
1 Function of two variables
Observations

1. A real-valued function is a box that accepts a number and produces another number.

2. We can describe a real-valued function in terms of its graph, which is a curve.

3. A function, in general, is a box that accepts something of one type, and produces something else of
another type.

4. We study real-valued functions of two variables, which accept two numbers and produce another one.

5. We can describe such functions in terms of their graph, which is now a surface.

6. Formally, we have the following:

Definition 1.1. (Real valued functions of two variables)

1. A function of 2 variables is a mapping (x, y) → z = f(x, y).

2. Its domain D ⊆ R2 is all the pairs (x, y) where the function is defined.

3. Its range R ⊆ R is R = {f(x, y) : (x, y) ∈ D}.

4. Its graph is G = {(x, y, z) : (x, y) ∈ D, z = f(x, y)} ⊆ R3.

5. The equipotential curve, or contour line at level c, is the set

C(c) = {(x, y, z) : (x, y) ∈ D, z = f(x, y) = c} ⊆ R3.

INSERT FIRST DEMO HERE. TOPICS: Examples of functions and contour lines
Example 1.1. Let f(x, y) = 1

3

√
36− 9x2 − 4y2. Then the domain is the set

D = {(x, y) : 36− 9x2 − 4y2 ≥ 0},

while the contour lines satisfy the following equations:

c =
1

3

√
36− 9x2 − 4y2 ⇔ 9x2 + 4y2 = 36− 9c2.

Therefore, contour lines are ellipses.

Definition 1.2. (Planes) Linear functions of the form f(x, y) = ax+ by + c are called planes.

Definition 1.3. (Polynomials and rational functions)

1. A polynomial with variables x, y is a function of the form

f(x, y) =
n∑

i=1

m∑
j=1

cijx
iyj.

2. A rational function with variables x, y is a function of the form

f(x, y) =
p(x, y)

q(x, y)
,

where p(x, y) and q(x, y) are polynomials.
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2 Limit and Continuity

Definition 2.1. (Function limit) Function f(x, y) has limit L at (x, y) = (a, b), and we write

lim
(x,y)→(a,b)

f(x, y) = L or f(x, y) → L for (x, y) → (a, b),

if the following holds:

∀ϵ > 0,∃δ > 0 : 0 <
√

(x− a)2 + (y − b)2 < δ ⇒ |f(x, y)− L| < ϵ.

Observations

1. We use the notation
∥(x, y)∥ =

√
x2 + y2

for the Euclidean length of a vector, therefore we also have

∥(x, y)− (a, b)∥ =
√

(x− a)2 + (y − b)2.

2. The basic intuition of the plain limit fully transfers: if we take concentric circles around (a, b), then,
as their radius decreases, so does the maximum distance of the values of the function from limit L.

Theorem 2.1. (Limits of polynomial and rational functions)

1. If f(x, y) is a polynomial, then
lim

(x,y)→(a,b)
f(x, y) = f(a, b).

2. If f(x, y) = p(x,y)
q(x,y)

where p(x, y), q(x, y) are polynomials, then

(αʹ) If q(a, b) ̸= 0, then

lim
(x,y)→(a,b)

f(x, y) =
p(a, b)

q(a, b)
.

(βʹ) If q(a, b) = 0 and p(a, b) ̸= 0, then the limit lim
(x,y)→(a,b)

f(x, y) does not exist.

3. If q(a, b) = 0 and p(a, b) = 0, anything goes: the limit might exist or it might not exist.

Example 2.1. (Limit calculations)

1.
lim

(x,y)→(1,2)
(x2y + 3y) = 2 + 6 = 8.

2. The limit
lim

(x,y)→(0,0)

x2 + y2 + 1

x2 − y2

does not exist. Why? Does the function go to ±∞?

3. The limit
lim

(x,y)→(0,0)

x2 − y2

x2 + y2
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Σχήμα 1: Example 2.1.

also does not exist. Indeed, observe that

lim
x→0

f(x, 0) = lim
x→0

x2

x2
= 1,

lim
y→0

f(0, y) = lim
y→0

− y2

y2
= −1,

so the limit depends on the angle of approach! See Fig. 1.

