ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

M.Sc. Program in Data Science Department of Informatics

Optimization Techniques Linear Programming – Duality theory

Instructor: G. ZOIS georzois@aueb.com

Outline

- Primal and Dual linear programs
 - Searching for upper bounds for the optimal solution
- The duality theorems
 - Weak and strong duality
- Complementary slackness optimality conditions
- Solving the dual using simplex
- Economic interpretation of dual variables
 - Sensitivity/post-optimality analysis

Finding lower bounds on the optimal solution

• Coming back to our illustrative example

max. $Z = 3x_1 + 5x_2$ s. t.: $x_1 \leq 4$ $2x_2 \leq 12$ $3x_1 + 2x_2 < 18$

 $x_1 \ge 0, \ x_2 \ge 0$

- Can we easily find a lower bound on the optimal solution?
- Q: Is the optimal solution at least 11?
 - Answer: yes because for example, x₁ = 2, x₂ = 1 is a feasible solution with a value of 11

 In the opposite direction: Suppose we care for upper bounds

max. $Z = 3x_1 + 5x_2$

s. t.:

- $x_1 \leq 4$ $2x_2 \leq 12$ $3x_1 + 2x_2 \leq 18$ $x_1 \geq 0, \ x_2 \geq 0$
- Can we certify that all feasible solutions are upper bounded by some value?
- How can someone convince us that $Z \le 50$?
- **Q**: Why should we care for upper bounds?
 - Recall it is a profit maximization problem, it could be useful to know in advance limitations on possible profit 4

max. $Z = 3x_1 + 5x_2$ s. t.:

x_1		≤ 4
	$2x_2$	≤ 12
$3x_1$	$+ 2x_2$	≤ 18
$x_1 \ge 0$,	$x_2 \ge 0$	

A first attempt:

- Multiply the first inequality by 3: $3x_1 \le 12$
- Multiply the second by 3: $6x_2 \le 36$
- •Add them up
- •Hence, for every feasible solution:

 $Z = 3x_1 + 5x_2 \le 3x_1 + 6x_2 \le 48$

max.
$$Z = 3x_1 + 5x_2$$

x_1			≤ 4
		$2x_2$	≤ 12
$3x_1$	+	$2x_2$	≤ 18
$x_1 \ge 0$,	x_2	≥ 0	

Even better:

- Multiply the second inequality by 2: $4x_2 \le 24$
- Multiply the third by 1: $3x_1 + 2x_2 \le 18$
- •Add them up

 $Z = 3x_1 + 5x_2 \le 3x_1 + 6x_2 \le 42$

•What is the best upper bound we can derive by such reasoning?

General strategy:

- We try to construct linear combinations of the constraints
- We will do it parametrically
- Let y_i = multiplier of the i-th constraint
- We will not use the nonnegativity constraints

```
Constraints:

(x_1 \le 4) y_1

(2x_2 \le 12) y_2

(3x_1 + 2x_2 \le 18) y_3

Add them up

(y_1 + 3y_3)x_1 + (2y_2 + 2y_3)x_2

\le

4y_1 + 12y_2 + 18y_3
```

What information can we get from: $(y_1 + 3y_3)x_1 + (2y_2 + 2y_3)x_2 \le 4y_1 + 12y_2 + 18y_3$ (*)

Observation 1: We need that all y_i's are nonnegative
Otherwise, the inequalities are reversed

Observation 2: In order for (*) to imply an upper bound for $Z(x) = 3x_1 + 5x_2$, we need that $3x_1 + 5x_2 \le (y_1 + 3y_3)x_1 + (2y_2 + 2y_3)x_2$

Hence we need to enforce that:

 $y_1 + 3y_3 \ge 3$ $2y_2 + 2y_3 \ge 5$

How can we get the best possible upper bound? By solving the minimization problem:

min W(y) = $4y_1 + 12y_2 + 18y_3$ s.t.

$$y_1 + 3y_3 \ge 3$$

 $2y_2 + 2y_3 \ge 5$
 $y_1, y_2, y_3 \ge 0$

- This is yet another linear program
- Referred to as the *"dual"* of the original linear program
- Original program also referred to as the "primal" program

