ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

M.Sc. Program in Data Science Department of Informatics

Optimization Techniques Linear Programming – The Simplex Method

Instructor: G. ZOIS georzois@aueb.com

The Simplex Method

- Designed by Dantzig (1947)
 - One of the most important algorithms of the 20th century
 - An algorithm that behaves extremely well in practice despite its exponential complexity in worst case
 - The design of the algorithm and the quest for better algorithms also contributed to building a rich theory around linear programming

Polyhedra

- Simplex is trying to optimize a linear function over a polyhedron
- Definition: In Rⁿ, a polyhedron is defined by a set of linear inequalities on n variables

 $\mathsf{P} = \{ x : \mathsf{A}x \le b \}$

- Where $x \in R^n$, $b \in R^m$, and A is an mxn matrix

• We will usually consider polyhedra in the form

 $P = \{x: Ax \le b, x \ge 0 \}$

- A polyhedron is
 - Infeasible, if its feasible region is empty
 - Bounded, if there exists M, such that for every x in the feasible region, $||x||_2 \le M$
 - Unbounded, if it is not bounded

- Simplex is an algebraic procedure
- However, it is important to understand its geometric motivation
- Assume the polyhedron is non-empty and bounded
 - Then, an optimal solution always exists for any linear objective function
 - A bounded polyhedron is also called polytope
- To illustrate the geometry of simplex, we will use Example 2 from Lecture 1 as a representative example in 2 dimensions

Example 2: A polytope in R²

- Constraint boundaries: correspond to the 5 sides of the polygon
- Corner point feasible (CPF) solutions: points at the intersection of constraint boundaries
- Also called extreme point solutions or vertices of the polytope

Example 2: A polytope in R²

- Each corner point solution lies at the intersection of 2 constraint boundaries
- In 2 dimensions: how do we find each CPF solution?
 - System of 2 equations in 2 variables

- We say 2 corner point solutions are adjacent if they share 1 constraint boundary
- Here, (0, 0) and (0, 6) are adjacent,
- (0, 6) and (2, 6) are also adjacent

X₁

Generalization to n dimensions:

In a polyhedron with n variables,

•a CPF solution is the intersection of n constraint boundaries

•How do we identify them?

- system of n equations in n variables
- Attention: make sure we have first removed "redundant" constraints
- i.e., constraints that can be implied by linear combinations of the others (otherwise the system will not have a unique solution)
- each group of n linearly independent constraints of the polyhedron yields a distinct CPF solution
- •Two CPF solutions are adjacent if they share n-1 constraint boundaries

Why are we interested in the notion of adjacent solutions?

Optimality test for linear programs:

Consider a LP with at least one optimal solution. If a CPF solution has no adjacent CPF solutions that are better, according to the objective function, then it must be an optimal solution.

- Hence, local optimality \Rightarrow global optimality
- Extremely important property
 - Also generalizes to continuous, convex functions (to be discussed in next lectures)
- In our example: (2, 6) is an optimal solution
 - (2, 6) is adjacent to (0, 6) and (4, 3)
 - None of these achieve a better value for the objective function

Outline of the simplex method from a geometric viewpoint

- Initialization: Choose an initial CPF solution
 - Usually we set all variables to 0
- Main iteration loop:
 - Apply the optimality test to the current CPF solution
 - If it is optimal stop,
 - else move to an adjacent solution that achieves the highest rate of increase in the objective function

Solving Example 2 with the simplex method

- Initialization:
 - we choose (0, 0) as the initial CPF solution
 - Optimality test: (0, 0) is not an optimal solution, there are better adjacent solutions

Solving Example 2 with the simplex method

- Iteration 1:
 - Move from (0, 0) to an adjacent solution
 - How do we pick one?
 - Choose the direction that increases the objective function at a faster rate
 - Recall: $Z = 3x_1 + 5x_2$
 - Hence moving along the x₂ axis is better, stopping at (0, 6)
 - Optimality test: (0, 6) is not optimal

Solving Example 2 with the simplex method

- Iteration 2:
 - Move from (0, 6) to a better adjacent solution
 - Moving back is not making things better
 - Hence, only choice to move to
 (2, 6)
 - Optimality test: (2, 6) is better than (0, 6) and (4, 3), therefore, it is an optimal solution

