ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

M.Sc. Program in Data Science Department of Informatics

Optimization Techniques

Discrete Optimization

Introduction and Integer Programming Formulations

Instructor: G. ZOIS georzois@aueb.gr

Discrete Optimization

Discrete Optimization

- So far, in all the problems we have seen,
 - We were given a function to optimize
 - The feasible region was an infinite set: A polygon, a polyhedron, R, Rⁿ, etc
- In the rest of this course, we will see problems where
 - Input: an objective defined on some combinatorial structure,
 i.e., a graph, a set of numbers, some family of sets, etc
 - Constraints: they force the feasible region to be a finite set,
 e.g., variables can take values only in {0, 1}, or they may take
 integer values up to some bound

Discrete Optimization

Observation: In discrete optimization, we can always solve our problem by brute force

• Clearly not the recommended way!

We will overview techniques tailored for combinatorial structures, as

- Integer Programming algorithms (Branch and bound)
- LP-based approximation algorithms (algorithms with provable approximation guarantees)
- Local search approaches (simulated annealing)

Satisfiability – Constraint Satisfaction Problems

- <u>Boolean variables</u>: T(RUE) / F(ALSE) or 1 / 0
- <u>Boolean operators</u>: AND $(x \land y)$, OR $(x \lor y)$, NOT $(\neg x)$
- <u>Literal</u>: Boolean variable (x) or its negation $(\neg x)$
- Boolean formula: $\phi(x,y) = (\neg x \lor y) \land (x \lor \neg y)$

<u>SAT</u> (decision problem)

I: a boolean formula ϕ Q: Is ϕ satisfiable ?

(is there a value assignment to its variables making ϕ TRUE ?)

Example: $\phi(x,y) = (\neg x \lor y) \land (x \lor \neg y)$ is satisfiable

by the assignments x=y=T, and x=y=F

- <u>Clause</u> = A set of OR-ed literals, e.g. $(x \lor \neg y \lor z)$
- A formula is in <u>Conjunctive Normal Form (CNF)</u> if:
 - it is the AND of a set of clauses

$$\textbf{E.g.} \quad \phi = \ (w \lor x \lor y \lor z), \ (w \lor \overline{x}), \ (x \lor \overline{y}), \ (y \lor \overline{z}), \ (z \lor \overline{w}), \ (\overline{w} \lor \overline{z}).$$

Any formula ϕ can be written in CNF

(CNF)-SAT

I: a boolean formula $\boldsymbol{\varphi}$ in CNF

Q: Is ϕ satisfiable ?

One of the most fundamental problems in Computer Science

The optimization version of SAT problems:

MAX SAT

- I: A CNF formula ϕ of m clauses
- Q: find a truth assignment satisfying the maximum possible number of clauses

Variants of MAX SAT:

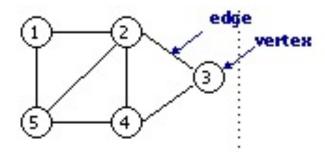
- k-CNF formula: A CNF formula where every clause has k literals (or at most k)
- Often SAT problems are stated with 3-CNF formulas
- MAX k-SAT: The same as MAX SAT but taking as input a k-CNF formula
- Weighted version: We can also have weights on the clauses (denoting importance of each constraint) and try to maximize total weight

Graphs

- G = (V, E)
- Set of nodes/vertices: $V = \{1, 2, ..., n\}, |V| = n$
- − Set of edges/arcs: $E \subseteq V \times V = \{(u,v) | u, v \in V\}$, |E| = m
- undirected graphs $(u,v) \equiv (v,u)$
 - $\Gamma(u) = \{v \mid (u,v) \in E\}$: neighborhood of u
 - $d(u) = |\Gamma(u)| = degree of u$
- directed graphs $(u,v) \neq (v,u)$
 - $\Gamma^+(u) = \{v \mid (u,v) \in E \}$: out-neighborhood of u
 - $\Gamma^{-}(u) = \{v \mid (v,u) \in E \}$: in-neighborhood of u
 - $d^+(u) = |\Gamma^+(u)|$: out-degree of u
 - $d^{-}(u) = |\Gamma^{-}(u)|$: in-degree of u

Graph representation

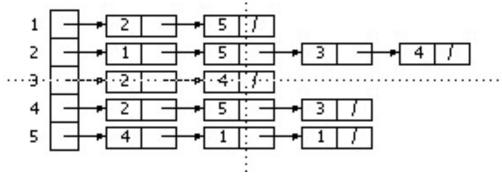
- n = # vertices
- m = #edges



Adjacency matrix

	1	2	3	4	5
1	0	1	0	0	1
2 3 4 5	1	0	1 0 1 0	1	1
з	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	0	0

Adjacency list



space O(n²)

space O(n+m)

Dense graphs: m is O(n²)

Optimization problems defined on graphs

Single-source shortest paths

I: A graph G = (V, E) with weights on its edges, and a designated vertex s Q: The shortest paths from s to all nodes (the paths and their lengths)

Variants:

- Find shortest paths from multiple sources
- All-pairs shortest paths

Minimum Spanning Tree

- I: A graph G = (V, E) with weights on its edges
- Q: Find a subset of the edges $T \subseteq E$, so that the subgraph (V, T) is connected, and such that T is of minimum cost

Optimization problems defined on graphs

Traveling Salesman Problem (TSP)

I: A complete directed weighted graph G=(V,E)Q: Find a Hamiltonian Cycle in G (a tour that goes through every node exactly once) of minimum cost

One of the most well studied problems in Computer Science, Operations Research, ...

