Maximum Flow and Minimum Cut

- •Max flow and min cut.
 - Two very rich algorithmic problems.
 - Cornerstone problems in combinatorial optimization.
 - Beautiful mathematical duality.
- Nontrivial applications / reductions.
 - Data mining.
 - Project selection.
 - Airline scheduling.
 - Bipartite matching.
 - Image segmentation.
 - Network connectivity.
 - Chemical Production

- Network reliability.
- Distributed computing.
- Security of statistical data.
- Many many more . . .

Flow network

- Abstraction for material flowing through the edges.
- G = (V, E) = directed graph, no parallel edges.
- Two distinguished nodes: s = source, t = sink.
- c(e) = capacity of edge e.

Cuts

•Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Cuts

•Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Minimum Cut Problem

•Min s-t cut problem. Find an s-t cut of minimum capacity.

Flows

•Def. An s-t flow is a function that satisfies:

• For each $e \in E$: • For each $v \in V - \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e) \quad \text{(conservation)}$ • Def. The value of a flow f is: $v(f) = \sum_{e \text{ out of } s} f(e) .$

Flows

• Def. An s-t flow is a function that satisfies:

• For each $e \in E$: • For each $v \in V - \{s, t\}$: $\begin{array}{ll}
0 \leq f(e) \leq c(e) & \text{(capacity)} \\
f(e) = \sum f(e) & f(e) & \text{(conservation)}
\end{array}$

e in to v

•Def. The value of a flow f is:

$$f'(f) = \sum_{e \text{ out of } s} f(e)$$

e out of v

Maximum Flow Problem

•Max flow problem. Find s-t flow of maximum value.

P1: Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount of flow leaving s.

P1: Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount of flow leaving s.

P1: Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount of flow leaving s.

P1: Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount of flow leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$$

Proof.

$$v(f) = \sum_{e \text{ out of } s} f(e)$$

By flow conservation, all terms except v = s are 0

$$= \sum_{v \in \mathcal{A}} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e).$$

P2: Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

P2: Let f be any flow. Then, for any s-t cut (A, B) we have $v(f) \le cap(A, B)$.

Certificate of Optimality

- Max flow is at most equal to the capacity of the min cut (i.e., max flow is a lower bound to min cut)
- Let f be any flow, and let (A, B) be any cut.
 - If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = Cut capacity = 28 \Rightarrow Max flow value = 28 = Min cut capacity