Basic features of simplex

- It only examines CPF solutions
 - It is guaranteed that there always exists an optimal CPF solution
- Initialization: Whenever feasible, take (0, 0, ..., 0)
 - Nonnegativity constraints satisfied
 - What if the remaining constraints are violated? To be discussed again soon
- Picking the next CPF solution to visit:
 - Looking only at adjacent solutions can be easily implemented
 - The method only looks at the rate of increase in the objective function
 - Greedy local choice: we choose the direction with the best increase and stop at the adjacent solution in that direction

From Geometry to Algebra

Q: How can we implement all these steps in an automated algebraic manner for any polyhedron with n variables?

- We can use the geometric viewpoint only up to n=3 variables
- For n > 3, we need a translation into precise algebraic instructions

First step: Transform the standard form into a system of linear equations

- Conversion of inequality constraints into equalities by introducing *slack variables*
- For example: consider the inequality $x_1 \le 4$ of Example 2
- We can define the slack variable: $x_3 = 4 x_1$
- The constraint then is converted as:

$$x_1 \le 4 \implies x_1 + x_3 = 4$$

• We can do this for all inequality constraints

Conversion of Example 2

• Need 3 slack variables: x₃, x₄, x₅

 Original standard form
 Augmented form

 max. $Z = 3x_1 + 5x_2$ max. $Z = 3x_1 + 5x_2$

 s. t.:
 $x_1 \leq 4$
 $x_1 \leq 4$ $x_1 + x_3 = 4$
 $2x_2 \leq 12$ $x_1 + x_3 = 4$
 $3x_1 + 2x_2 \leq 18$ $3x_1 + 2x_2 + x_5 = 18$
 $x_1 \geq 0, x_2 \geq 0$ $x_i \geq 0, i = 1, ..., 5$

Algebraically, more convenient to work with the augmented form

Some terminology:

•Augmented solution: simply a solution for the original variables augmented by the slack variables

- For the feasible solution (3, 2), the augmented solution is (3, 2, 1, 8, 5)
- Basic Feasible (BF) solution: an augmented CPF solution
 - (0, 6) is a CPF solution in the original problem
 - (0, 6, 4, 0, 6) is the corresponding BF solution
 - From a BF solution, we can get back the CPF solution by simply omitting the slack variables
- •Understanding how BF solutions look like:
 - Example 2: 5 variables in total and 3 constraints
 - Hence, 2 degrees of freedom
 - If we set "arbitrary values" to 2 variables, then we can solve a linear system for the rest
 - In simplex: "arbitrary value" = 0

- For every BF solution:
 - We separate the variables into **basic** and **nonbasic** variables
 - Number of basic variables = m = number of constraints (excluding the nonnegativity constraints)
 - Number of nonbasic variables = n
 - Nonbasic variables are set to 0
 - Basic variables are then computed by solving the system of m linear equalities
 - The set of basic variables is referred to as the "basis" of the BF solution
- In our example:
 - (0, 0, 4, 12, 18) is a BF solution
 - Nonbasic variables: x_1 , x_2 , both set to 0
 - Basis = $\{x_3, x_4, x_5\}$
 - The values of the basis can be obtained by the constraints, after substituting $x_1 = x_2 = 0$

- Checking adjacency of two BF solutions
 - We could check if the corresponding CPF solutions are adjacent
 - Easier way: Two BF solutions are adjacent if their bases differ only in one variable (which means that all but one of their nonbasic variables are also the same)
- Illustration:
 - Adjacent CPF solutions: (0, 0) and (0, 6)
 - Corresponding BF solutions: $S_1 = (0, 0, 4, 12, 18)$ and $S_2 = (0, 6, 4, 0, 6)$
 - In S₁, nonbasic variables = $\{x_1, x_2\}$, basis = $\{x_3, x_4, x_5\}$
 - In S₂, nonbasic variables = { x_1 , x_4 }, basis = { x_2 , x_3 , x_5 }
 - Going from S_1 to S_2 , variable x_2 switches from nonbasic to basic and variable x_4 leaves the basis
- Hence: very simple way of moving from one adjacent solution to another

Final step before running simplex:

• It becomes convenient to also treat the objective function as another equality constraint