Vertex Cover (VC):

I: A graph G = (V,E)
Q: Find a cover C ⊆ V of minimum size, i.e., a set C ⊆ V, s.t. ∀ (u, v) ∈ E, either u ∈ C or v ∈ C (or both)

Weighted Vertex Cover: Version with weights on the nodes

Optimization problems on sets and partitions

0-1 KNAPSACK

I: A set of objects S = $\{1,...,n\}$, each with a positive integer weight w_i, and a value v_i, i=1,...,n, along with a positive integer W

Q: find
$$A \subseteq S$$
 s.t. $\sum_{i \in A} w_i \leq W$ and $\sum_{i \in A} v_i$ is maximized

MAKESPAN

I: A set of objects S = $\{1,...,n\}$, each with a positive integer weight w_i , i = 1, ...,n, and a positive integer M

Q: find a partition of S into A₁, A₂,..., A_M, s.t. $\max_{1 \le j \le M} \{\sum_{i \in A_j} w_i\}$ is minimized

Useful for modeling job scheduling problems

Integer Programming

Integer Programming

What is an integer program?

- A way to model problems where some variables take integer values
- Also referred to as Integer Linear Program (ILP):
- Almost the same as Linear Programs
 - Linear objective function
 - Linear constraints

Applications:

- Comparable to applications of Linear Programming
- Operations Research
- Airline scheduling problems
- Medicine
- etc

Integer Programming Formulations

- It is not always clear how to model a problem as an integer program
- The tricky part is how to express the objective function using integer variables
- Usually: Assign a binary variable x_i to a candidate object that can be included in a solution
- Interpretation:

$$x_i = \begin{cases} 1, & \text{if item } i \text{ is in the solution} \\ 0, & \text{otherwise} \end{cases}$$

Integer Programming Formulations

Examples:

 $\begin{array}{l} \underline{0\text{-1 KNAPSACK}} \\ max \quad \Sigma_i \, v_i \, x_i \\ \text{s.t.} \\ & \sum_i w_i \, x_i \leq W \\ & x_i \in \{0,1\} \quad \forall \ i \in \{1,...,n\} \end{array}$

Vertex Cover

min $\Sigma_u x_u$ s.t. $x_u + x_v \ge 1 \quad \forall (u, v) \in E$

$$x_u \in \{0,1\} \quad \forall \ u \in V$$

Integer Programming Formulations

Examples:

MAKESPAN:

- •Better to think of it as a job scheduling problem
- Items correspond to jobs that should be assigned to machines
- •The weight corresponds to the processing time
- How do we model that a job i is assigned to machine j?

MAKESPAN

min t

s.t.

$$\begin{array}{ll} \boldsymbol{\Sigma}_{i} \ w_{i} \ x_{ij} \leq t & \forall \ j \in \{1, ..., m\} \\ \boldsymbol{\Sigma}_{j} \ x_{ij} = 1 & \forall \ i \in \{1, ..., n\} \ (every \ job \ goes \ to \ exactly \ one \ machine) \\ \boldsymbol{x}_{ij} \in \{0, 1\} & \forall \ i \in \{1, ..., n\}, \ j \in \{1, ..., m\} \end{array}$$

Complexity of Integer Programming

 Modeling a problem as an integer program does not provide any guarantee that we can solve it

Theorem: Integer Programming is NP-complete

- In fact many problems in discrete optimization are NPcomplete
- Partly due to the discrete nature
- All such problems can be reduced to SAT and vice versa

Is this the end of the world?

- 1. Algorithms for small instances
- 2. Algorithms for special cases
- 3. Heuristic algorithms
- 4. Approximation algorithms
- 5. Randomized algorithms

1. Small instances

If we want to run an algorithm with small instances only, then an exponential time algorithm may be satisfactory

2. Special cases

Identify families of instances where we can have an efficient algorithm, e.g., 2-SAT

3. Heuristic algorithms

Algorithms that seem to work well in practice without a formal guarantee though for their performance

- Some times no guarantee that they terminate in polynomial time
- No guarantee on the approximation achieved by the solution returned

4. Approximation algorithms

Algorithms for which we can have a provable bound **Max** on the quality of the solution returned

Given an instance I of an optimization problem:

- OPT(I) = optimal solution
- C(I) = cost of solution returned by the algorithm under consideration

