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Discrete Optimization
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Discrete Optimization
• So far, in all the problems we have seen, 

- We were given a function to optimize 
- The feasible region was an infinite set: A polygon, a 

polyhedron, R, Rn, etc

• In the rest of this course, we will see problems where
- Input: an objective defined on some combinatorial structure, 

i.e., a graph, a set of numbers, some family of sets, etc
- Constraints: they force the feasible region to be a finite set, 

e.g., variables can take values only in {0, 1}, or they may take 
integer values up to some bound
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Discrete Optimization

We will overview techniques tailored for combinatorial structures, as
- Integer Programming algorithms (Branch and bound)
- LP-based approximation algorithms (algorithms with provable 

approximation guarantees)
- Local search approaches (simulated annealing)
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Observation: In discrete optimization, we can always solve 
our problem by brute force

• Clearly not the recommended way!



Examples of 
Discrete Optimization Problems

Satisfiability – Constraint Satisfaction Problems

• Boolean variables:  T(RUE) / F(ALSE)  or 1 / 0 
• Boolean operators:  AND (x Ùy),   OR  (x Ú y),   NOT (¬x)
• Literal: Boolean variable (x) or its negation (¬x)
• Boolean formula:  f(x,y) = (¬x Ú y) Ù (x Ú ¬y)

SAT (decision problem)
I: a boolean formula f
Q: Is f satisfiable ?  
(is there a value assignment to its variables making f TRUE ?) 

Example: f(x,y) = (¬x Ú y) Ù (x Ú ¬y)  is satisfiable  
by the assignments x=y=T, and x=y=F
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• Clause =  A set of OR-ed literals, e.g.  (x Ú ¬y Ú z)

• A formula is in Conjunctive Normal Form (CNF) if:  
– it is the AND of a set of clauses

E.g.   

Any  formula f can be written in CNF 

(CNF)-SAT
I: a boolean formula f in CNF  
Q: Is f satisfiable ?  

One of the most fundamental problems in Computer Science

=f
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Examples of 
Discrete Optimization Problems



Examples of 
Discrete Optimization Problems
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The optimization version of SAT problems:

MAX SAT
I:  A CNF formula φ of m clauses
Q: find a truth assignment satisfying the maximum possible number of  

clauses 

Variants of MAX SAT:
• k-CNF formula: A CNF formula where every clause has k literals (or 

at most k)
• Often SAT problems are stated with 3-CNF formulas
• MAX k-SAT: The same as MAX SAT but taking as input a k-CNF 

formula
• Weighted version: We can also have weights on the clauses 

(denoting importance of each constraint) and try to maximize total 
weight



Graphs
– G = (V, E)
– Set of  nodes/vertices: V = {1,2,…,n}, |V| = n
– Set of edges/arcs: E Í V´V = {(u,v) | u, v Î V}, |E| = m

– undirected graphs  (u,v) º (v,u)
• Γ(u) = {v | (u,v) Î E}:   neighborhood of u 
• d(u) = |Γ(u)| = degree of u

– directed graphs (u,v) ¹ (v,u)
• Γ+ (u) = {v | (u,v) Î E }:  out-neighborhood of u 
• Γ- (u) = {v | (v,u) Î E }:  in-neighborhood of u 
• d+ (u) =|Γ+ (u)|:  out-degree of u
• d- (u) =|Γ- (u)|:  in-degree of u
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Graph representation

Adjacency matrix Adjacency list

space O(n2)

Dense graphs:  m is O(n2)

space O(n+m)

- n = # vertices
- m = #edges



Examples of 
Discrete Optimization Problems
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Optimization problems defined on graphs
Single-source shortest paths
I: A graph G = (V, E) with weights on its edges, and a designated vertex s
Q: The shortest paths from s to all nodes (the paths and their lengths) 

Variants: 
• Find shortest paths from multiple sources
• All-pairs shortest paths

Minimum Spanning Tree
I:  A graph G = (V, E) with weights on its edges
Q: Find a subset of the edges T Í E, so that the subgraph (V, T) is 

connected, and such that T is of minimum cost 



Examples of 
Discrete Optimization Problems
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Optimization problems defined on graphs
Traveling Salesman Problem (TSP) 
I: A complete directed weighted graph G=(V,E)
Q: Find a Hamiltonian Cycle in G (a tour that goes through every node 

exactly once) of minimum cost

One of the most well studied problems in Computer Science, Operations 
Research, ...