Definition 2.2. (Continuity) Function f(x) is continuous in (a, b) if the limit lim
(x,y)→(a,b)

f(x, y) exists and we

have
lim

(x,y)→(a,b)
f(x, y) = f(a, b).

Theorem 2.2. (Basic properties of continuity)

1. If f(x, y) and g(x, y) are continuous at (a, b), then the functions λ1f(x, y)+λ2g(x, y), where λ1, λ2 ∈
R, and f(x, y)g(x, y) are also continuous at (a, b).

2. If f(x, y) and g(x, y) are continuous at (a, b), and g(a, b) ̸= 0, then f(x,y)
g(x,y)

is also continuous at (a, b).

3. If g(x, y) is continuous at (a, b) and f is continuous at g(a, b), then the composition f(g(x, y)) is
continuous at (a, b).

3 Partial derivatives
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Definition 3.1. (Partial Derivatives)
The partial derivatives of f(x, y) at location (x0, y0) are defined as follows:

fx(x0, y0) = lim
h→0

f(x0 + h, y0)− f(x0, y0)

h
,

fy(x0, y0) = lim
h→0

f(x0, y0 + h)− f(x0, y0)

h
.

Observations

1. We also use the notations

fx(x0, y0) =
∂z

∂x

∣∣∣∣
(x0,y0)

=
∂f(x, y)

∂x

∣∣∣∣
(x0,y0)

=
∂f

∂x

∣∣∣∣
(x0,y0)

,

fy(x0, y0) =
∂z

∂y

∣∣∣∣
(x0,y0)

=
∂f(x, y)

∂y

∣∣∣∣
(x0,y0)

=
∂f

∂y

∣∣∣∣
(x0,y0)

.

2. Observe that the partial derivative with respect to x at point (x0, y0) is the usual derivative of the
single-variable function f(x, y0) at x = x0.

3. What is the physical interpretation of partial derivatives?

Definition 3.2. (Second-order partial derivatives)

fxx =
∂

∂x

(
∂f

∂x

)
,

fxy =
∂

∂y

(
∂f

∂x

)
,

fyx =
∂

∂x

(
∂f

∂y

)
,

fyy =
∂

∂y

(
∂f

∂y

)
.

Observations

1. Higher-order derivatives are defined in a similar manner.

2. We use the following notation:

fxx =
∂2f

∂x2
, fyy =

∂2f

∂y2
, fxy =

∂2f

∂y∂x
, fyx =

∂2f

∂x∂y
.

Example 3.1. Let the function

f(x, y) = xey − sin
(
x

y

)
+ x3y2.
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Its partial derivatives are as follows:

∂f

∂x
= ey − cos

(
x

y

)
1

y
+ 3x2y2,

∂2f

∂x2
= sin

(
x

y

)
1

y2
+ 6xy2,

∂f

∂y
= xey − cos

(
x

y

)(
− x

y2

)
+ 2yx3

= xey +
x

y2
cos
(
x

y

)
+ 2yx3,

∂2f

∂y2
= xey − 2x

y3
cos
(
x

y

)
− x

y2
sin
(
x

y

)(
− x

y2

)
+ 2x3

= xey − 2x

y3
cos
(
x

y

)
+

x2

y4
sin
(
x

y

)
+ 2x3,

∂2f

∂x∂y
= ey +

1

y2
cos
(
x

y

)
+

x

y2

(
− sin

(
x

y

))
1

y
+ 6x2y

= ey +
1

y2
cos
(
x

y

)
− x

y3
sin
(
x

y

)
+ 6x2y,

∂2f

∂y∂x
= ey + sin

(
x

y

)(
− x

y2

)
1

y
− cos

(
x

y

)(
− 1

y2

)
+ 6x2y

= ey − x

y3
sin
(
x

y

)
+

1

y2
cos
(
x

y

)
+ 6x2y.

Observe that fxy and fyx are equal! This is not a coincidence.

Theorem 3.1. (Equality of partial derivatives) If fxy and fyx are continuous on an open set S, then they are
also equal.

Observation: So, what does it mean for a two-dimensional set to be open? We discuss this in the next
section.

4 Small detour on topology
Observation: The notation A ⊂ B implies that the sets A,B cannot be equal. The notation A ⊆ B implies
that they might be equal.

Definition 4.1. 1. Let S ⊆ R2. We define the complement of S as the set

S = {(x, y) ∈ R2 : (x, y) ̸∈ S}.