Definition: An algorithm A, for a minimization problem Π , achieves an approximation factor of ρ ($\rho \ge 1$), if for **every** instance I of the problem, A returns a solution with:

$C(I) \leq \rho \ OPT(I)$

(analogous definition for maximization problems)

Min

OPT

5. Randomized algorithms

Algorithms that use randomization (e.g. flipping coins) and take random decisions

Performance:

Such algorithms may

- produce a good solution with high probability
- produce a good cost/profit in expectation
- run in expected polynomial time

Power of randomization: for some problems, the only decent algorithms known are randomized! (e.g., primality testing)

Branch and Bound (and related approaches)

Branch and Bound Algorithms

- A quite practical heuristic for several combinatorial problems
- Many variants over the years
- Idea: Try to avoid searching all possible solutions by keeping an estimate for the cost of the optimal solution
- Worst case: exponential, in some cases we do have to search almost all the possible solutions
- Still, average case complexity is acceptable

We first take a detour to a decision problem

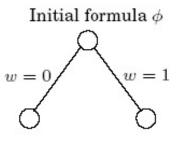
- Consider the SAT probem
- there are 2ⁿ possible assignments for n variables
- Going through all possible assignments yields an exponential running time: O(2ⁿ)

Backtracking:

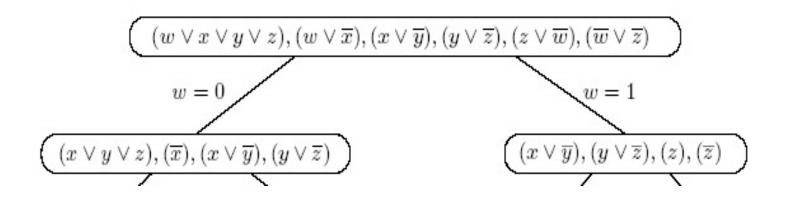
- A more intelligent exhaustive search
- Consider partial assignments
- Prune the search space
- Example:

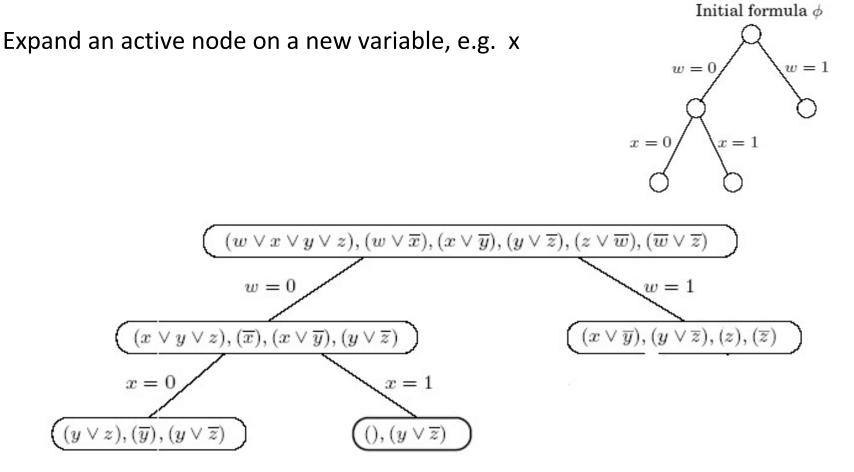
 $\varphi = (w \lor x \lor y \lor z) \land (w \lor \neg x) \land (x \lor \neg y) \land (y \lor \neg z) \land (z \lor \neg w) \land (\neg w \lor \neg z)$

Start with the initial formula Branch on a variable, e.g. w



Plug into φ the values of w No clause is immediately violated Keep active both branches



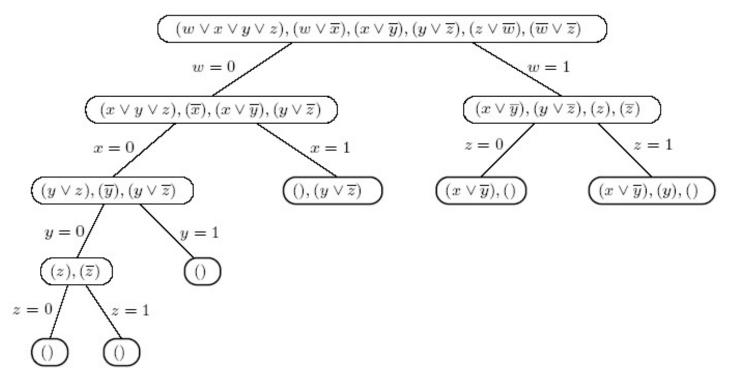


When we see ():

• FALSE clause; do not expand further

•the partial assignment cannot make ϕ satisfiable

Finally:



- The final answer to the problem is NO
- No truth assignment can satisfy φ
- Did not have to search all possible assignments

Branch and Bound Algorithms

- From Backtracking to Branch and Bound
- •This version of backtracking works well for binary problems (is the formula satisfiable or not?)
- •For optimization problems, we can apply a similar approach, but taking the objective function into account
- •General method, not applicable only for integer programs
- •For the method to be applicable, we first need to estimate bounds on the optimal solution for various sub-instances
 - By exploiting properties of the problem at hand
- During the exploration of the solution space, we can then avoid looking at partial solutions with "high" lower or "low" upper bounds.