Vertex Cover (VC):
I: A graph G = (V,E)
Q: Find a cover C Í V of minimum size, i.e., a set C Í V, s.t. " (u, v) Î E,  

either u Î C or v Î C (or both)

Weighted Vertex Cover: Version with weights on the nodes



Examples of 
Discrete Optimization Problems
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Optimization problems on sets and partitions

0-1 KNAPSACK
I: A set of objects S = {1,…,n}, each with a positive integer weight wi, and a 
value vi, i=1,…,n, along with a positive integer W
Q: find A Í S  s.t.                     and            is maximized

MAKESPAN
I: A set of objects S = {1,…,n}, each with a positive integer weight wi, i = 1,
…,n, and a positive integer M 

Q: find a partition of S into A1, A2,..., AM, s.t.                           is minimized

Useful for modeling job scheduling problems

Ww
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Integer Programming
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What is an integer program?
• A way to model problems where some variables take integer values
• Also referred to as Integer Linear Program (ILP):
• Almost the same as Linear Programs

• Linear objective function
• Linear constraints 

Applications:
• Comparable to applications of Linear Programming
• Operations Research
• Airline scheduling problems
• Medicine
• etc

Integer Programming



15

xi =
1, if item i is in the solution 
0, otherwise                      

⎧
⎨
⎪

⎩⎪

• It is not always clear how to model a problem as an integer program
• The tricky part is how to express the objective function using integer 

variables
• Usually: Assign a binary variable xi to a candidate object that can be 

included in a solution  
• Interpretation:

Integer Programming Formulations
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Integer Programming Formulations

Examples:

Vertex Cover
min   Σu xu

s.t.
xu + xv ≥ 1    " (u, v) Î E
xu Î {0,1}     " u Î V

0-1 KNAPSACK
max   Σi vi xi

s.t.
Σi wi xi ≤ W   
xi Î {0,1}     " i Î {1,...,n}
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Integer Programming Formulations
Examples:
MAKESPAN:
•Better to think of it as a job scheduling problem
•Items correspond to jobs that should be assigned to machines
•The weight corresponds to the processing time
•How do we model that a job i is assigned to machine j? 

MAKESPAN
min   t
s.t.

Σi wi xij ≤ t    " j Î {1,...,m}
Σj xij = 1        " i Î {1,...,n}  (every job goes to exactly one machine) 
xij Î {0,1}     " i Î {1,...,n}, j Î {1,...,m}



Complexity of Integer Programming

• Modeling a problem as an integer program does not 
provide any guarantee that we can solve it

Theorem: Integer Programming is NP-complete

• In fact many problems in discrete optimization are NP-
complete

• Partly due to the discrete nature
• All such problems can be reduced to SAT and vice versa

Is this the end of the world?
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Coping with NP-complete problems

1. Algorithms for small instances

2. Algorithms for special cases

3. Heuristic algorithms 

4. Approximation algorithms

5. Randomized algorithms
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Coping with NP-complete problems
1. Small instances
If we want to run an algorithm with small instances only, then an 

exponential time algorithm may be satisfactory

2. Special cases
Identify families of instances where we can have an efficient 

algorithm, e.g., 2-SAT

3. Heuristic algorithms
Algorithms that seem to work well in practice
without a formal guarantee though for their performance
• Some times no guarantee that they terminate in polynomial time
• No guarantee on the approximation achieved by the solution 

returned
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Coping with NP-complete problems
4. Approximation algorithms
Algorithms for which we can have a provable bound
on the quality of the solution returned

ΟPT

MinMax

Definition: An algorithm A, for a minimization problem Π, achieves an
approximation factor of ρ (ρ ≥ 1), if for every instance I of the problem,
A returns a solution with:

C(I) ≤ ρ OPT(I)

(analogous definition for maximization problems)