2. Let S ⊆ R2 and a point P = (x0, y0). The ball of radius δ > 0 centered at P is the set

B(P, δ) = {Q = (x, y) : ∥P −Q∥ < δ ⇔
√
(x− x0)2 + (y − y0)2 < δ}.

3. A point P ∈ S is called an interior point of S is there is a B(P, δ) ⊂ S.
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4. A point P is called a boundary point of S if for all δ > 0, the set B(P, δ) contains both points in S

and points in S. The set of all boundary points of S is called the boundary ∂S of S. Observe that
each point in S is either a boundary point of S, or an interior point of S.

5. A set S is called open if all its points P are interior points, i.e., it contains no boundary points.

6. A set S is called closed if it contains all its boundary points. Equivalently, set S is closed if set S is
open.

7. A set S is called bounded if there is a radius R > 0 such that S ∈ B((0, 0), R).

Example 4.1. (Examples of open and closed sets)

1. The set S = {(x, y) : x2 + y2 < 1} is open, and its boundary is ∂S = {(x, y)′ : x2 + y2 = 1}.

2. The set S = {(x, y) : |y| < 1} is open, and its boundary is ∂S = {(x, y) : y = 1}∪{(x, y) : y = −1}.

3. The set S = {(x, y) : |y| < 1, x = 0} is neither closed nor open! Its boundary is the set ∂S =
{(x, y) : |y| ≤ 1, x = 0}.

4. Both R2 and the empty set ∅ are both open and closed! Such sets are called clopen.

5 The gradient and differentiable functions

Definition 5.1. Let a point P = (x, y). The vector

∇f(x, y) , (fx(x, y), fy(x, y))

is defined as the gradient of f(x, y) at the point (x, y).

Theorem 5.1. (Basic properties of the gradient)

1.
∇(f(x, y) + g(x, y)) = ∇f(x, y) +∇g(x, y).

2.
∇(af(x, y)) = a∇f(x, y).

3.
∇(f(x, y)g(x, y) = g(x, y)∇f(x, y) + f(x, y)∇g(x, y).

Observations

1. The above properties have simple proofs, based the definition of the gradient.

2. The gradient points to the direction where the function increases the fastest. This will become clear
later on.

Example 5.1. Let the functions f(x, y) = x2y and g(x, y) = 3xy. We have

∇f(x, y) = (2xy, x2),

∇g(x, y) = (3x, 3y),

∇(x2 + 3xy) = (2xy + 3y, x2 + 3x).
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Definition 5.2. (Differentiability) Function f(x, y) is differentiable at the pointP = (x0, y0) if the following
holds:

f(x0 + h1, y0 + h2) = f(x0, y0) + h1fx(x0, y0) + h2fy(x0, y0) + h1ϵ1(h1, h2) + h2ϵ2(h1, h2)

= f(x0) + (h1, h2) · ∇f(x0, y0) + (h1, h2) · (ϵ1(h1, h2), ϵ2(h1, h2)), (1)

where
lim

(h1,h2)→(0,0)
ϵ1(h1, h2) = 0, lim

(h1,h2)→(0,0)
ϵ2(h1, h2) = 0.

Observations Setting x = x0 + h1 and y = y0 + h2, (1) becomes

f(x, y) = f(x0, y0) + (x− x0)fx(x0, y0) + (y − y0)fy(x0, y0) + h1ϵ1(h1, h2) + h2ϵ2(h1, h2).

On the other hand, observe that the function

T (x, y) = f(x0, y0) + (x− x0)fx(x0, y0) + (y − y0)fy(x0, y0) (2)

describes a plane passing through the location (x0, y0, f(x0, y0)). Therefore, differentiability means that
there is a plane, as prescribed above, that approximates the function really well close to that point.

Definition 5.3. 1. The plane given by (2) is called the tangent plane of f at (x0, y0).

2. A function is called differentiable in an open set R if it is differentiable for all (x, y) ∈ R.

INSERT SECOND DEMO HERE. TOPICS: Tangent planes and partial derivatives

Theorem 5.2. If f(x, y) has continuous partial derivatives fx(x, y) and fy(x, y) everywhere on an open set
that contains (a, b), then f(x, y) is differentiable in (a, b).