For every primal linear program, we can construct a unique dual linear program

$\max Z(x) = 3x_1 + 5x_2$	min W(y) = $4y_1 + 12y_2 + 18y_3$
s.t.	s.t.
$x_1 \leq 4$	$y_1 + 3y_3 \ge 3$
$2x_2 \le 12$	$2y_2 + 2y_3 \ge 5$
$3x_1 + 2x_2 \le 18$	y ₁ , y ₂ , y ₃ ≥ 0
$x_1, x_2 \ge 0$	

- primal maximization LP \Rightarrow dual minimization LP
- Number of variables in the dual = number of constraints in the primal
- Number of constraints in the dual = number of variables in the primal

General form of primal and dual programs

Both the primal and the dual are defined on the same set of parameters Given:

•C₁, C₂, ..., C_n

•b₁, b₂, ..., b_m

•The constraint matrix A = (a_{ij}) with $1 \le i \le m, 1 \le j \le n$,

Primal program

maximize $Z(x) = c_1x_1 + c_2x_2 + \ldots + c_nx_n$ subject to:

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \le b_1$$

$$a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \le b_2$$

:

$$a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \le b_m$$

$$x_1 \ge 0, x_2 \ge 0, \ldots, x_n \ge 0$$

Dual program

minimize $W(y) = b_1y_1 + b_2y_2 + \ldots + b_my_m$ subject to:

$$a_{11}y_1 + a_{21}y_2 + \ldots + a_{m1}y_m \ge c_1$$

$$a_{12}y_1 + a_{22}y_2 + \ldots + a_{m2}y_m \ge c_2$$

$$\vdots$$

$$a_{1n}y_1 + a_{2n}y_2 + \ldots + a_{mn}y_m \ge c_n$$

$$y_1 \ge 0, y_2 \ge 0, \ldots, y_m \ge 0$$

More concisely:

Claim: The dual of the dual program is the primal program!

• i.e., following the same approach of multiplying the dual constraints with variables, you get exactly the primal!

Concise tabular format:

		X 1	X ₂	 x _n	Right side
Dual variables	y 1	a ₁₁	a ₁₂	a _{1n}	≤b ₁
	y ₂	a ₂₁	a ₂₂	a _{2n}	≤b ₂
	Уm	a _{m1}	a _{m2}	a _{mn}	≤ b _m
	Right side	≥ c ₁	≥ c ₂	 ≥ c _n	

Primal variables

- Primal program: Read constraints along the rows
- Dual program: Read constraints along the columns

Coming back to our example

Primal program	Dual program
max Z(x) = $3x_1 + 5x_2$	min W(y) = $4y_1 + 12y_2 + 18y_3$
s.t.	s.t.
$x_1 \leq 4$	$y_1 + 3y_3 \ge 3$
$2x_2 \le 12$	$2y_2 + 2y_3 \ge 5$
$3x_1 + 2x_2 \le 18$	y ₁ , y ₂ , y ₃ ≥ 0
$x_1, x_2 \ge 0$	

- Optimal solution to the primal: We have seen it is 36 ($x_1 = 2, x_2 = 6$)
- Optimal solution to the dual: It is also 36 $(y_1 = 0, y_2 = 3/2, y_3 = 1)$

Is this a coincidence?

Duality theorems

The Weak Duality Theorem:

Consider a primal linear program and its corresponding dual program such that both have feasible solutions

- •Let x be a feasible solution to the primal program with cost $Z(x) = c^T x$
- •Let y be a feasible solution to the dual program with cost $W(y) = b^T y$ Then $Z(x) \le W(y)$

Note: We were expecting that this should be the case

We constructed the dual as an attempt to find upper bounds on the optimal solution of the primal

Proof of weak duality:

•Since y is a feasible solution of the dual, we have: $c \le A^T \cdot y$

•Thus $c^T \cdot x \le (A^T \cdot y)^T \cdot x = (y^T \cdot A) \cdot x = y^T \cdot (A \cdot x) \le y^T \cdot b = b^T \cdot y = W(y)$