Given an instance I of an optimization problem:
• OPT(I) = optimal solution
• C(I) = cost of solution returned by the algorithm under consideration
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Coping with NP-complete problems
5. Randomized algorithms
Algorithms that use randomization (e.g. flipping coins) and take 
random decisions 

Performance:
Such algorithms may
• produce a good solution with high probability
• produce a good cost/profit in expectation
• run in expected polynomial time

Power of randomization: for some problems, the only decent 
algorithms known are randomized! (e.g., primality testing)



Branch and Bound
(and related approaches)
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Branch and Bound Algorithms

• A quite practical heuristic for several combinatorial problems
• Many variants over the years
• Idea: Try to avoid searching all possible solutions by keeping 

an estimate for the cost of the optimal solution
• Worst case: exponential, in some cases we do have to search 

almost all the possible solutions
• Still, average case complexity is acceptable



Backtracking
We first take a detour to a decision problem

– Consider the SAT probem
– there are 2n possible assignments for n variables 
– Going through all possible assignments yields an exponential running 

time:  O(2n)

Backtracking: 
• A more intelligent exhaustive search
• Consider partial assignments 
• Prune the search space 
• Example:
f = (w Ú x Ú y Ú z) Ù (w Ú ¬x) Ù (x Ú ¬y) Ù (y Ú ¬z) Ù (z Ú ¬w) Ù (¬w Ú ¬z)  
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Start with the initial formula 
Branch on a variable, e.g. w

Plug  into φ the values of w 
No clause is immediately violated

Keep active both branches

26

Backtracking



Expand an active node on a new variable, e.g.  x

When we see ( ): 
•FALSE clause; do not expand further
•the partial assignment cannot make φ satisfiable 27

Backtracking



Finally:  

• The final answer to the problem is NO
• No truth assignment can satisfy φ
• Did not have to search all possible assignments

28

Backtracking
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Branch and Bound Algorithms

From Backtracking to Branch and Bound
•This version of backtracking works well for binary problems (is the formula 
satisfiable or not?)
•For optimization problems, we can apply a similar approach, but taking the 
objective function into account
•General method, not applicable only for integer programs
•For the method to be applicable, we first need to estimate bounds on the 
optimal solution for various sub-instances

– By exploiting properties of the problem at hand
•During the exploration of the solution space, we can then avoid looking at 
partial solutions with “high” lower or “low” upper bounds.
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Branch and Bound Algorithms

Before going to integer programs, we first illustrate the general 
method on TSP

Traveling Salesman Problem (TSP) 
I: A complete directed weighted graph G=(V,E)
Q: Find a Hamiltonian Cycle in G (a tour that goes through every 
node exactly once) of minimum cost

• Solution space: n! 
– Really impossible to do brute force (worse than 2n)

• Q: How can we find a good lower bound on the cost of the 
optimal tour?
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Branch-and-Bound 
A lower  bound on the optimal solution:           

• the half of the sum of minimum elements of each row and each column
• For every node one edge of the tour has to come towards i and one has to 

leave from i

}){min}{min(
2
1
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1
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n

i
ji

ij
ww

¹= ¹
+å

A B C D

A x 3 2 7 2
B 4 x 3 6 3
C 1 1 x 3 1
D 1 6 6 x 1

1 1 2 3 LB = 14/2 = 7 

Σ0 A B

C D

3
4

667
1

3
6

2
1

3

1
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Branch-and-Bound 

A B C D
A x x 2 x 2
B 4 x x 6 4
C x 1 x 3 1
D 1 6 x x 1

1 1 2 3 LB = 15/2 = 7.5 

A B C D

A x 3 x 7 3
B 4 x 3 6 3

C 1 1 x 3 1
D 1 6 6 x 1

1 1 3 3 LB = 16/2 = 8 

Σ2

Branch 1: edge AC in the tour è CA, AB, AD, BC, DC  not in 
tour (why ?)