- No need for a slack variable since we have equality to begin with
- We will not really treat Z as a new variable

Initialization:

- We need to choose an initial BF solution
 - In our example, setting $x_1 = 0$ and $x_2 = 0$ is feasible
 - Augmented solution: (0, 0, 4, 12, 18)
 - Hence, initial basis = $\{x_3, x_4, x_5\}$, nonbasic variables: x_1, x_2
- Optimality test:
 - Initial value of the objective function: Z = 0
 - Recall Z = $3x_1 + 5x_2$, expressed as a function of the nonbasic variables
 - Coefficient for each nonbasic variable: rate of improvement for Z, if that variable were to be increased.
 - Here the rates of improvement are positive, which means the current BF solution is not optimal
 - Hence: simple way to answer the optimality test

Iteration 1:

- We need to determine the direction of movement towards an adjacent BF solution
 - Coefficient of x_2 in Z > coefficient of x_1
 - We pick x_2 as the variable to increase
 - Variable x₂ will enter the basis (referred to as the entering basic variable)
- How much shall we increase x₂?
 - For as long as we do not violate the constraints!

(1)
$$x_1 + x_3 = 4 \implies x_3 = 4$$

(2) $2x_2 + x_4 = 12 \implies x_4 = 12 - 2x_2$
(3) $3x_1 + 2x_2 + x_5 = 18 \implies x_5 = 18 - 2x_2$

And now use the nonnegativity constraints!

Iteration 1:

(1) $x_1 + x_3 = 4 \implies x_3 = 4$ (2) $2x_2 + x_4 = 12 \implies x_4 = 12 - 2x_2$ (3) $3x_1 + 2x_2 + x_5 = 18 \implies x_5 = 18 - 2x_2$

 $x_{3} \ge 0 \implies \text{no upper bound on } x_{2}$ $x_{4} \ge 0 \implies 12 - 2x_{2} \ge 0 \implies x_{2} \le 6$ $x_{5} \ge 0 \implies 18 - 2x_{2} \ge 0 \implies x_{2} \le 9$

- We pick the minimum value implied by the upper bounds
- Increasing x₂ beyond the value of 6 would result in an infeasible solution
- Hence, we stop at x₂ = 6

- Can we arrive at $x_2 = 6$ with a more automated way?
- Minimum Ratio Test:
 - For each constraint, divide the constant term by the coefficient of x₂
 - The minimum such ratio tells us how much to increase x_2
- (1) $x_1 + x_3 = 4$ \Rightarrow ratio = 4/0 = + ∞ (0 coefficient of x_2)
- (2) $2x_2 + x_4 = 12$ \Rightarrow ratio = 12/2 = 6
- (3) $3x_1 + 2x_2 + x_5 = 18 \implies ratio = 18/2 = 9$
- Setting x₂ = 6 makes variable x₄ drop to 0
- x₄ is called the *leaving basic variable*

Iteration 1:

• Summarize what we have done so far:

	Initial BF solution	New BF solution
Nonbasic variables	$x_1 = 0, x_2 = 0$	$x_1 = 0, x_4 = 0$
Basis	x ₃ = 4, x ₄ = 12, x ₅ = 18	x ₂ = 6, x ₃ = ?, x ₅ = ?

- Final step of Iteration 1:
 - Convert the system of equations according to the new basis
 - Express the objective function in terms of the new nonbasic variables
 - Compute the missing values in the new BF solution (for x_3 and x_5)

Iteration 1: Initial constraints

- (0) $Z 3x_1 5x_2 = 0$
- (1) $x_1 + x_3 = 4$
- (2) $2x_2 + x_4 = 12$
- $(3) \quad 3x_1 + 2x_2 + x_5 = 18$
- We need x₂ to disappear from (0), (1) and (3)
- Start with row (2): row (2) $/2 \implies x_2 + 1/2 x_4 = 6$
- We can then
 - multiply a row by a constant
 - Add/subtract multiples of a row to/from another row
 - For example: row (0) := row (0) + 5 \cdot row (2)

Iteration 1:

Final set of constraints at the end of the iteration

- (0) $Z 3x_1 + 5/2 x_4 = 30$ (1) $x_1 + x_3 = 4$ (2) $x_2 + 1/2 x_4 = 6$ (3) $3x_1 - x_4 + x_5 = 6$
- Procedure for obtaining the new form of the constraints: the Gauss-Jordan method
- Hence, assignment of values in the new BF solution:
 - $x_1 = 0, x_4 = 0, x_2 = 6, x_3 = 4, x_5 = 6$
- Optimality test:
 - $Z = 30 + 3x_1 5/2x_4$, positive coefficient for $x_1 \Rightarrow$ not optimal
 - Hence, we need to move to an adjacent BF solution

- Which variable should now enter the basis?
 - Unique choice: Coefficient of x_1 is the only positive coefficient in Z
 - Variable x₁ is now the new entering basic variable
- How much shall we increase x₁?
 - Apply the Minimum Ratio Test
 - Set $x_1 := 2$ due to equation (3)
- Which variable exits the basis?
 - Again, from the Minimum Ratio Test, x₅ will be the leaving variable
- New basis: {x₁, x₂, x₃}
 - Nonbasic variables: $x_4 = x_5 = 0$
 - New BF solution: (2, 6, 2, 0, 0)

Iteration 2:

Substituting using the Gauss-Jordan method:

- (0) $Z + 3/2 x_4 + x_5 = 36$ (1) $x_3 + 1/3 x_4 - 1/3 x_5 = 2$ (2) $x_2 + \frac{1}{2} x_4 = 6$ (3) $x_1 - \frac{1}{3} x_4 + \frac{1}{3} x_5 = 2$
- Optimality test:
 - $Z = 36 3/2 x_4 x_5$
 - There is no direction of improvement, increasing x_4 or x_5 will decrease the objective function
 - Current BF solution is optimal
 - Solution of the original linear program: $x_1 = 2$, $x_2 = 6$ and Z = 36

- So far we have managed to transform our geometric intuition into an algebraic procedure
- Operations used pretty simple
- Nevertheless, we can make the process even more automatizable
- Simplex tableau: A tabular representation of the constraints and the current BF solution
- All we need to know: the basis and the coefficients in each row

Algebraic form vs tableau:

Let us revisit the initialization in our Example:

Corresponding tableau form

	Pasia	Coefficients							
	Basis	Z	x ₁	X ₂	X ₃	X ₄	X 5	side	
	Z	1	-3	-5	0	0	0	0	
rows = number of constraints + 1	X ₃	0	1	0	1	0	0	4	
	x ₄	0	0	2	0	1	0	12	
	X 5	0	3	2	0	0	1	18	

Basis	Coefficients									
	Z	x ₁	X ₂	X ₃	X 4	X 5	side			
Z	1	-3	-5	0	0	0	0			
X ₃	0	1	0	1	0	0	4			
x ₄	0	0	2	0	1	0	12			
X 5	0	3	2	0	0	1	18			

- For notational convenience: treat Z also as a basic variable
- Optimality test in a tableau:
 - We have reached an optimal solution when the coefficients in row (0) are all nonnegative

Pacia	Coefficients							
Basis	Z	X ₁	x ₂	X ₃	x ₄	X 5	side	
Z	1	-3	-5	0	0	0	0	
X ₃	0	1	0	1	0	0	4	
x ₄	0	0	2	0	1	0	12	12/2 = 6
x ₅	0	3	2	0	0	1	18	18/2 = 9

- Which variable should enter the basis?
 - The nonbasic variable with the most negative coefficient in row (0), hence x₂
 - Column of x₂: pivot column
- Minimum Ratio Test
 - How do we run it?
 - Information we need is the right side column and the column of \boldsymbol{x}_2

Pacia			Right					
Basis	Z	X ₁	x ₂	X ₃	x ₄	X 5	side	
Z	1	-3	-5	0	0	0	0	
X ₃	0	1	0	1	0	0	4	
x ₄	0	0	2	0	1	0	12	12/2 = 6 18/2 = 9
X 5	0	3	2	0	0	1	18	18/2 = 9

- Outcome of the Minimum Ratio Test
 - Minimum achieved at row of x_4
 - Leaving variable: x₄, i.e., the basic variable corresponding to that row
 - Row of x_4 : the **pivot row**
 - Intersection of pivot row and pivot column: pivot element (=2 in this iteration)

