OIKONOMIKO MANEMIETHMIO AOHN』N

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

M.Sc. Program in Data Science Department of Informatics

Optimization Techniques

Linear Programming - The Simplex
Method

The Simplex Method

- Designed by Dantzig (1947)
- One of the most important algorithms of the $20^{\text {th }}$ century
- An algorithm that behaves extremely well in practice despite its exponential complexity in worst case
- The design of the algorithm and the quest for better algorithms also contributed to building a rich theory around linear programming

Polyhedra

- Simplex is trying to optimize a linear function over a polyhedron
- Definition: In R^{n}, a polyhedron is defined by a set of linear inequalities on n variables

$$
P=\{x: A x \leq b\}
$$

- Where $x \in R^{n}, b \in R^{m}$, and A is an mxn matrix
- We will usually consider polyhedra in the form

$$
P=\{x: A x \leq b, x \geq 0\}
$$

- A polyhedron is
- Infeasible, if its feasible region is empty
- Bounded, if there exists M, such that for every x in the feasible region, $\|\mathrm{x}\|_{2} \leq \mathrm{M}$
- Unbounded, if it is not bounded

A Geometric Interpretation

- Simplex is an algebraic procedure
- However, it is important to understand its geometric motivation
- Assume the polyhedron is non-empty and bounded
- Then, an optimal solution always exists for any linear objective function
- A bounded polyhedron is also called polytope
- To illustrate the geometry of simplex, we will use Example 2 from Lecture 1 as a representative example in 2 dimensions

A Geometric Interpretation

Example 2: A polytope in R^{2}

- Constraint boundaries: correspond to the 5 sides of the polygon
- Corner point feasible (CPF) solutions: points at the intersection of constraint boundaries

A Geometric Interpretation

Example 2: A polytope in R^{2}

- Each corner point solution lies at the intersection of 2 constraint boundaries
- In 2 dimensions: how do we find each CPF solution?
- System of 2 equations in 2 variables

A Geometric Interpretation

Generalization to n dimensions:
In a polyhedron with n variables,
-a CPF solution is the intersection of n constraint boundaries

- How do we identify them?
- system of n equations in n variables
- Attention: make sure we have first removed "redundant" constraints
- i.e., constraints that can be implied by linear combinations of the others (otherwise the system will not have a unique solution)
- each group of n linearly independent constraints of the polyhedron yields a distinct CPF solution
-Two CPF solutions are adjacent if they share n -1 constraint boundaries

A Geometric Interpretation

Why are we interested in the notion of adjacent solutions?

Optimality test for linear programs:

Consider a LP with at least one optimal solution. If a CPF solution has no adjacent CPF solutions that are better, according to the objective function, then it must be an optimal solution.

- Hence, local optimality \Rightarrow global optimality
- Extremely important property
- Also generalizes to continuous, convex functions (to be discussed in next lectures)
- In our example: $(2,6)$ is an optimal solution
- $(2,6)$ is adjacent to $(0,6)$ and $(4,3)$
- None of these achieve a better value for the objective function

A Geometric Interpretation

Outline of the simplex method from a geometric viewpoint

- Initialization: Choose an initial CPF solution
- Usually we set all variables to 0
- Main iteration loop:
- Apply the optimality test to the current CPF solution
- If it is optimal stop,
- else move to an adjacent solution that achieves the highest rate of increase in the objective function

A Geometric Interpretation

Solving Example 2 with the simplex method

- Initialization:
- we choose $(0,0)$ as the initial CPF solution
- Optimality test: $(0,0)$ is not an optimal solution, there are better adjacent solutions

A Geometric Interpretation

Solving Example 2 with the simplex method

- Iteration 1:
- Move from $(0,0)$ to an adjacent solution
- How do we pick one?
- Choose the direction that increases the objective function at a faster rate
- Recall: $Z=3 x_{1}+5 x_{2}$
- Hence moving along the x_{2} axis is better, stopping at $(0,6)$
- Optimality test: $(0,6)$ is not optimal

A Geometric Interpretation

Solving Example 2 with the simplex method

- Iteration 2:
- Move from $(0,6)$ to a better adjacent solution
- Moving back is not making things better
- Hence, only choice to move to $(2,6)$
- Optimality test: $(2,6)$ is better than $(0,6)$ and $(4,3)$, therefore, it is an optimal solution