Observations

1. The inverse of the theorem does not hold!

2. Therefore, being differential at a point is different from having partial derivatives at a point. See
Fig. 2. On the other hand, in one-variable functions, being differentiable means having a derivative!

Theorem 5.3. If f(x, y) is differentiable at (x0, y0), then it is continuous at (x0, y0).

Απόδειξη. Observe that

f(x0 + h1, y0 + h2)− f(x0, y0) = h1fx(x0, y0) + h2fy(x0, y0) + h1ϵ1(h1, h2) + h2ϵ2(h1, h2),

which does go to 0 as (h1, h2) → 0.

Example 5.2. For the function f(x, y) = xey + x2y, we have

∇f(x, y) = (ey + 2xy, xey + x2).

The partial derivatives are continuous everywhere, therefore f is differentiable everywhere. For example,
the equation of the tangent plane that passes through the location

x = 2, y = 0, z = 2e0 + 22 × 0 = 2,
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Σχήμα 2: A function with partial derivatives (0, 0) that is not differentiable there.

is the following:

z = f(2, 0) +∇f(2, 0)(x− 2, y − 0)

= 2 + (1, 6) · (x− 2, y)

= x+ 6y.

Example 5.3. Let the function

f(x, y) =

{
xy

x2+y2
, (x, y) ̸= (0, 0),

0, (x, y) = (0, 0).

This function has partial derivatives everywhere outside of (0, 0), by known theorems. It also has partial
derivatives at zero, as shown by definition:

fx(x, y) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

0

h
= 0.

However, it is not even continuous! To see this, set y = x, and the function becomes f(x, y) = x2

2x2 = 1
2
for

all x!

6 Directional derivative
Observation: Observe that

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h
,

fy(x, y) = lim
h→0

f(x, y + h)− f(x, y)

h
.
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Let us set p = (x, y), i = (1, 0), and j = (0, 1). The above equations are then written as

fx(p) = lim
h→0

f(p+ hi)− f(p)
h

,

fy(p) = lim
h→0

f(p+ hj)− f(p)
h

.

The first partial derivative describes the rate of change in the x direction, and the second describes the rate
of change in the y direction. What about other directions? We use the following definition.

Definition 6.1. (Directional derivative) The directional derivative of f at location p = (x, y) in the direction
of the unit vector u = (u1, u2) is defined as

Duf(p) = lim
h→0

f(p+ hu)− f(p)
h

Theorem 6.1. If f is differentiable in p = (x, y), then it has a directional derivative in the direction of the
unit vector u = (u1, u2) given by the formula

Duf(p) = u · ∇f(p) = u1fx(x, y) + u2fy(x, y).

Απόδειξη. Since f(p) is differentiable, we have

f(p+ hu) = f(p) +∇f(p) · (hu) + ϵ(hu) · (hu)

⇒ lim
h→0

f(p+ hu)− f(p)
h

= ∇f(p) · u+ lim
h→0

ϵ(hu) · (hu) = ∇f(p) · u.

Theorem 6.2. At location p a differentiable function is increasing the fastest in the direction of the gradient
∇f(p) at that location, and is decreasing the fastest in the opposite direction.

Απόδειξη. Note that
Du(p) = u · ∇f(p) = ∥u∥∥∇f(p)∥ cos θ,

where θ is the angle formed between the two vectors u and ∇f(p). Therefore, the directional derivative is
maximum when the two vectors point in the same direction, i.e., θ = 0, in which case Du(p) = ∥∇f(p)∥,
and minimum when they point in opposite directions, in which case Du(p) = −∥∇f(p)∥.

Observation: Observe that the two rates are equal, in absolute terms. Does this make sense to you?

Example 6.1. Let the function f(x, y) = 4x2 − xy + 3y2.
We will find the directional derivative of f at the location p = (2,−1) in the direction of the vector

a = (4, 3). Firstly, observe that the given vector a is not of unit length. Can you understand what would
have been the problem if we had used it? We will use the vector

u =
(4, 3)√
16 + 9

=

(
4

5
,
3

5

)
.

Also,
∇f = (8x− y,−x+ 6y) ⇒ ∇f(2, 1) = (17,−8),
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therefore
Duf(2,−1) =

(
4

5
,
3

5

)
· (17,−8) =

44

5
.