Σ1

Branch 2: AC not in tour

Σ0

Σ2Σ1

7

87.5

AC
__
AC

A B

C D

4

66
1

3
6

2
1



33

Branch-and-Bound 
A B C D

A x x 2 x 2
B x x x 6 6
C x 1 x x 1
D 1 x x x 1

1 1 2 6 LB = 20/2 = 10 

A B C D

A x x 2 x 2
B 4 x x 6 4

C x x x 3 3
D 1 6 x x 1

1 6 2 3 LB = 22/2 = 11 

Σ4

AC in tour è CA, AB, AD, BC, DC  not in tour
CB in tour è CD, DB, BA not in tourΣ3

AC in tour è CA, AB, AD, BC, DC  not in tour
CB not in tour

and so on …

A B

C D

6
1

2
1

A feasible Solution
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Branch-and-Bound 
Σ0

Σ2Σ1

7

87.5

AC __
AC

Σ4Σ3 1110

CB
__
CB

Σ6Σ5 911.5

AB
__
AB

Σ8Σ7 13.510

BC
__
BC

solution ACBDA

cost = 10

solution ABCDA

cost = 10

No need to 
explore this more
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Branch-and-Bound 
Parameters

– Maintain a set S of active states
– Initially S = {Σ0} (nothing has been expanded yet)
– In each step extract state Σ from S (Σ is the state to be expanded)
– UB is a global upper bound of the optimum solution 

• For minimization problems we initially set UB = +¥

– LB(Σ) is a lower bound on all solutions represented by state Σ (i.e. from 
all solutions that can arise after expanding Σ)

– Whenever we reach a terminal node with LB(Σ) ≤ UB, then we can 
update our current UB 

– During the process, we do not need to examine any further the nodes 
where their LB is higher than UB!
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Branch-and-Bound 
Algorithm Branch and Bound
{ S = {Σ0};

UB = +¥
while S ¹ Æ do
{ get a node Σ from S;   

//which node ? FIFO/LIFO/Best LB
S:= S - {Σ};
for all possible “1-step” extensions Σj of Σ do
{ create Σj and find LB(Σj);

if LB(Σj) £ UB then 
if Σj is terminal then 

{  UB:= LB(Σj);
optimum:= Σj }

else add Σj to S } } }
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Branch and Bound for Integer 
Programming

• We can apply the same idea for integer programs
• Natural idea for branching: Take an integer variable and 

branch by setting it to either 0 or 1
• Several variants are used depending on how to choose

– which subproblem to extract from the set of active states
– which variable to branch on

• This has led to a wide range of very simple to very 
sophisticated implementations

• One of the most successful methods for solving optimally an 
integer program in practice 
– Very good average-case behavior
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Branch and Bound for Integer 
Programming

Applying Branch and Bound to an integer program
• Bounding: For each subproblem we again need a bound on 

the optimal solution
– How can we estimate such a bound?
– Resort to linear programming: If we set all the remaining variables to 

be in [0, 1] instead of {0, 1}, the resulting problem is a LP

Definition: Consider an integer program IP where each variable xi Î {0,1}. The 
LP that arises by replacing the integrality constraints with 0 ≤ xi ≤ 1 is called 
the LP relaxation of the IP  

Theorem: Consider an integer program IP and its corresponding LP relaxation
•If IP is a maximization problem: OPT-LP ≥ OPT-IP
•If IP is a minimization problem: OPT-LP ≤ OPT-IP

Hence, we can use simplex during each iteration for the bounding step
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Branch and Bound 
Illustrative Example

We will apply the basic variant of the technique to a 
maximization integer program
• A company is considering to build one new factory in Athens 

or Thessaloniki or in both cities
• It is also considering building a new warehouse
• Constraints:

– The warehouse should be built in a city where a factory is also built
– At most 1 warehouse can be built

• Every possible location for either a factory or a warehouse 
needs some initial capital, but also brings in some expected 
profitability

• Upper bound on the available capital: 10 million $
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Branch and Bound 
Illustrative Example

Modeling the problem as an integer program
• Variables: binary variables corresponding to the decisions

– x1: for building a factory in Athens
– x2: for building a factory in Thessaloniki
– x3: for building a warehouse in Athens
– x4: for building a warehouse in Thessaloniki

Decision Expected 
Profit 

(million $)

Capital required 
(million $)

Factory in Athens 9 6

Factory in Thessaloniki 5 3

Warehouse in Athens 6 5

Warehouse in Thessaloniki 4 2
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Branch and Bound 
Illustrative Example