A Geometric Interpretation

Basic features of simplex

- It only examines CPF solutions
- It is guaranteed that there always exists an optimal CPF solution
- Initialization: Whenever feasible, take ($0,0, \ldots, 0$)
- Nonnegativity constraints satisfied
- What if the remaining constraints are violated? To be discussed again soon
- Picking the next CPF solution to visit:
- Looking only at adjacent solutions can be easily implemented
- The method only looks at the rate of increase in the objective function
- Greedy local choice: we choose the direction with the best increase and stop at the adjacent solution in that direction

From Geometry to Algebra

Q: How can we implement all these steps in an automated algebraic manner for any polyhedron with n variables?

- We can use the geometric viewpoint only up to $n=3$ variables
- For $n>3$, we need a translation into precise algebraic instructions

Setting up the simplex method

First step: Transform the standard form into a system of linear equations

- Conversion of inequality constraints into equalities by introducing slack variables
- For example: consider the inequality $x_{1} \leq 4$ of Example 2
- We can define the slack variable: $x_{3}=4-x_{1}$
- The constraint then is converted as:

$$
x_{1} \leq 4 \Rightarrow x_{1}+x_{3}=4
$$

- We can do this for all inequality constraints

Setting up the simplex method

Conversion of Example 2

- Need 3 slack variables: x_{3}, x_{4}, x_{5}

Original standard form
$\max . Z=3 x_{1}+5 x_{2}$
s. t.:

$$
\begin{aligned}
& \begin{aligned}
& x_{1} \leq 4 \\
& 2 x_{2} \leq 12 \quad \Rightarrow \\
& 3 x_{1}+2 x_{2} \leq 18 \\
& \geq 0, x_{2} \geq 0
\end{aligned} \\
& +x_{3} \quad=4 \\
& =12 \\
& 3 x_{1}+2 x_{2} \\
& +x_{5}=18 \\
& x_{i} \geq 0, i=1, \ldots, 5
\end{aligned}
$$

Augmented form
$\max . Z=3 x_{1}+5 x_{2}$
s. t.:

Algebraically, more convenient to work with the augmented form

Setting up the simplex method

Some terminology:

- Augmented solution: simply a solution for the original variables augmented by the slack variables
- For the feasible solution (3, 2), the augmented solution is $(3,2,1,8,5)$
- Basic Feasible (BF) solution: an augmented CPF solution
- $(0,6)$ is a CPF solution in the original problem
- $(0,6,4,0,6)$ is the corresponding BF solution
- From a BF solution, we can get back the CPF solution by simply omitting the slack variables
- Understanding how BF solutions look like:
- Example 2: 5 variables in total and 3 constraints
- Hence, 2 degrees of freedom
- If we set "arbitrary values" to 2 variables, then we can solve a linear system for the rest
- In simplex: "arbitrary value" $=0$

Setting up the simplex method

- For every BF solution:
- We separate the variables into basic and nonbasic variables
- Number of basic variables = $m=$ number of constraints (excluding the nonnegativity constraints)
- Number of nonbasic variables = n
- Nonbasic variables are set to 0
- Basic variables are then computed by solving the system of m linear equalities
- The set of basic variables is referred to as the "basis" of the BF solution
- In our example:
- $(0,0,4,12,18)$ is a BF solution
- Nonbasic variables: x_{1}, x_{2}, both set to 0
- Basis $=\left\{x_{3}, x_{4}, x_{5}\right\}$
- The values of the basis can be obtained by the constraints, after substituting $\mathrm{x}_{1}=\mathrm{x}_{2}=0$

Setting up the simplex method

- Checking adjacency of two BF solutions
- We could check if the corresponding CPF solutions are adjacent
- Easier way: Two BF solutions are adjacent if their bases differ only in one variable (which means that all but one of their nonbasic variables are also the same)
- Illustration:
- Adjacent CPF solutions: $(0,0)$ and $(0,6)$
- Corresponding BF solutions: $\mathrm{S}_{1}=(0,0,4,12,18)$ and $\mathrm{S}_{2}=(0,6,4,0,6)$
- In S_{1}, nonbasic variables $=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}\right\}$, basis $=\left\{\mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}\right\}$
- In S_{2}, nonbasic variables $=\left\{x_{1}, x_{4}\right\}$, basis $=\left\{x_{2}, x_{3}, x_{5}\right\}$
- Going from S_{1} to S_{2}, variable x_{2} switches from nonbasic to basic and variable x_{4} leaves the basis
- Hence: very simple way of moving from one adjacent solution to another