Pacia			Right					
Basis	Z	X ₁	X ₂	X ₃	x ₄	X 5	side	
Z	1	-3	-5	0	0	0	0	
X ₃	0	1	0	1	0	0	4	
x ₄	0	0	2	0	1	0	12	12/2 = 6 18/2 = 9
X 5	0	3	2	0	0	1	18	18/2 = 9

- Final step: Gauss-Jordan method to get the new tableau
 - Divide first the pivot row by the pivot element
 - This makes the coefficient of x_2 equal to 1 in the pivot row
 - Then we can add/subtract appropriate multiples of the pivot row to the other rows (just as in the algebraic description of simplex)

Decie	Coefficients									
Basis	Z	x ₁	x ₂	X ₃	X 4	X 5	side			
Z	1	-3	0	0	5/2	0	30			
Х ₃	0	1	0	1	0	0	4			
x ₂	0	0	1	0	1/2	0	6			
X 5	0	3	0	0	-1	1	6			

New tableau

End of Iteration 1:

- Optimality test:
 - There exists a negative coefficient in row (0)
 - Hence, we need to go to the next iteration

Tabular form of the simplex method

Basis			Right					
	Z	X 1	x ₂	Х ₃	X 4	X 5	side	
Z	1	-3	0	0	5/2	0	30	
Х ₃	0	1	0	1	0	0	4	4/1 = 4
x ₂	0	0	1	0	1/2	0	6	
Х ₅	0	3	0	0	-1	1	6	6/3 = 2

Iteration 2:

- Which variable should enter the basis?
 - Only variable x_1 has a negative coefficient in row (0)
 - **Pivot column:** The column of x_1
- Minimum Ratio Test
 - Variable x_5 is the leaving variable
 - **Pivot row:** The row of x_5

Tabular form of the simplex method

Basis	Coefficients							
	Z	x ₁	x ₂	X ₃	X 4	X 5	side	
Z	1	0	0	0	3/2	1	36	
X ₃	0	0	0	1	1/3	-1/3	2	New tableau
x ₂	0	0	1	0	1/2	0	6	
x ₁	0	1	0	0	-1/3	1/3	2	

End of Iteration 2:

- Optimality test
 - No negative coefficient in the row of Z
 - Hence we stop at the current BF solution (2, 6, 2, 0, 0)
 - Optimal solution to the original problem: $x_1 = 2$, $x_2 = 6$

Summary: Geometric, algebraic and tableau form

We have seen 3 different ways of thinking about the same algorithm

• Geometric view:

- This is how the algorithm was inspired
- Useful only for 2 or 3 dimensions

• Algebraic description

More convenient for learning the logic of the algorithm esp. in higher dimensions

• Tableau form

- Equivalent to the algebraic form in terms of operations performed
- However, it organizes the data in a more compact form
- Allows for better automatization

Some issues that may arise

• During the execution:

- Many choices for the entering variable
- Many choices for the leaving variable
- No leaving variable

• At initialization:

- Difficulty in finding an initial feasible solution to begin with

• At termination:

Multiple optimal solutions

• Many choices for the entering variable:

- No problem, make an arbitrary choice
- An optimal solution will be reached eventually
- Hard to know in advance which one is the best choice

•Many choices for the leaving variable:

- -This may cause problems
- -All such variables will become 0 at the end of the iteration
- -Hence, we will have some basic variables with a 0 value

-Such solutions are called *degenerate*

- -They may not allow Z to increase in the next iteration
- -The algorithm may get trapped in a loop where some variables enter and exit the basis repeatedly and Z gets stuck at the same value

-Bland's rule: If there are multiple candidate leaving variables, always choose the variable with the smallest index

-Also: rarely been observed in practice, almost safe to ignore this

•No leaving basic variable:

- This means that the entering variable can be increased indefinitely
- The increase does not yield any negative values to the current basic variables
- In the tableau form: all coefficients in pivot column are negative or 0 (except first row)
- Conclusion: The problem is unbounded, optimal solution is $+\infty$
- Maybe a mistake has occured in the initial formulation of the problem

