machines of 50 slots), a working 
shift of 8 hours requires 480 minutes - 𝑡 indices.

50×50×5×480 = 6.000.000 𝑥EFG@ variables 
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Decomposition:

Master problem: The position-based MILP, assuming that an infinite number of
resources is available.

This is a relaxation of the original problem:
• All constraints of the master problem are valid for the original problem.
• A part of the constraints of the original problem are not considered for the master

problem.

Therefore, the solution of the master problem is a lower bound of the global
optimal solution.



Manufacturing – a case in Textile industry

38

Decomposition:

Subproblem: Given a set of sequences of jobs, as acquired by the master problem,
the actual number of available resources is imposed.

• The sequences of jobs will remain intact.
• The completion times of jobs will be extended, since a limited number of

resources is now considered.
• The solution will be feasible – an upper bound is computed.
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Decomposition:

Subproblem: Given a set of sequences of jobs, as acquired by the master problem,
the actual number of available resources is imposed.
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An exact solving method for maximisation/minimisation problems, using global
functions as constraints:

Interval variables: Variables which receive two – start time, end time

intervalVar: startOf, endOf, sizeOf

Sequence variables: Variables of multiple intervals

sequenceVar: [intervalVari|i∈I]
A sequence of interval variables for processes 𝐼.
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An exact solving method for maximisation/minimisation problems, using global
functions as constraints:

Interval variables: Variables which receive two – start time, end time

intervalVar: startOf, endOf, sizeOf

Global functions: reserved expressions which indicate specific constraints

Cumulative(intervalVari|i∈I, di|i∈I, ci|i∈I, C )
If each process 𝑖 of duration 𝑑E consumes 𝑐E resources, and 𝐶 resources are
available, then the Cumulative constraints restricts the violation of resource
availability.
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An exact solving method for maximisation/minimisation problems, using global
functions as constraints:

Interval variables: Variables which receive two – start time, end time

intervalVar: startOf, endOf, sizeOf

Scheduling constraints:

startAtEnd(intervalVari, intervalVarj)
Process 𝑖 will start at the end of process 𝑗.
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An exact solving method for maximisation/minimisation problems, using global
functions as constraints:

Interval variables: Variables which receive two – start time, end time

intervalVar: startOf, endOf, sizeOf

Scheduling constraints:

noOverlap(sequenceVar)
No interval variables of the sequence will overlap.



Constraint Programming

44

An exact solving method for maximisation/minimisation problems, using global
functions as constraints:

Interval variables: Variables which receive two – start time, end time

intervalVar: startOf, endOf, sizeOf

Scheduling constraints:

previous(sequenceVar,intervalVari, intervalVarj)
Process 𝑖 and process 𝑗 will be successive in a sequence.
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Decomposition:

Subproblem: Given a set of sequences of jobs, as acquired by the master problem,
the actual number of available resources is imposed.

Given that the sequences of jobs
are defined by the solution of the
master problem, using a CP
formulation implies a more easily
solved problem than using an
equivalent MILP.
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Decomposition:

Benders cuts: After the computation of the upper bound, a set of constraints is
added to the master problem.

If /𝒙𝒊𝒋𝒎 are the solutions of variables 𝑥EFG, then:

𝑧 ≥ 𝜁 − 𝜁 ⋅ ( 𝐽 − c
!%&':!̅%&'LM

1 − 𝑥EFG )

• If ∑!%&':!̅%&'LM 1 − 𝑥EFG = |𝐽| (i.e., all jobs are assigned to the same slots), then
the objective of the master problem 𝑧 will receive the value of the upper bound 𝜁.

• If ∑!%&':!̅%&'LM 1 − 𝑥EFG < |𝐽| (i.e., at least one job is assigned to a different slot),
then a new solution is obtained, and 𝑧 ≥ 0.
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• Open-source Python package to formulate optimisation problems (Linear
Programs, Mixed-Integer Linear Programs)

• Syntax which is close to the natural language
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• Commercial solver for (Mixed-Integer) Linear Programs
• Python API

The master problem is formulated using Pyomo and solved using Gurobi.
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• Commercial solver for (Mixed-Integer) Linear Programs, Constraint Programming
models

• Python API

The DOCplex component provides a Python API for Constraint Programming models.
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