Branch and Bound Algorithms

Before going to integer programs, we first illustrate the general method on TSP

Traveling Salesman Problem (TSP)

I: A complete directed weighted graph G=(V,E)

Q: Find a Hamiltonian Cycle in G (a tour that goes through every node exactly once) of minimum cost

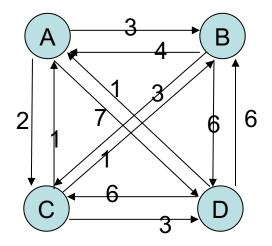
- Solution space: n!
 - Really impossible to do brute force (worse than 2ⁿ)
- Q: How can we find a good lower bound on the cost of the optimal tour?

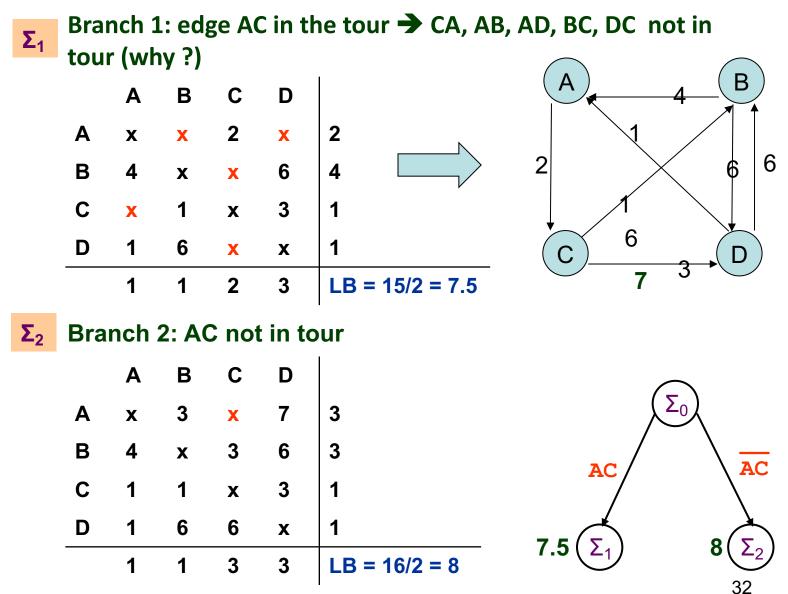
A lower bound on the optimal solution:

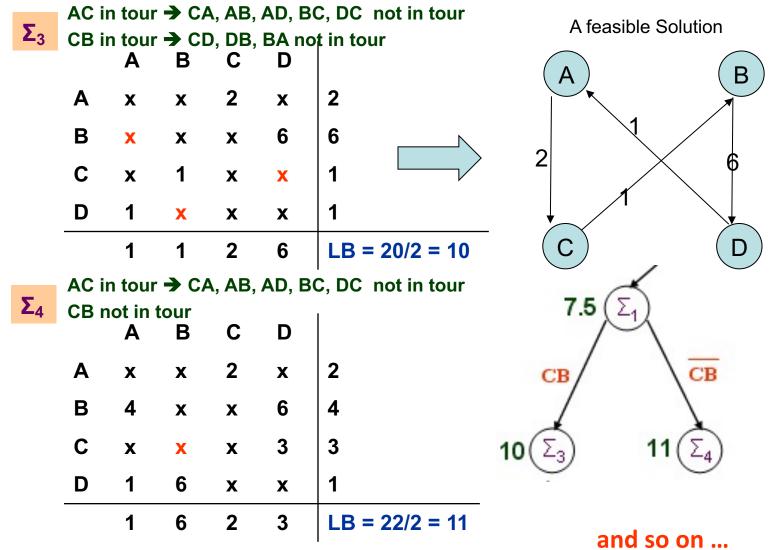
$$\frac{1}{2}\sum_{i=1}^{n} (\min_{j\neq i} \{w_{i,j}\} + \min_{j\neq i} \{w_{j,i}\})$$