Constraints:
•Upper bound on the capital

– 6x1 + 3x2 + 5x3 + 2x4 ≤ 10

•At most one warehouse
– x3 + x4 ≤ 1

•Warehouse built in a city where a factory is also built
– x3 ≤  x1

– x4 ≤  x2

Objective function
•Maximize profit

– 9x1 + 5x2 + 6x3 + 4x4
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Branch and Bound 
Illustrative Example

Setting up branch and bound:
– Solve the corresponding LP 

relaxation by replacing 
xi Î {0, 1}    è 0 ≤ xi ≤ 1 
– If we get an integer solution, 

we are done
– Otherwise, set initial Candidate 

Solution (i.e., the lower bound) 
to Z* = - ∞

Max Z = 9x1 + 5x2 + 6x3 + 4x4

s.t.
6x1 + 3x2 + 5x3 + 2x4 ≤ 10
x3 + x4 ≤ 1
x3 ≤  x1

x4 ≤  x2

xi Î {0, 1}, i=1,2,3,4

Integer program 
(subproblem  Σ0): 
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Branch and Bound 
Illustrative Example

Solving the LP:
– Optimal solution = (5/6, 1, 0, 1)
– Profit = 16.5 
– Hence, we have an upper 

bound on Σ0, denoted as UB(Σ0) 
• any integer solution will yield a 

profit of ≤ 16.5

– In fact, UB(Σ0) = 16, since all 
coefficients are integers

Max Z = 9x1 + 5x2 + 6x3 + 4x4

s.t.
6x1 + 3x2 + 5x3 + 2x4 ≤ 10
x3 + x4 ≤ 1
x3 ≤  x1

x4 ≤  x2

xi Î {0, 1}, i=1,2,3,4

Integer program 
(subproblem  Σ0): 
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Branch and Bound 
Illustrative Example

Iteration 1:
•Branching: There are many choices as to which variable to use 
for branching

– Here we will just prioritize according to the index of the variable
– First branching: x1 = 0 (subproblem Σ1) and x1 = 1 ( subproblem Σ2)
– After substitution, we have 2 new subproblems

Max Z = 5x2 + 6x3 + 4x4

s.t.
3x2 + 5x3 + 2x4 ≤ 10
x3 + x4 ≤ 1
x3 ≤ 0
x4 ≤  x2

xi Î {0, 1}, i = 2, 3, 4

Max Z = 9 + 5x2 + 6x3 + 4x4

s.t.
3x2 + 5x3 + 2x4 ≤ 4
x3 + x4 ≤ 1
x3 ≤  1
x4 ≤  x2

xi Î {0, 1}, i = 2, 3, 4
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Branch and Bound 
Illustrative Example

Iteration 1:
•Bounding: Need an upper bound on the optimal solution of 
Σ1 and Σ2

– Most standard approach: Simply solve the LP relaxation of each 
subproblem

– Other types of relaxations can also be used in more involved 
implementations 

Solution to LP relaxation of Σ1:
(x1, x2, x3, x4) = (0, 1, 0, 1)
With UB(Σ1) = 9

Solution to LP relaxation of Σ2:
(x1, x2, x3, x4) = (1, 4/5, 0, 4/5)
With UB(Σ2) = 16
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Branch and Bound 
Illustrative Example

Iteration 1:
•Final step: Check if we can dismiss any of the subproblems 
we have created

– Also referred to as “fathoming”
– We check also if we can update Z* (candidate optimal solution)

Look again at the LP relaxation of Σ1:
•(x1, x2, x3, x4) = (0, 1, 0, 1)
•This is an integer solution!
•Hence we can stop this branch here, 
no need to explore further
•This is the optimal solution to Σ1
itself
•Since 9 > - ∞, update Z* := 9

LP relaxation of Σ2:
•(x1, x2, x3, x4) = (1, 4/5, 0, 4/5)
•Non-integer solution
•16 > Z*
•Hence, we cannot stop here
•Need to branch further here
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Branch and Bound 
Illustrative Example

Iteration 1:
• Summary: We can depict what we have done so far with 

the branching tree

Σ0

Σ2Σ1

16

169

X1 = 0 X1 = 1

Z* = 9
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Branch and Bound 
Illustrative Example