Duality theorems

In fact, we can have something stronger:

The Strong Duality Theorem:

For any pair of primal and dual linear programs,

- The primal program has an optimal solution if and only if the dual has an optimal solution
- If x* and y* are optimal solutions to the primal and dual respectively, then
 Z(x*) = W(y*) i.e. c^T · x* = b^T · y*

Proof by using the weak duality theorem and exploiting further properties of the 2 programs

Duality theorems

Example:

Primal program	Dual program
max Z(x) = $4x_1 + x_2 + 5x_3 + 3x_4$	min W(y) = $y_1 + 55y_2 + 3y_3$
s.t.	s.t.
$x_1 - x_2 - x_3 + 3x_4 \le 1$	$y_1 + 5y_2 - y_3 \ge 4$
$5x_1 + x_2 + 3x_3 + 8x_4 \le 55$	$-y_1 + y_2 + 2y_3 \ge 1$
$-x_1 + 2x_2 + 3x_3 - 5x_4 \le 3$	$-y_1 + 3y_2 + 3y_3 \ge 5$
$x_1, x_2, x_3, x_4 \ge 0$	$3y_1 + 8y_2 - 5y_3 \ge 3$
	$y_1, y_2, y_3 \ge 0$

Consider the feasible solutions: x = (0, 14, 0, 5) and y = (11, 0, 6)

- Z(x) = 29
- W(y) = 29
- The duality theorems directly imply that these are optimal solutions!

Derivation of the dual LP

Suppose we have a primal LP not in standard form

- How can we construct the dual then?
- We can always bring the LP to standard form
- But there is no need to
- Suppose we have a maximization problem with inequality and equality constraints
- We can apply almost the same procedure
 - One dual variable per constraint
 - For equality constraints \Rightarrow dual variable not needed to be nonnegative
 - For primal variables that are not constrained to be nonnegative ⇒ corresponding dual constraint must be an equality constraint
 - Objective function formed as before

Derivation of the dual LP

Example: Find the dual of the following LP

max Z(x) = $4x_1 + x_2 + 5x_3 + 3x_4$ s.t. $x_1 + 2x_2 - x_3 + 3x_4 \le 1$

 $5x_1 + x_2 + 4x_3 + 8x_4 = 20$ $2x_1 + 5x_2 + 2x_3 - 5x_4 \le 3$ $x_1, x_3 \ge 0$

Consequences of the duality theorems

The following are the only possible situations that can occur:

- If the primal has feasible solutions and the feasible region is bounded, then both the primal and the dual have an optimal solution with the same value for their objective function
- If the primal is unbounded, then the dual is infeasible
- If the primal is infeasible, then
 - Either the dual is infeasible as well
 - Or the dual is unbounded

Consequences of the duality theorems

 ∞

Consequences of the duality theorems

Example: Consider the following primal LP

Primal program max Z(x) = $x_1 + 2x_2$ s.t. $x_1 + x_2 = 1$ $2x_1 + 2x_2 = 3$

Is the dual infeasible or unbounded?

- We can relate even further the optimal solutions of the 2 programs
- Note that every primal variable corresponds to a constraint in the dual
- Every dual variable corresponds to a constraint in the primal
- Consider a constraint of the primal, e.g. $3x_1 + 2x_2 \le 18$
- Given a feasible solution, we say that a constraint is *tight* or *binding* if it is satisfied with equality
- Recall that at a corner point optimal solution we will have some tight constraints (by the definition of corner point solutions)
- Can we tell which constraints will be tight?
- The complementary slackness conditions relate the tightness of a constraint with the value of the corresponding dual variable

• Back to our example:

 $\begin{array}{ll} \max Z(x) = 3x_1 + 5x_2 & \min W(y) = 4y_1 + 12y_2 + 18y_3 \\ \text{s.t.} & \text{s.t.} \\ x_1 \leq 4 & y_1 + 3y_3 \geq 3 \\ 2x_2 \leq 12 & 2y_2 + 2y_3 \geq 5 \\ 3x_1 + 2x_2 \leq 18 & y_1, y_2, y_3 \geq 0 \\ x_1, x_2 \geq 0 \end{array}$