Setting up the simplex method

Final step before running simplex:

- It becomes convenient to also treat the objective function as another equality constraint

$$
\begin{aligned}
& \text { max. } Z \\
& \text { s. t.: } \\
& \qquad \begin{aligned}
& Z-3 x_{1}-5 x_{2} \\
& x_{1} \\
&=0 \\
& 2 x_{2} \\
& 3 x_{1}+2 x_{2} \\
& \\
& x_{i} \geq 0, \quad i=1, \ldots, 5
\end{aligned}
\end{aligned}
$$

- No need for a slack variable since we have equality to begin with
- We will not really treat Z as a new variable

Algebraic description of the simplex method

Initialization:

- We need to choose an initial BF solution
- In our example, setting $x_{1}=0$ and $x_{2}=0$ is feasible
- Augmented solution: $(0,0,4,12,18)$
- Hence, initial basis $=\left\{x_{3}, x_{4}, x_{5}\right\}$, nonbasic variables: x_{1}, x_{2}
- Optimality test:
- Initial value of the objective function: $Z=0$
- Recall $Z=3 x_{1}+5 x_{2}$, expressed as a function of the nonbasic variables
- Coefficient for each nonbasic variable: rate of improvement for Z, if that variable were to be increased.
- Here the rates of improvement are positive, which means the current BF solution is not optimal
- Hence: simple way to answer the optimality test

Algebraic description of the simplex method

Iteration 1:

- We need to determine the direction of movement towards an adjacent BF solution
- Coefficient of x_{2} in $Z>$ coefficient of x_{1}
- We pick x_{2} as the variable to increase
- Variable x_{2} will enter the basis (referred to as the entering basic variable)
- How much shall we increase x_{2} ?
- For as long as we do not violate the constraints!
(1) $x_{1}+x_{3}=4 \quad \Rightarrow x_{3}=4$
(2) $2 x_{2}+x_{4}=12 \quad \Rightarrow x_{4}=12-2 x_{2}$
(3) $3 x_{1}+2 x_{2}+x_{5}=18 \Rightarrow x_{5}=18-2 x_{2}$

And now use the nonnegativity constraints!

Algebraic description of the simplex method

Iteration 1:

(1) $x_{1}+x_{3}=4 \quad \Rightarrow x_{3}=4$
(2) $2 x_{2}+x_{4}=12 \quad \Rightarrow x_{4}=12-2 x_{2}$
(3) $3 x_{1}+2 x_{2}+x_{5}=18 \Rightarrow x_{5}=18-2 x_{2}$
$x_{3} \geq 0 \Rightarrow$ no upper bound on x_{2}
$x_{4} \geq 0 \Rightarrow 12-2 x_{2} \geq 0 \Rightarrow x_{2} \leq 6$
$x_{5} \geq 0 \Rightarrow 18-2 x_{2} \geq 0 \Rightarrow x_{2} \leq 9$

- We pick the minimum value implied by the upper bounds
- Increasing x_{2} beyond the value of 6 would result in an infeasible solution
- Hence, we stop at $x_{2}=6$

Algebraic description of the simplex method

Iteration 1:

- Can we arrive at $x_{2}=6$ with a more automated way?
- Minimum Ratio Test:
- For each constraint, divide the constant term by the coefficient of x_{2}
- The minimum such ratio tells us how much to increase x_{2}
(1) $x_{1}+x_{3}=4 \quad \Rightarrow$ ratio $=4 / 0=+\infty\left(0\right.$ coefficient of $\left.x_{2}\right)$
(2) $2 x_{2}+x_{4}=12 \quad \Rightarrow$ ratio $=12 / 2=6$
(3) $3 x_{1}+2 x_{2}+x_{5}=18 \Rightarrow$ ratio $=18 / 2=9$
- Setting $x_{2}=6$ makes variable x_{4} drop to 0
- x_{4} is called the leaving basic variable

Algebraic description of the simplex method

Iteration 1:

- Summarize what we have done so far:

	Initial BF solution	New BF solution
Nonbasic variables	$x_{1}=0, x_{2}=0$	$x_{1}=0, x_{4}=0$
Basis	$x_{3}=4, x_{4}=12, x_{5}=18$	$x_{2}=6, x_{3}=?, x_{5}=?$

- Final step of Iteration 1:
- Convert the system of equations according to the new basis
- Express the objective function in terms of the new nonbasic variables
- Compute the missing values in the new BF solution (for x_{3} and x_{5})

Algebraic description of the simplex method

Iteration 1:

Initial constraints
(0) $Z-3 x_{1}-5 x_{2}=0$
(1) $x_{1}+x_{3}=4$
(2) $2 x_{2}+x_{4}=12$
(3) $3 x_{1}+2 x_{2}+x_{5}=18$

- We need x_{2} to disappear from (0), (1) and (3)
- Start with row (2): row (2)/2 $\Rightarrow x_{2}+1 / 2 x_{4}=6$
- We can then
- multiply a row by a constant
- Add/subtract multiples of a row to/from another row
- For example: row (0) := row (0) + 5 • row (2)

Algebraic description of the simplex method

Iteration 1:

Final set of constraints at the end of the iteration
(0) $Z-3 x_{1}+5 / 2 x_{4}=30$
(1) $x_{1}+x_{3}=4$
(2) $x_{2}+1 / 2 x_{4}=6$
(3) $3 x_{1}-x_{4}+x_{5}=6$

- Procedure for obtaining the new form of the constraints: the Gauss-Jordan method
- Hence, assignment of values in the new BF solution:
- $x_{1}=0, x_{4}=0, x_{2}=6, x_{3}=4, x_{5}=6$
- Optimality test:
- $Z=30+3 x_{1}-5 / 2 x_{4}$, positive coefficient for $x_{1} \Rightarrow$ not optimal
- Hence, we need to move to an adjacent BF solution

Algebraic description of the simplex method

Iteration 2:

- Which variable should now enter the basis?
- Unique choice: Coefficient of x_{1} is the only positive coefficient in Z
- Variable x_{1} is now the new entering basic variable
- How much shall we increase x_{1} ?
- Apply the Minimum Ratio Test
- Set $x_{1}:=2$ due to equation (3)
- Which variable exits the basis?
- Again, from the Minimum Ratio Test, x_{5} will be the leaving variable
- New basis: $\left\{x_{1}, x_{2}, x_{3}\right\}$
- Nonbasic variables: $x_{4}=x_{5}=0$
- New BF solution: (2, 6, 2, 0, 0)

Algebraic description of the simplex method

Iteration 2:

Substituting using the Gauss-Jordan method:
(0) $Z+3 / 2 x_{4}+x_{5}=36$
(1) $x_{3}+1 / 3 x_{4}-1 / 3 x_{5}=2$
(2) $x_{2}+1 / 2 x_{4}=6$
(3) $x_{1}-1 / 3 x_{4}+1 / 3 x_{5}=2$

- Optimality test:
- $Z=36-3 / 2 x_{4}-x_{5}$
- There is no direction of improvement, increasing x_{4} or x_{5} will decrease the objective function
- Current BF solution is optimal
- Solution of the original linear program: $x_{1}=2, x_{2}=6$ and $Z=36$

Tabular form of the simplex method

- So far we have managed to transform our geometric intuition into an algebraic procedure
- Operations used pretty simple
- Nevertheless, we can make the process even more automatizable
- Simplex tableau: A tabular representation of the constraints and the current BF solution
- All we need to know: the basis and the coefficients in each row

Tabular form of the simplex method

Algebraic form vs tableau:

Let us revisit the initialization in our Example:
(0) $Z-3 x_{1}-5 x_{2}=0$
(1) $x_{1}+x_{3}=4$
(2) $2 x_{2}+x_{4}=12$
(3) $3 x_{1}+2 x_{2}+x_{5}=18$

Algebraic form

Corresponding tableau form

rows $=$ number of constraints + 1	Basis	Coefficients						Right side
		Z	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	
	Z	1	-3	-5	0	0	0	0
	x_{3}	0	1	0	1	0	0	4
	X4	0	0	2	0	1	0	12
	X_{5}	0	3	2	0	0	1	18