When can we dismiss a node of the tree from further 
consideration?
1.When the solution of the LP relaxation is integer

- As in Iteration 1

2.When the LP relaxation is infeasible
- If the relaxation does not have a solution, there is no solution 

for the subproblem itself

3.When the LP relaxation results in an upper bound that is 
worse (i.e., less or equal) than Z*

- In our case, if after iteration 1, we run into a subproblem Σi
where UB(Σi) ≤ 9, then we do not need to examine it more
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Branch and Bound 
Summarizing Branch and Bound for IP maximization 
problems

Initialization: Set Z* = - ∞, check if the LP relaxation has an 
integer solution or if it is infeasible
In each iteration:
1.Branching: Among the remaining subproblems, pick the 
one created most recently

- Break ties according to the largest upper bound

2.Bounding: Solve the LP relaxation to find an upper bound 
for each new subproblem
3.Checking for dismissals: For each new subproblem, check 
if any of the 3 criteria apply
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Branch and Bound 
Illustrative Example

Iteration 2:
We continue from Σ2

•Branching: We branch on whether x2 = 0 or x2 = 1

Max Z = 9 + 6x3 + 4x4

s.t.
5x3 + 2x4 ≤ 4
x3 + x4 ≤ 1
x3 ≤ 1
x4 ≤  0
xi Î {0, 1}, i = 3, 4

Max Z = 14 + 6x3 + 4x4

s.t.
5x3 + 2x4 ≤ 1
x3 + x4 ≤ 1
x3 ≤  1
x4 ≤  1
xi Î {0, 1}, i = 3, 4

Subproblem Σ3 (x1 = 1, x2 = 0) Subproblem Σ4 (x1 = 1, x2 = 1)
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Branch and Bound 
Illustrative Example

Iteration 2:
•Bounding: solve the LP relaxations of Σ3 and Σ4

Solution to LP relaxation of Σ3:
(x1, x2, x3, x4) = (1, 0, 4/5, 0)
Optimal solution: 13.8
Hence, UB(Σ3) = 13

Solution to LP relaxation of Σ4:
(x1, x2, x3, x4) = (1, 1, 0, 1/2)
Optimal solution: 16
Hence, UB(Σ4) = 16

• Checking for dismissals (recall that Z* = 9):
None of the criteria apply to Σ3 or Σ4
We cannot dismiss any of them at the moment
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Branch and Bound 
Illustrative Example

Iteration 3:
•Σ3 and Σ4 were created during the same iteration
•We pick to continue from Σ4, which has the largest upper bound
•Branching: We branch on whether x3 = 0 or x3 = 1

Max Z = 14 + 4x4

s.t.
2x4 ≤ 1
x4 ≤ 1 (twice)
x4 Î {0, 1}

Max Z = 20 + 4x4

s.t.
2x4 ≤ -4
x4 ≤ 0
x4 ≤ 1
x4 Î {0, 1}

Subproblem Σ5
(x1 = 1, x2 = 1, x3 = 0 )

Subproblem Σ6
(x1 = 1, x2 = 1, x3 = 1)
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Branch and Bound 
Illustrative Example

Iteration 3:
•Bounding: solve the LP relaxations of Σ5 and Σ6

Solution to LP relaxation of Σ5:
(x1, x2, x3, x4) = (1, 1, 0, 1/2)
Optimal solution: 16
Hence, UB(Σ5) = 16

LP relaxation of Σ6:
Infeasible, first constraint cannot 
be satisfied

• Checking for dismissals:
- None of the criteria apply to Σ5
- Σ6 can be dismissed
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Branch and Bound 
Illustrative Example

Iteration 4:
•We have to pick among Σ3 and Σ5

•We pick Σ5 as it was created more recently
•Branching: We branch on whether x4 = 0 or x4 = 1
•Since this is the last variable, we can immediately read the solution

Subproblem Σ7: (x1 = 1, x2 = 1, x3 = 0, x4 = 0)
•Feasible with Z = 14

Subproblem Σ8: (x1 = 1, x2 = 1, x3 = 0, x4 = 1)
•Infeasible
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Branch and Bound 
Illustrative Example