- Primal optimal: $x_1 = 2$, $x_2 = 6$, Dual optimal: $y_1 = 0$, $y_2 = 3/2$, $y_3 = 1$ Observation on the primal constraints:
- $x_1 \le 4$: loose, dual variable: $y_1 = 0$
- $2x_2 \le 12$: tight, dual variable: $y_2 > 0$
- $3x_1 + 2x_2 \le 18$: tight, dual variable: $y_3 > 0$

Theorem:

•Let x be a feasible solution of a primal program

$$\max \{ Z(x) = c^{\mathsf{T}} \cdot x \mid A \cdot x \leq b, x \geq 0 \}$$

•Let y be a feasible solution of the corresponding dual program

min { W(y) =
$$b^{\mathsf{T}} \cdot y \mid A^{\mathsf{T}} \cdot y \geq c, y \geq 0$$
 }

•Let A_i := i-th row of A, and A^j := j-th column, for i=1,...,m, j=1,...,n

Then x and y are optimal solutions to the primal and the dual respectively if and only if

- For every j = 1, ..., n, either $x_j = 0$ or $(A^j)^T \cdot y = c_j$ i.e., $x_j \cdot (c_j (Aj)^T \cdot y) = 0$
- For every i = 1,...,m, either $y_i = 0$ or $A_i \cdot x = b_i$ i.e., $y_i \cdot (b_i A_i \cdot x) = 0$

Interpretation: For feasible solutions x, y to be optimal for primal and dual
If a primal constraint is not tight, the corresponding dual variable should be set to 0

 \bullet If a dual constraint is not tight, the corresponding primal variable should be set to 0 25

One more way to look at it:

- Recall that in the augmented form of the primal program, we added m slack variables
- For i = 1, ..., m, $x_{n+i} = b_i A_i \cdot x$
- We can also define slack variables in the dual program
- For j = 1,..., n, $y_{m+j} = c_j A^j \cdot y$

The complementary slackness conditions can be written as:

- For every $j = 1,...,n, x_j \cdot y_{m+j} = 0$
- For every $i = 1,...,m, y_i \cdot x_{n+i} = 0$

Complementarity refers to the fact that in the augmented form,

either one variable of the primal or a corresponding dual variable has to be 0

Example of using the complementary slackness conditions

Primal programDual program $\max Z(x) = 4x_1 + x_2 + 5x_3 + 3x_4$ $\min W(y) = y_1 + 55y_2 + 3y_3$ s.t. $x_1 - x_2 - x_3 + 3x_4 \le 1$ $y_1 + 5y_2 - y_3 \ge 4$ $5x_1 + x_2 + 3x_3 + 8x_4 \le 55$ $-y_1 + y_2 + 2y_3 \ge 1$ $-x_1 + 2x_2 + 3x_3 - 5x_4 \le 3$ $-y_1 + 3y_2 + 3y_3 \ge 5$ $x_1, x_2, x_3, x_4 \ge 0$ $3y_1 + 8y_2 - 5y_3 \ge 3$ $y_1, y_2, y_3 \ge 0$

- Suppose we solve first the dual and find: y = (11, 0, 6)
- Checking the dual constraints, and by complementary slackness we know that x₁ = 0, x₃ = 0
- Also since $y_1 > 0$, $y_3 > 0$, first and third primal constraints are tight
- Hence solving a system of 2 equations, we get x = (0, 14, 0, 5)

Can we solve the dual simultaneously with the primal?