Tabular form of the simplex method

Basis	Coefficients						
	Z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	side
Z	1	-3	-5	0	0	0	0
x_{3}	0	1	0	1	0	0	4
x_{4}	0	0	2	0	1	0	12
x_{5}	0	3	2	0	0	1	18

- For notational convenience: treat Z also as a basic variable
- Optimality test in a tableau:
- We have reached an optimal solution when the coefficients in row (0) are all nonnegative

Tabular form of the simplex method

Basis	Coefficients								Right
side									

Iteration 1:

- Which variable should enter the basis?
- The nonbasic variable with the most negative coefficient in row (0), hence x_{2}
- Column of x_{2} : pivot column
- Minimum Ratio Test
- How do we run it?
- Information we need is the right side column and the column of x_{2}

Tabular form of the simplex method

Basis	Coefficients									Right
side										

Iteration 1:

- Outcome of the Minimum Ratio Test
- Minimum achieved at row of x_{4}
- Leaving variable: x_{4}, i.e., the basic variable corresponding to that row
- Row of x_{4} : the pivot row
- Intersection of pivot row and pivot column: pivot element (=2 in this iteration)

Tabular form of the simplex method

	Coefficients								Right
Basis	Z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	side		

Iteration 1:

- Final step: Gauss-Jordan method to get the new tableau
- Divide first the pivot row by the pivot element
- This makes the coefficient of x_{2} equal to 1 in the pivot row
- Then we can add/subtract appropriate multiples of the pivot row to the other rows (just as in the algebraic description of simplex)

Tabular form of the simplex method

| Basis | Z | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} | side |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Z | side | | | | | |

End of Iteration 1:

- Optimality test:
- There exists a negative coefficient in row (0)
- Hence, we need to go to the next iteration

Tabular form of the simplex method

Basis									Z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	Right side
	Z	1	-3	0	0	$5 / 2$	0								

Iteration 2:

- Which variable should enter the basis?
- Only variable x_{1} has a negative coefficient in row (0)
- Pivot column: The column of x_{1}
- Minimum Ratio Test
- Variable x_{5} is the leaving variable
- Pivot row: The row of x_{5}

Tabular form of the simplex method

Basis	Z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	Ride
	Z						
Z	1	0	0	0	$3 / 2$	1	36
x_{3}	0	0	0	1	$1 / 3$	$-1 / 3$	2

End of Iteration 2:

- Optimality test
- No negative coefficient in the row of Z
- Hence we stop at the current BF solution ($2,6,2,0,0$)
- Optimal solution to the original problem: $x_{1}=2, x_{2}=6$

Summary: Geometric, algebraic and tableau form

We have seen 3 different ways of thinking about the same algorithm

- Geometric view:
- This is how the algorithm was inspired
- Useful only for 2 or 3 dimensions
- Algebraic description
- More convenient for learning the logic of the algorithm esp. in higher dimensions
- Tableau form
- Equivalent to the algebraic form in terms of operations performed
- However, it organizes the data in a more compact form
- Allows for better automatization

Tie-breaking and other technical details

Some issues that may arise

- During the execution:
- Many choices for the entering variable
- Many choices for the leaving variable
- No leaving variable
- At initialization:
- Difficulty in finding an initial feasible solution to begin with
- At termination:
- Multiple optimal solutions

Tie-breaking and other technical details

- Many choices for the entering variable:
- No problem, make an arbitrary choice
- An optimal solution will be reached eventually
- Hard to know in advance which one is the best choice

Tie-breaking and other technical details

- Many choices for the leaving variable:
-This may cause problems
-All such variables will become 0 at the end of the iteration
-Hence, we will have some basic variables with a 0 value
-Such solutions are called degenerate
-They may not allow Z to increase in the next iteration
-The algorithm may get trapped in a loop where some variables enter and exit the basis repeatedly and Z gets stuck at the same value
-Bland's rule: If there are multiple candidate leaving variables, always
choose the variable with the smallest index
-Also: rarely been observed in practice, almost safe to ignore this

Tie-breaking and other technical details

- No leaving basic variable:

- This means that the entering variable can be increased indefinitely
- The increase does not yield any negative values to the current basic variables
- In the tableau form: all coefficients in pivot column are negative or 0 (except first row)
- Conclusion: The problem is unbounded, optimal solution is $+\infty$
- Maybe a mistake has occured in the initial formulation of the problem