- Multiple optimal solutions:
 - If there are multiple optimal solutions, there are at least 2 optimal CPF solutions
 - Any convex combination of these CPF solutions is also an optimal solution
 - In some problems we may only care to identify one optimal solution and stop
 - If we care to find all optimal CPF solutions:
 - Run more iterations of simplex after we found the first optimal solution
 - Choose a nonbasic variable with zero coefficient in the row of Z as the entering variable
 - There exists such a variable whenever there are multiple optimal solutions

- Difficulty in finding an initial feasible solution:
 - What if the all-0 solution is not feasible? How do we start simplex then?
 - This can happen when some coefficients b_i are negative
 - Strategy: Define an auxiliary problem so that
 - It is easy to find an initial feasible solution in the auxiliary problem
 - The optimal solution of the auxiliary can tell us whether there exists a feasible solution in our original problem
 - 2-phase simplex method:
 - First run simplex on the auxiliary problem
 - See whether we can identify an initial basic feasible solution from the optimal solution of the auxiliary problem
 - If yes, run simplex on our original problem

- Difficulty in finding an initial feasible solution:
 - There are various ways to define the auxiliary problem
 - Illustration:

 $\begin{array}{ll} \max Z = c^{\mathsf{T}} \, x & \min \, 1^{\mathsf{T}} y \\ \text{s.t.} & \text{s.t.} \\ \sum_{j} a_{ij} x_{j} \leq b_{i} & \Longrightarrow & \sum_{j} a_{ij} x_{j} + y_{i} = b_{i} \, , \, i = 1, ..., n \\ x_{i} \geq 0, \, i = 1, ..., n & x_{i} \geq 0, \, y_{i} \geq 0, \, i = 1, \, ..., n \end{array}$

- The auxiliary problem always has a feasible solution
 - Set original variables to 0, and y equal to b.
- The original problem has a feasible solution if and only if the optimal of the auxiliary is 0

Other variants in implementing Simplex

- The revised simplex method
 - Based on exploiting fast matrix operations
 - Each iteration requires solving 2 systems of linear equations
 - But these are not solved from scratch
 - Only small updates based on the solution from previous iteration
- The dual simplex method
 - Applying simplex to the dual linear program
 - But essentially working with the primal
 - Useful tool for sensitivity analysis
- Many other variations have also been suggested over the years...

Complexity of Simplex

- •Extremely well-behaved in practice
- Empirically, number of iterations in simplex looks proportional to number of constraints, e.g., usually no more than 3m
- Can we have a good theoretical upper bound on the number of iterations?
- NO! There are examples that need an exponential (2ⁿ) number of iterations, discovered first by [Klee, Minty '72]
- Despite that, it is still one of the preferred algorithms for solving linear programs!

Other Algorithms

•The ellipsoid method: The first polynomial time algorithm

- By [Kachiyan '79], however not well behaved in practice

•Interior point methods: also polynomial time algorithms

- First conceived by Karmarkar [1984]
- Main ideas:

6

(0, 0)

- Again keep moving from a feasible solution to a better one
- But this time, we move along solutions in the interior of the polytope
- The current solution keeps getting closer and closer to a vertex of the polytope

Other Algorithms

Types of interior point methods

Affine scaling algorithms

- One of the simplest interior point algorithms
- Based on approximating polyhedra by "ellipsoids"
- Optimizing over ellipsoids in each iteration
- Non-linear problems but solvable with closed form solutions

Potential reduction algorithms

- Do not measure progress by the increase in the objective function
- Instead use a non-linear potential function

Path following algorithms

- Transforms the initial problem into an unconstrained problem (or a problem with equality constraints)
- Incorporates the inequality constraints " $x_i \ge 0$ " into the objective function (logarithmic barrier function)
- Solves the resulting non-linear problem with Newton's method

Simplex vs Interior Point Algorithms

• Comparisons

- In theory: interior point methods are polynomial time algorithms (for any n and m), simplex may need exponential time
- In practice: average case complexity of simplex very low compared to worst case
- One iteration of interior point methods needs much more computation time than in simplex to decide the next feasible solution
- But: as the number of constraints increases, interior point methods do not need much more iterations
- Number of iterations in simplex may increase rapidly as we increase the number of variables and constraints
 - Interior point methods go through the internal part of the polytope
 - Adding more constraints reduces the feasible region, by adding more constraint boundaries
 - Hence, for problems with many thousands of constraints, interior point methods seem to be the best hope