Secondly, observe that the fastest rate of increase is in the direction of the unit vector

u′ =
(17,−8)√
172 + 82

and equals

Du(2, 1) · u′ =
(17,−8) · (17,−8)√

172 + 82
=

√
353.

Finally, observe that the fastest rate of decrease is in the direction opposite to that of the unit vector, and
so equals

Du(2, 1) · (−u′) = −(17,−8) · (17,−8)√
172 + 82

= −
√
353.

Theorem 6.3. The gradient of f at the location p is perpendicular to the contour line going through P , i.e.,

∇f(p) · u = 0,

where u is a unit vector tangent to the contour line.

(Add figure here)

Example 6.2. Consider the function

f(x, y) =
x2

4
+ y2.

The contour line passing through point (2, 1) is

x2

4
+ y2 =

4

4
+ 1 = 2 ⇔ y = ±

√
2− x2

4
,

whereas the gradient at that location is

∇f(x, y) =
(x
2
, 2y
)
= (1, 2).

(Add figure here)

7 Unconstrained extrema of functions of 2 variables

Definition 7.1. Let f(x, y) be a function with domain S and a point p0.

1. An open set N is called a neighborhood of p if p ∈ N .

2. The value f(p0) is a (local) maximum at the (local) maximum point p0 if there is a neighborhood N
of p0 such that

f(p0) ≥ f(p) ∀p ∈ N ∩ S.

3. The value f(p0) is a (local) minimum at the (local) minimum point p0 if there is a neighborhoodN of
p0 such that

f(p0) ≤ f(p) ∀p ∈ N ∩ S.
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4. f has a (local) extremum at p if it has a local minimum or maximum at p.

5. The value f(p0) is a global maximum at the global maximum point p0 if

f(p0) ≥ f(p) ∀p ∈ S.

6. The value f(p0) is a global minimum at the global minimum point p0 if

f(p0) ≤ f(p) ∀p ∈ S.

7. f has a global extremum at p if it has a global minimum or maximum at p.

Observations

1. Plurals of terms are minima, maxima, extrema.

2. Moving from one dimension to two dimensions, things can become much more complicated! See the
next theorem:

Theorem 7.1. (Necessary conditions for existence of local minimum) If f has an extremum at p, then one
of the following holds:

1. p is a boundary point of S.

2. p is an interior point of S, but f is not differentiable there.

3. p is a stationary or critical point, i.e., all the following hold:

(αʹ) p is an interior point of S.
(βʹ) f is differentiable in p.
(γʹ) ∇f(p) = 0.

INSERT THIRD DEMO HERE. TOPICS: extrema conditions

Theorem 7.2. (Sufficient conditions for local extrema) Let the function f(x, y) have continuous second-
order partial derivatives in a neighborhood of (x0, y0) and ∇f(x0, y0) = 0. Let

D = D(x0, y0) = fxx(x0, y0)fyy(x0, y0)− f 2
xy(x0, y0).

The following hold:

1. If D > 0 and fxx(x0, y0) < 0, then f(x0, y0) is a local maximum.

2. If D > 0 and fxx(x0, y0) > 0, then f(x0, y0) is a local minimum.

3. If D < 0 then f(x0, y0) is not an extremum. We call it a saddle point.

4. If D = 0, then anything goes!
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Example 7.1. Let the function f(x, y) = x2 + y2 which, of course, we know has a minimum at x = y = 0
and no other extrema. Note that∇f(x, y) = (2x, 2y), and fxx = fyy = −2, therefore the gradient is 0 only
at the origin x = y = 0, where

D = 2× 2− 2× 0× 2× 0 = 4,

so indeed Theorem 7.2 tells us we have a minimum at (0, 0).

Example 7.2. Now let the function f(x, y) = −x2 − y2 which, of course, we know has a maximum at
x = y = 0 and no other extrema. Note that ∇f(x, y) = (−2x,−2y), and fxx = fyy = −2, therefore agai
the gradient is 0 only at the origin x = y = 0, where

D = (−2)× (−2)− 2× 0× 2× 0 = 4,

so indeed Theorem 7.2 tells us we have a maximum at (0, 0).