Tie-breaking and other technical details

- Multiple optimal solutions:
- If there are multiple optimal solutions, there are at least 2 optimal CPF solutions
- Any convex combination of these CPF solutions is also an optimal solution
- In some problems we may only care to identify one optimal solution and stop
- If we care to find all optimal CPF solutions:
- Run more iterations of simplex after we found the first optimal solution
- Choose a nonbasic variable with zero coefficient in the row of Z as the entering variable
- There exists such a variable whenever there are multiple optimal solutions

Tie-breaking and other technical details

- Difficulty in finding an initial feasible solution:
- What if the all-0 solution is not feasible? How do we start simplex then?
- This can happen when some coefficients b_{i} are negative
- Strategy: Define an auxiliary problem so that
- It is easy to find an initial feasible solution in the auxiliary problem
- The optimal solution of the auxiliary can tell us whether there exists a feasible solution in our original problem
- 2-phase simplex method:
- First run simplex on the auxiliary problem
- See whether we can identify an initial basic feasible solution from the optimal solution of the auxiliary problem
- If yes, run simplex on our original problem

Tie-breaking and other technical details

- Difficulty in finding an initial feasible solution:
- There are various ways to define the auxiliary problem
- Illustration:

$$
\begin{array}{lll}
\max Z=c^{\top} x & \min 1^{\top} y \\
\text { s.t. } & \text { s.t. } \\
\Sigma_{j} a_{i j} x_{j} \leq b_{i} \\
x_{i} \geq 0, i=1, \ldots, n & & \Sigma_{j} a_{i j} x_{j}+y_{i}=b_{i}, i=1, \ldots n \\
x_{i} \geq 0, y_{i} \geq 0, i=1, \ldots, n
\end{array}
$$

- The auxiliary problem always has a feasible solution
- Set original variables to 0 , and y equal to b.
- The original problem has a feasible solution if and only if the optimal of the auxiliary is 0

Other variants in implementing Simplex

- The revised simplex method
- Based on exploiting fast matrix operations
- Each iteration requires solving 2 systems of linear equations
- But these are not solved from scratch
- Only small updates based on the solution from previous iteration
- The dual simplex method
- Applying simplex to the dual linear program
- But essentially working with the primal
- Useful tool for sensitivity analysis
- Many other variations have also been suggested over the years...

Complexity of Simplex

- Extremely well-behaved in practice
- Empirically, number of iterations in simplex looks proportional to number of constraints, e.g., usually no more than 3 m
- Can we have a good theoretical upper bound on the number of iterations?
- NO! There are examples that need an exponential (2^{n}) number of iterations, discovered first by [Klee, Minty '72]
- Despite that, it is still one of the preferred algorithms for solving linear programs!

Other Algorithms

-The ellipsoid method: The first polynomial time algorithm

- By [Kachiyan '79], however not well behaved in practice
- Interior point methods: also polynomial time algorithms
- First conceived by Karmarkar [1984]
- Main ideas:

Other Algorithms

Types of interior point methods

-Affine scaling algorithms

- One of the simplest interior point algorithms
- Based on approximating polyhedra by "ellipsoids"
- Optimizing over ellipsoids in each iteration
- Non-linear problems but solvable with closed form solutions
- Potential reduction algorithms
- Do not measure progress by the increase in the objective function
- Instead use a non-linear potential function
- Path following algorithms
- Transforms the initial problem into an unconstrained problem (or a problem with equality constraints)
- Incorporates the inequality constraints " $x_{i} \geq 0$ " into the objective function (logarithmic barrier function)
- Solves the resulting non-linear problem with Newton's method

Simplex vs Interior Point Algorithms

- Comparisons
- In theory: interior point methods are polynomial time algorithms (for any n and m), simplex may need exponential time
- In practice: average case complexity of simplex very low compared to worst case
- One iteration of interior point methods needs much more computation time than in simplex to decide the next feasible solution
- But: as the number of constraints increases, interior point methods do not need much more iterations
- Number of iterations in simplex may increase rapidly as we increase the number of variables and constraints
- Interior point methods go through the internal part of the polytope
- Adding more constraints reduces the feasible region, by adding more constraint boundaries
- Hence, for problems with many thousands of constraints, interior point methods seem to be the best hope