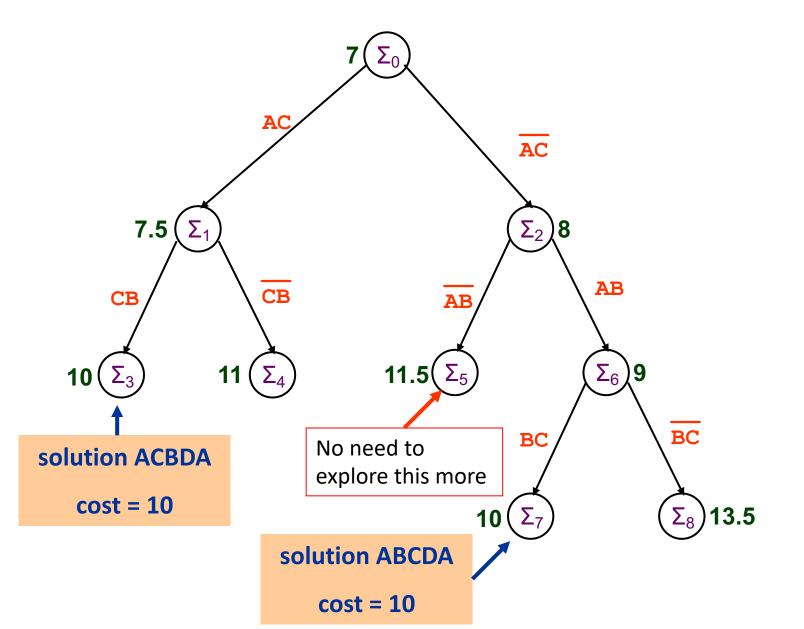
- the half of the sum of minimum elements of each row and each column
- For every node one edge of the tour has to come towards i and one has to leave from i

Σ ₀		Α	В	С	D 7 6 3	
	Α	X	3	2	7	2
	В	4	X	3	6	3
	С	1	1	X	3	1
	D	1	6	6	X	1
		1	1	2	3	LB = 14/2 = 7









Parameters

- Maintain a set S of active states
- Initially $S = {\Sigma_0}$ (nothing has been expanded yet)
- In each step extract state Σ from S (Σ is the state to be expanded)
- UB is a global upper bound of the optimum solution
 - For minimization problems we initially set UB = $+\infty$
- $LB(\Sigma)$ is a lower bound on all solutions represented by state Σ (i.e. from all solutions that can arise after expanding Σ)
- − Whenever we reach a terminal node with $LB(Σ) \le UB$, then we can update our current UB
- During the process, we do not need to examine any further the nodes where their LB is higher than UB!

Algorithm Branch and Bound

```
\{ S = \{\Sigma_0\};
  UB = +\infty
   while S \neq \emptyset do
   { get a node \Sigma from S;
        //which node ? FIFO/LIFO/Best LB
        S := S - \{\Sigma\};
        for all possible "1-step" extensions \Sigma_i of \Sigma do
         {
              create \Sigma_{i} and find LB(\Sigma_{i});
                  if LB(\Sigma_{i}) \leq UB then
                           if \Sigma_i is terminal then
                               { UB:= LB(\Sigma_{i});
                                   optimum:= \Sigma_j }
                           else add \Sigma_i to S } }
                                                                        }
```

Branch and Bound for Integer Programming

- We can apply the same idea for integer programs
- Natural idea for branching: Take an integer variable and branch by setting it to either 0 or 1
- Several variants are used depending on how to choose
 - which subproblem to extract from the set of active states
 - which variable to branch on
- This has led to a wide range of very simple to very sophisticated implementations
- One of the most successful methods for solving optimally an integer program in practice
 - Very good average-case behavior

Branch and Bound for Integer Programming

Applying Branch and Bound to an integer program

- Bounding: For each subproblem we again need a bound on the optimal solution
 - How can we estimate such a bound?
 - Resort to linear programming: If we set all the remaining variables to be in [0, 1] instead of {0, 1}, the resulting problem is a LP

Definition: Consider an integer program IP where each variable $x_i \in \{0,1\}$. The LP that arises by replacing the integrality constraints with $0 \le x_i \le 1$ is called the LP relaxation of the IP

Theorem: Consider an integer program IP and its corresponding LP relaxation

- If IP is a maximization problem: OPT-LP ≥ OPT-IP
- If IP is a minimization problem: OPT-LP ≤ OPT-IP

Hence, we can use simplex during each iteration for the bounding step 38

We will apply the basic variant of the technique to a maximization integer program

- A company is considering to build one new factory in Athens or Thessaloniki or in both cities
- It is also considering building a new warehouse
- Constraints:
 - The warehouse should be built in a city where a factory is also built
 - At most 1 warehouse can be built
- Every possible location for either a factory or a warehouse needs some initial capital, but also brings in some expected profitability
- Upper bound on the available capital: 10 million \$

Decision	Expected Profit (million \$)	Capital required (million \$)
Factory in Athens	9	6
Factory in Thessaloniki	5	3
Warehouse in Athens	6	5
Warehouse in Thessaloniki	4	2

Modeling the problem as an integer program

- Variables: binary variables corresponding to the decisions
 - x_1 : for building a factory in Athens
 - x₂: for building a factory in Thessaloniki
 - x_3 : for building a warehouse in Athens
 - x₄: for building a warehouse in Thessaloniki

Constraints:

- •Upper bound on the capital
 - $6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$
- •At most one warehouse

$$- x_3 + x_4 \le 1$$

•Warehouse built in a city where a factory is also built

- $x_3 \le x_1$
- $x_4 \le x_2$

Objective function

- •Maximize profit
 - $9x_1 + 5x_2 + 6x_3 + 4x_4$

Integer program (subproblem Σ_0): Max Z = $9x_1 + 5x_2 + 6x_3 + 4x_4$ s.t. $6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$ $x_3 + x_4 \le 1$ $x_3 \le x_1$ $x_4 \le x_2$ $x_i \in \{0, 1\}, i=1,2,3,4$

Setting up branch and bound:

Solve the corresponding LP relaxation by replacing

$$x_i \in \{0, 1\} \quad \clubsuit \quad 0 \leq x_i \leq 1$$

- If we get an integer solution, we are done
- Otherwise, set initial Candidate
 Solution (i.e., the lower bound)
 to Z* = -∞

Integer program (subproblem Σ_0): Max Z = $9x_1 + 5x_2 + 6x_3 + 4x_4$ s.t. $6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$ $x_3 + x_4 \le 1$ $x_3 \le x_1$ $x_4 \le x_2$ $x_i \in \{0, 1\}, i=1,2,3,4$

Solving the LP:

- Optimal solution = (5/6, 1, 0, 1)
- Profit = 16.5
- Hence, we have an upper bound on $Σ_0$, denoted as UB($Σ_0$)
 - any integer solution will yield a profit of ≤ 16.5
- In fact, UB(Σ₀) = 16, since all coefficients are integers

Iteration 1:

•Branching: There are many choices as to which variable to use for branching

- Here we will just prioritize according to the index of the variable

- First branching: $x_1 = 0$ (subproblem Σ_1) and $x_1 = 1$ (subproblem Σ_2)

- After substitution, we have 2 new subproblems

Max Z = $5x_2 + 6x_3 + 4x_4$	$Max Z = 9 + 5x_2 + 6x_3 + 4x_4$
s.t.	s.t.
$3x_2 + 5x_3 + 2x_4 \le 10$	$3x_2 + 5x_3 + 2x_4 \le 4$
$x_3 + x_4 \le 1$	$x_3 + x_4 \le 1$
x ₃ ≤ 0	$x_3 \leq 1$
$x_4 \leq x_2$	$x_4 \leq x_2$
$x_i \in \{0, 1\}, i = 2, 3, 4$	$x_i \in \{0, 1\}, i = 2, 3, 4$

44

Iteration 1:

•Bounding: Need an upper bound on the optimal solution of

- Σ_1 and Σ_2
 - Most standard approach: Simply solve the LP relaxation of each subproblem
 - Other types of relaxations can also be used in more involved implementations

Solution to LP relaxation of Σ_1 : (x₁, x₂, x₃, x₄) = (0, 1, 0, 1) With UB(Σ_1) = 9 Solution to LP relaxation of Σ_2 : (x₁, x₂, x₃, x₄) = (1, 4/5, 0, 4/5) With UB(Σ_2) = 16

Iteration 1:

•Final step: Check if we can dismiss any of the subproblems we have created

- Also referred to as "fathoming"
- We check also if we can update Z* (candidate optimal solution)

Look again at the LP relaxation of Σ_1 :

 $\bullet(\mathsf{x}_1,\,\mathsf{x}_2,\,\mathsf{x}_3,\,\mathsf{x}_4)=(0,\,1,\,0,\,1)$

•This is an integer solution!

•Hence we can stop this branch here, no need to explore further

•This is the optimal solution to $\boldsymbol{\Sigma}_1$ itself

•Since 9 > - ∞, update Z* := 9

LP relaxation of Σ_2 :

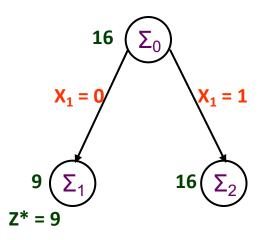
- $\bullet(\mathsf{x}_1,\,\mathsf{x}_2,\,\mathsf{x}_3,\,\mathsf{x}_4)=(1,\,4/5,\,0,\,4/5)$
- Non-integer solution

•16 > Z*

- •Hence, we cannot stop here
- •Need to branch further here

Iteration 1:

• Summary: We can depict what we have done so far with the branching tree



When can we dismiss a node of the tree from further consideration?