Example 7.3. Finally, let the function f(x, y) = x2 − y2. Note that ∇f(x, y) = (2x,−2y), and fxx = 2,
fyy = −2. The gradient is 0 only at the origin x = y = 0, where

D = 2× (−2)− 2× 0× 2× 0 = −4,

so we have a saddle point.

Example 7.4. (Monkey saddle) Let the function f(x, y) = x3 − 3xy2. We have that

∇f = (3x2 − 3y2,−3y2), fxx = 6x, fyy = 6y,

therefore D = 0 at (x, y) = (0, 0), and we cannot use Theorem 7.2.

Example 7.5. We will find the extrema of the function

f(x, y) = 3x3 + y2 − 9x+ 4y

whose domain is R2.

Observe that the function is everywhere differentiable, and without a boundary, so, by Theorem 7.1 the
only locations where there might be an extremum are the locations where the gradient is 0. Observe that

∇f(x, y) = (9x2 − 9, 2y + 4) = 0 ⇔ y = −2, x = ±1.

Therefore, there are two candidates, (1,−2) and (−1,−2). We apply Theorem 7.2. Observe that

fxx(x, y) = 18x, fyy(x, y) = 2, fxy(x, y) = 0,

therefore at (x, y) = (1,−2) we have

D(1,−2) = 18× 2− 0 = 36 > 0, fxx = 18 > 0,

and therefore we have a local minimum. On the other hand, at (x, y) = (−1,−2) we have

D = −18× 2 = −36,

and so we have a saddle point.
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Example 7.6. (2015 exam) We will find the extrema of the function f(x, y) = x2y + xy + 1 on R2. The
function is everywhere differentiable and the domain has no boundary, so if there is a minimum it is on the
locations where the gradient is 0. Observe that

∂f

∂x
= 2xy + y,

∂f

∂y
= x2 + x,

∂2f

∂x2
= 2y,

∂2f

∂y2
= 0,

∂2f

∂x∂y
= 2x+ 1.

Requiring the gradient to be 0 gives(
∂f

∂x
,
∂f

∂y

)
= (0, 0) ⇔ (2xy + y, x2 + x) = (0, 0).

Therefore, we must have x = 0 or x = −1, and in both cases y = 0. Therefore, we have two candidates for
extrema, (0, 0) and (−1, 0). Regarding the first point,

D(0, 0) = fxx(0, 0)fyy(0, 0)− f 2
xy(0, 0) = 0× 0− 12 < 0,

therefore we have a saddle point. Regarding the second point, we have

D(−1, 0) = fxx(−1, 0)fyy(−1, 0)− f 2
xy(−1, 0) = 0× 0− (−1)2 < 0,

so again we have a saddle point. See Fig. 4.

Observations

1. The roadmap for solving such exercises is as follows:

(αʹ) First, we find candidate extrema, using Theorem 7.1.
(βʹ) Then, we investigate each of these candidates, using Theorem 7.2.

2. The following theorem explains nicely why Theorem 2 holds.

Theorem 7.3. (Taylor expansion of two-variable functions) Let f(x, y) = f(x) and a point a. The following
holds, provided third-degree partial derivatives exist at an open sent containing point a

f(x) = f(a) + (x− a)T∇f(a) +
1

2
(x− a)T∇2f(a)(x− a) + . . . ,

where the Hessian ∇2f(a) is defined as

∇2f(a) =

[
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

]
.

Observations

13
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Σχήμα 3: Exercise 7.6.

1. The omitted terms are higher-order terms that go to 0 much faster than the second one when x → a.

2. When we are at a point where the gradient is not zero, the dominant term is the second one.

3. When we are a a point where the gradient is zero, the dominant term is the third one.
Let λ1, λ2 be the eigenvalues of the Hessian. Then, we have the following cases:

(αʹ) If λ1, λ2 > 0, then 1
2
(x− a)T∇2f(a)(x− a) looks like a convex bowl and f has a minimum at

a.
(βʹ) If λ1, λ2 < 0, then 1

2
(x− a)T∇2f(a)(x− a) looks like an inverted bowl and f has a maximum

at a.
(γʹ) If λ1λ2 < 0, then 1

2
(x− a)T∇2f(a)(x− a) looks like a saddle and f does not have an extremum

at a.
(δʹ) If one eigenvalue is positive and the other is 0, then 1

2
(x− a)T∇2f(a)(x− a) looks like a drain,

and higher order terms become important in some directions.
(εʹ) If one eigenvalue is negative and the other is 0, then 1

2
(x − a)T∇2f(a)(x − a) looks like an

inverted drain, and higher order terms become important in some directions.
(ϛʹ) If both eigenvalues are 0, then 1

2
(x − a)T∇2f(a)(x − a) = 0, and higher order terms become

important in all directions.