- YES! The simplex algorithm solves both
- It suffices to look at the tableau form of simplex
- All the necessary information is located on row (0) of the tableau

A more detailed look at simplex:

- During all iterations, simplex maintains a primal feasible solution along with a candidate dual solution
- In all iterations before the last one, the candidate dual solution is infeasible and the primal is non-optimal
- In the last iteration, simplex finds both a primal feasible and a dual feasible with the same objective value, hence both are optimal

Recall Iteration 0 in our illustrative example

Pacie		Coefficients					Right
Dasis	Z	x ₁	X ₂	X 3	X 4	X 5	side
Z	1	-3	-5	0	0	0	0
X ₃	0	1	0	1	0	0	4
x ₄	0	0	2	0	1	0	12
X 5	0	3	2	0	0	1	18

• Candidate dual solution: coefficients of the slack variables in row (0)

- Here: $y_1 = 0$, $y_2 = 0$, $y_3 = 0$
- Coefficient of the original primal variables x₁, x₂: indicate the slack in the dual constraints
 - Negative sign: dual constraints are violated
 - Indeed the solution $y_1 = 0$, $y_2 = 0$, $y_3 = 0$ violates all the constraints of the dual

Tableau at the end of Iteration 1

Pasia		Coefficients					Right
DdSIS	Z	X ₁	x ₂	X ₃	x ₄	X 5	side
Z	1	-3	0	0	5/2	0	30
Х ₃	0	1	0	1	0	0	4
X ₂	0	0	1	0	1/2	0	6
X 5	0	3	0	0	-1	1	6

• Candidate dual solution: $y_1 = 0$, $y_2 = 5/2$, $y_3 = 0$

- Coefficient of x₁ negative: indicates that the first dual constraint is violated
 - Indeed the current dual solution is infeasible, violating that $y_1 + 3y_3 \ge 3$

In general: look at row (0) in any iteration:

Decie	Coefficients						Right
Basis	Z	x ₁	x ₂	X ₃	x ₄	X 5	side
Z	1	$z_1 - C_1$	$z_2 - c_2$	Y ₁	Y ₂	y ₃	W

Interpretation:

- •Initial iteration: coefficients of x_1 and x_2 : $-c_1$ and $-c_2$ respectively
- $\bullet z_1$ and z_2 : values added to the initial coefficients while running simplex
- But recall that c_1 and c_2 are also the right hand sides in the dual constraints
- • $z_1 c_1$: surplus variable for the first dual constraint
- •What does simplex try to achieve? Nonnegative coefficients in all of row (0)
- •In such a case: dual constraints satisfied, and dual variables nonnegative

 $\bullet \Rightarrow$ dual feasible solution with same value as primal feasible \Rightarrow optimal solutions for both

Tableau at the end of Iteration 2

Pasia		Coefficients					Right
Dasis	Z	x ₁	x ₂	X ₃	X ₄	X 5	side
Z	1	0	0	0	3/2	1	36
X ₃	0	0	1	1	1/3	-1/3	2
x ₂	0	0	1	0	1/2	0	6
x ₁	0	1	0	0	-1/3	1/3	2

- Candidate dual solution: $y_1 = 0$, $y_2 = 3/2$, $y_3 = 1$
- All coefficients in row (0) nonnegative
- We can conclude that we have both a primal and a dual optimal solution
- Primal solution: $x_1 = 2$, $x_2 = 6$ read from right sides of last 2 rows

Advantages of using simplex for the dual?

- Suppose we have a LP with many constraints but few variables
- Dual of such an LP: many variables and few constraints
- We have seen that the complexity of simplex in practice seems to be proportional to the number of constraints
- Hence: it can be more beneficial in such cases to treat the dual as the linear program we want to solve

Let us recall how we formulated our illustrative example

- A manufacturing company selling glass and aluminum products is trying to invest in launching 2 new products
- The company has 3 plants
 - Plant 1: for processing aluminum
 - Plant 2: for processing glass
 - Plant 3: for assembling and finalizing products
- Product 1 requires processing in Plant 1 and Plant 3
- Product 2 requires processing in Plant 2 and Plant 3
- Since the company processes other products as well, there are constraints on the amount of time available in each plant.