- 1. When the solution of the LP relaxation is integer
 - As in Iteration 1
- 2. When the LP relaxation is infeasible
 - If the relaxation does not have a solution, there is no solution for the subproblem itself

3.When the LP relaxation results in an upper bound that is worse (i.e., less or equal) than Z*

In our case, if after iteration 1, we run into a subproblem Σ_i where UB(Σ_i) ≤ 9, then we do not need to examine it more

Summarizing Branch and Bound for IP maximization problems

Initialization: Set $Z^* = -\infty$, check if the LP relaxation has an integer solution or if it is infeasible

In each iteration:

1.Branching: Among the remaining subproblems, pick the one created most recently

Break ties according to the largest upper bound

2.Bounding: Solve the LP relaxation to find an upper bound for each new subproblem

3.Checking for dismissals: For each new subproblem, check if any of the 3 criteria apply

Iteration 2:

We continue from Σ_2

•Branching: We branch on whether $x_2 = 0$ or $x_2 = 1$

Subproblem Σ_4 ($x_1 = 1, x_2 = 1$) Max Z = 14 + 6 x_3 + 4 x_4 s.t. $5x_3 + 2x_4 \le 1$ $x_3 + x_4 \le 1$ $x_3 \le 1$ $x_4 \le 1$ $x_i \in \{0, 1\}, i = 3, 4$

Iteration 2:

•Bounding: solve the LP relaxations of Σ_3 and Σ_4

Solution to LP relaxation of Σ_3 : (x₁, x₂, x₃, x₄) = (1, 0, 4/5, 0) Optimal solution: 13.8 Hence, UB(Σ_3) = 13 Solution to LP relaxation of Σ_4 : (x_1 , x_2 , x_3 , x_4) = (1, 1, 0, 1/2) Optimal solution: 16 Hence, UB(Σ_4) = 16

• Checking for dismissals (recall that Z* = 9):

None of the criteria apply to Σ_3 or Σ_4 We cannot dismiss any of them at the moment

Iteration 3:

- $\bullet \Sigma_3$ and Σ_4 were created during the same iteration
- \bullet We pick to continue from $\Sigma_4,$ which has the largest upper bound
- •Branching: We branch on whether $x_3 = 0$ or $x_3 = 1$

Subproblem Σ ₅	Subproblem Σ ₆
$(x_1 = 1, x_2 = 1, x_3 = 0)$	$(x_1 = 1, x_2 = 1, x_3 = 1)$
Max Z = $14 + 4x_4$	Max Z = $20 + 4x_4$
s.t.	s.t.
$2x_4 \leq 1$	$2x_4 \leq -4$
$x_4 \leq 1$ (twice)	$x_4 \leq 0$
$x_4 \in \{0, 1\}$	$x_4 \leq 1$
	x₄ ∈ {0, 1}

Iteration 3:

•Bounding: solve the LP relaxations of Σ_5 and Σ_6

Solution to LP relaxation of Σ_5 : (x_1, x_2, x_3, x_4) = (1, 1, 0, 1/2) Optimal solution: 16 Hence, UB(Σ_5) = 16 LP relaxation of Σ_6 : Infeasible, first constraint cannot be satisfied

- Checking for dismissals:
 - None of the criteria apply to Σ_5
 - $-\Sigma_6$ can be dismissed

Iteration 4:

- •We have to pick among Σ_3 and Σ_5
- •We pick Σ_5 as it was created more recently
- •Branching: We branch on whether $x_4 = 0$ or $x_4 = 1$
- •Since this is the last variable, we can immediately read the solution

Subproblem Σ_7 : (x₁ = 1, x₂ = 1, x₃ = 0, x₄ = 0) •Feasible with Z = 14

Subproblem Σ_8 : (x₁ = 1, x₂ = 1, x₃ = 0, x₄ = 1) •Infeasible

Iteration 4:

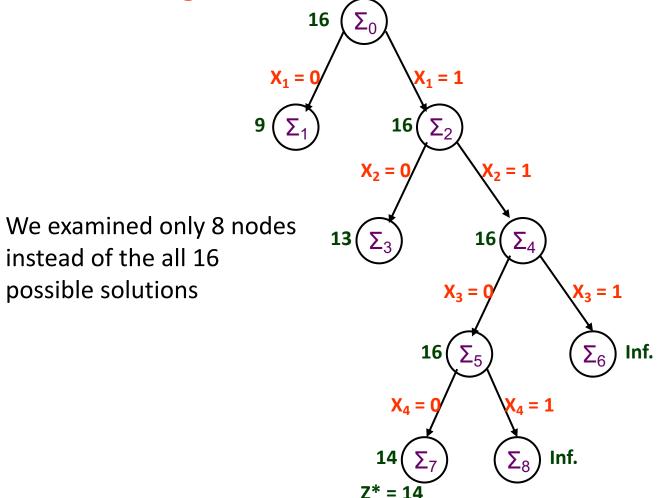
- Checking for dismissals:
 - First we update $Z^* = 14$ from Σ_7
 - Σ_8 is dismissed
 - We can also dismiss Σ_3 , because now UB(Σ_3)=13 < Z*

Conclusion:

Optimal solution: $x_1 = 1$, $x_2 = 1$, $x_3 = 0$, $x_4 = 0$

• Optimal profit = 14

Final branching tree:



Variants and Extensions

The technique can admit numerous refinements

- Branching
 - Most popular rule is to pick the most recently created subproblem
 - Efficient because the new LP relaxation is solved by reoptimizing the previous one (small changes only)
 - Next most popular rule: Pick the subproblem with the largest upper bound
 - Branching variable: most sophisticated algorithms select the variable that is expected to produce more early dismissals
 - A popular choice: select the variable which is furthest away from being an integer in the solution of the current LP relaxation

Variants and Extensions

The technique can admit numerous refinements

- Bounding
 - The most standard way is by solving the LP relaxation
 - But any other way of "relaxing" the problem can also do
 - The Lagrangian relaxation can be used since it leads to unconstrained problems
 - Trade-off that we seek: the relaxation should be solvable relatively quickly and should also provide a relatively tight bound

Variants and Extensions

The technique can admit numerous refinements

- Finding all optimal solutions
 - The technique can be easily modified if we care to identify all optimal solutions
 - Simply need to change the way we perform dismissals and updates on Z*
- Mixed Integer Programming
 - Programs where only some variables are restricted to take integer values
 - Quite easy to adjust the technique for such cases too
 - If the integer variables are non-binary: create branches based on the possible range of the variable (e.g. $x_1 \le 4$, and $x_1 \ge 5$)

Branch and Cut

- An even more powerful technique
- Combines branch and bound with clever preprocessing tricks
- Main extra idea: Try to reduce ("cut") the feasible region of the LP relaxations without deleting any integer solution
- Can be used to solve problems with thousands of variables
- It scales well when the constraint matrix is sparse

Branch and Cut

Basic steps

Problem Preprocessing

- Fixing variables: identify variables that can be fixed to a single value (due to the constraints)
- Eliminate redundant constraints
- Tighten constraints
- Generation of cutting planes
 - Reduce the feasible region of an LP relaxation without eliminating the integer solutions
- •Clever branch and bound

Generating Cutting Planes

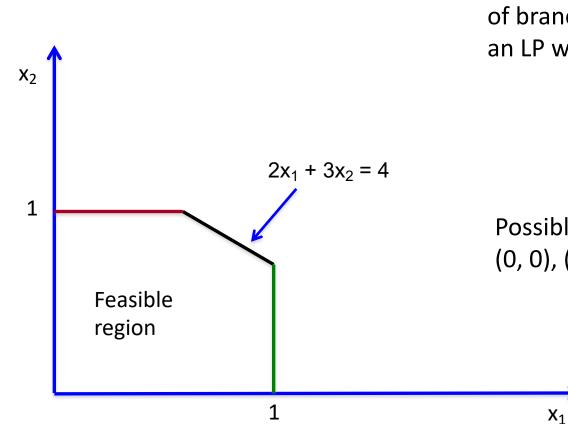


Illustration of cutting planes:

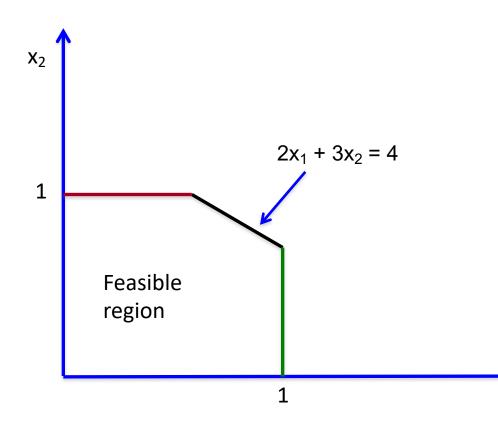
Suppose that in some iteration of branch and bound we have an LP with the constraints:

 $2x_1 + 3x_2 \le 4$ $0 \le x_1 \le 1$ $0 \le x_2 \le 1$

Possible integer solutions: (0, 0), (0, 1), (1, 0)

Generating Cutting Planes

Illustration of cutting planes:



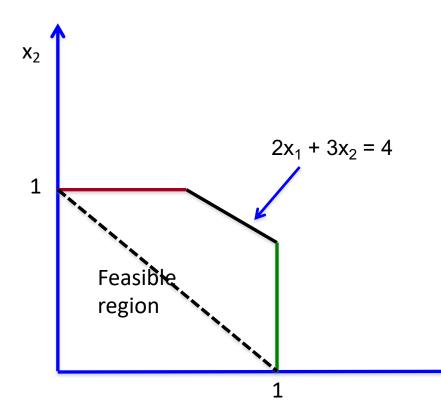
Change the LP constraints to: $x_1 + x_2 \le 1$ $0 \le x_1 \le 1$ $0 \le x_2 \le 1$

X₁

- We shrank the feasible region
- We have not eliminated any integer solutions
- The constraint x₁ + x₂ ≤ 1 is called a cutting plane

Generating Cutting Planes

Illustration of cutting planes:



- Change the LP constraints to: $x_1 + x_2 \le 1$ $0 \le x_1 \le 1$
- $0 \le x_2 \le 1$

X₁

- We shrank the feasible region
- We have not elminated any integer solutions
- The constraint x₁ + x₂ ≤ 1 is called a cutting plane