Iteration 4:

Conclusion: 
Optimal solution: x1 = 1, x2 = 1, x3 = 0, x4 = 0
• Optimal profit = 14

• Checking for dismissals:
- First we update Z* = 14 from  Σ7
- Σ8 is dismissed
- We can also dismiss Σ3, because now UB(Σ3)=13 < Ζ*
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Branch and Bound 
Illustrative Example

Final branching tree:
Σ0

Σ2Σ1

16

169

X1 = 0 X1 = 1

Z* = 14

Σ4Σ3 1613

X2 = 0 X2 = 1

Σ6Σ516 Inf.

X3 = 0 X3 = 1

Σ8Σ714

X4 = 0 X4 = 1

Inf.

We examined only 8 nodes 
instead of the all 16 
possible solutions



57

Branch and Bound 
Variants and Extensions
The technique can admit numerous refinements

•Branching
- Most popular rule is to pick the most recently created 

subproblem
- Efficient because the new LP relaxation is solved by reoptimizing 

the previous one (small changes only)
- Next most popular rule: Pick the subproblem with the largest 

upper bound
- Branching variable: most sophisticated algorithms select the 

variable that is expected to produce more early dismissals
- A popular choice: select the variable which is furthest away 

from being an integer in the solution of the current LP 
relaxation
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Branch and Bound 
Variants and Extensions
The technique can admit numerous refinements

•Bounding
- The most standard way is by solving the LP relaxation
- But any other way of “relaxing” the problem can also do
- The Lagrangian relaxation can be used since it leads to 

unconstrained problems
- Trade-off that we seek: the relaxation should be solvable 

relatively quickly and should also provide a relatively tight 
bound
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Branch and Bound 
Variants and Extensions
The technique can admit numerous refinements

•Finding all optimal solutions
- The technique can be easily modified if we care to identify all 

optimal solutions
- Simply need to change the way we perform dismissals and 

updates on Z*

•Mixed Integer Programming
– Programs where only some variables are restricted to take 

integer values
– Quite easy to adjust the technique for such cases too
– If the integer variables are non-binary: create branches based 

on the possible range of the variable (e.g. x1 ≤ 4, and x1 ≥ 5) 



60

Branch and Cut 

• An even more powerful technique
• Combines branch and bound with clever preprocessing 

tricks
• Main extra idea: Try to reduce (“cut”) the feasible region 

of the LP relaxations without deleting any integer solution
• Can be used to solve problems with thousands of 

variables
• It scales well when the constraint matrix is sparse
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Branch and Cut 

Basic steps

•Problem Preprocessing
- Fixing variables: identify variables that can be fixed to a single 

value (due to the constraints)
- Eliminate redundant constraints
- Tighten constraints

•Generation of cutting planes
– Reduce the feasible region of an LP relaxation without 

eliminating the integer solutions

•Clever branch and bound



Generating Cutting Planes
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Illustration of cutting planes:

1

1 x1

x2

2x1 + 3x2 = 4

Feasible 
region

Suppose that in some iteration 
of branch and bound we have 
an LP with the constraints:

2x1 + 3x2 ≤ 4
0 ≤ x1 ≤ 1
0 ≤ x2 ≤ 1

Possible integer solutions:
(0, 0), (0, 1), (1, 0) 
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Illustration of cutting planes:

1

1 x1

x2

2x1 + 3x2 = 4

Feasible 
region

• We shrank the feasible region
• We have not eliminated any 

integer solutions
• The constraint x1 + x2 ≤ 1 is 

called a cutting plane

Change the LP 
constraints to:

x1 + x2 ≤ 1
0 ≤ x1 ≤ 1
0 ≤ x2 ≤ 1



Generating Cutting Planes
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Illustration of cutting planes:

1

1 x1

x2

2x1 + 3x2 = 4

Feasible 
region

Change the LP 
constraints to:
x1 + x2 ≤ 1
0 ≤ x1 ≤ 1
0 ≤ x2 ≤ 1
• We shrank the feasible region
• We have not elminated any 

integer solutions
• The constraint x1 + x2 ≤ 1 is 

called a cutting plane