As a result:

max $Z(x) = 3x_1 + 5x_2$ s.t. $x_1 \le 4$ $2x_2 \le 12$ $3x_1 + 2x_2 \le 18$ $x_1, x_2 \ge 0$

- Variables: they express level of output for each product
- Coefficients in objective function: profit per unit of each product
- Right hand side parameters: the constraint for each available resource
- For this example: Resources \Leftrightarrow Plants

In general, consider a LP in standard form

 $\label{eq:relation} \begin{array}{l} \max Z(x) = c_1 x_1 + c_2 x_2 + ... + c_n x_n \\ \text{s.t.} \\ A_i \, x \ \leq b_i, \ \text{for } i = 1, ..., \ m \\ x_i \geq 0, \ \text{for } i = 1, ..., \ n \end{array}$

Such problems typically arise by applications where:

- We have n products, m resources
- Variable x_i: expresses level of output of product j
- Coefficient c_i: profit per unit of product j
- Parameter a_{ij} from matrix A: how many units of resource i are needed per unit of product j
- Parameter b_i: Upper bound on the available amount of resource i

In general, consider a LP in standard form

 $\label{eq:result} \begin{array}{l} \max Z(x) = c_1 x_1 + c_2 x_2 + ... + c_n x_n \\ \text{s.t.} \\ A_i \, x \ \leq b_i, \ \text{for } i = 1, ..., \ m \\ x_i \geq 0, \ \text{for } i = 1, ..., \ n \end{array}$

Objective of the dual: $b_1y_1 + b_2y_2 + ... + b_my_m$

- Optimal dual solution has same value as the optimal profit
- Interpretation of dual variable y_i: contribution per unit of resource i to the total profit
- Hence, we can evaluate the effect on the profit by having b_i units of resource i available
- More importantly: we can estimate the change on the profit if we increase the availability of resource i by 1 unit

• Back to our example:

 $\begin{array}{ll} \max Z(x) = 3x_1 + 5x_2 & \min W(y) = 4y_1 + 12y_2 + 18y_3 \\ \text{s.t.} & \text{s.t.} \\ x_1 \leq 4 & y_1 + 3y_3 \geq 3 \\ 2x_2 \leq 12 & 2y_2 + 2y_3 \geq 5 \\ 3x_1 + 2x_2 \leq 18 & y_1, y_2, y_3 \geq 0 \\ x_1, x_2 \geq 0 \end{array}$

- Optimal dual solution: $y_1 = 0, y_2 = 3/2, y_3 = 1$
- Why is $y_1 = 0$?
- By complementary slackness, because the constraint $x_1 \le 4$ is loose at the primal optimal $(x_1 = 2)$
- Even if we increase availability in Plant 1, we will not get a better solution!
 - Hence no need to consider changing the current usage of Plant 1 ³⁸

Sensitivity analysis (or post-optimality analysis):

- Checking how solutions change as we vary the input parameters
- Very useful in operations research
 - Data may only represent estimates of the real parameters
 - We may also want to see if it is worth increasing the availability of some resources
- Do we need to solve the new LP from the beginning if we change e.g., the availability of a resource?
- It turns out we can save significantly in re-computing optimal solutions

Sensitivity analysis (or post-optimality analysis):

Theorem:

- •Consider a LP in the form
- $\max \{ Z(x) = c^{\mathsf{T}} \cdot x \mid A \cdot x \leq b, x \geq 0 \}$

•Let Z* be the value of the optimal solution and $y_1, y_2, ..., y_m$ be an optimal dual solution

•Consider now a "perturbed" LP with each t_i "relatively small"

```
max Z(x)
s.t.
A_i \cdot x \le b_i + t_i, \text{ for } i = 1,..., m
x \ge 0
```

- Then, new optimal = $Z^* + y_1t_1 + y_2t_2 + ... + y_mt_m$
- No need to re-solve the new LP

Further applications of Duality theory

Indicatively:

- Nonlinear programming: The duality framework can be generalized to convex programs or other forms of optimization problems
- Economic modeling and analysis
 - Computation of economic equilibria or pricing can be facilitated by the duality framework
- Design and analysis of algorithms, especially approximation algorithms for NP-hard problems
 - E.g., Primal-dual methods, LP-rounding methods
 - We will see some of these in later lectures

Further applications of Duality theory

Game theory: Computing Nash equilibria in zero-sum games

- One of the first applications of duality
- Initial proof for existence of equilibria by von Neumann did not yield an algorithm
- See Chapter 15 in [Hillier-Lieberman]