INSERT FOURTH DEMO HERE. TOPICS: eigenvalue cases

14
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Σχήμα 4: Exercise 7.6.

8 Constrained Optimization

Theorem 8.1. (Necessary condition) Consider the problem of maximizing or minimizing f(x, y) subject to
g(x, y) = 0 where f(x, y) and g(x, y) are differentiable. Let (x0, y0) be an extremum, where∇g ̸= 0. Then,
we must have ∇f = λ∇g at the extremum.

Observations

1. There is a simple geometric explanation for this: if the two gradients are not parallel, then we can
move along the curve∇g and increase/decrease the value of the function. (Insert figure here).

2. The method has a blind spot, i.e., locations where∇g = 0. These must be treated separately.

3. If we want g(x, y) ≥ 0, then we must also have λ ≤ 0. This can also be explained geometrically.

4. This condition is necessary, not sufficient.

5. In practice, we try to solve the system of 3 equations ∇f = λ∇g and g(x, y) = 0 to find λ, x, y. So,
the new condition gives two equations and one unknown.

6. Another approach is to solve g(x, y) = 0 for x or y, substitute it in f(x, y), and arrive at a one-
dimensional function, which can be treated as usual. This method does not readily generalize to more
dimensions, whereas the method of the theorem does.

Example 8.1. We want to minimize f(x, y) = xy such that x2

8
+ y2

2
= 1. The condition∇f = λ∇g gives:

(y, x) = λ
(x
4
, y
)
,

15
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Σχήμα 5: Theorem 8.1

therefore we have the following three equations:

y =
1

4
λx, x = λy,

x2

8
+

y2

2
= 1.

It follows that y = λ2y/4. If y = 0, then x = 0, which cannot be a solution. If λ = ±2, then

x2

8
+

x2

8
= 1 ⇒ x2

4
= 1 ⇒ x = ±2, y = ±1.

See Fig. 6. Finally, also observe that∇g = 0 only at the origin, which does not satisfy the constraint, so the
origin cannot have an extremum.

Example 8.2. We will find extrema for the function f(x, y) = 3x+4y subject to the condition x2+y2 = 1.
Note that

∇f = λ∇g ⇒ (3, 4) = λ(2x, 2y),

so we have the set of equations

2xλ = 3, 2λy = 4, x2 + y2 = 1.

Observe that λ ̸= 0, therefore

x =
3

2λ
, y =

2

λ
⇒ 9

4λ2
+

4

λ2
= 1 ⇒ λ2 =

9

4
+

16

4
=

25

4
⇒ λ = ±5

2
⇒ (x, y) = ±

(
3

5
,
4

5

)
.

Again, also observe that∇g = 0 only at the origin, which does not satisfy the constraint, so the origin cannot
have an extremum.
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Σχήμα 6: Example 8.1.
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Σχήμα 7: Example 8.2.
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Example 8.3. Wewill now consider a problem case. We will minimize f(x, y) = x+y subject to g(x, y) =
x2 + y2 = 0. Obviously, the minimum is located at (x, y) = (0, 0). However, using the theorem gives

∇f = λ∇g ⇒ (1, 1) = λ(2x, 2y),

which, together with the condition x2 + y2 = 0, has no solution! The problem was that ∇g = 0 at the
extremum.

Observation: The above example shows that we need to also examine, separately, the critical points where
g(x, y) has a vanishing gradient.

Theorem 8.2. Consider the problem of finding extrema for the function f(x, y, z) subject to two conditions

g1(x, y, z) = 0, g2(x, y, z) = 0.

Consider an extremumwhere the two gradients∇g1,∇g2 are linearly independent, i.e., they are not parallel.
Then the following condition holds:

∇f = λ∇g1 + µ∇g2.

Observation: The physical interpretation is as follows: the equations g1(x, y, z) = 0 and g2(x, y, z) =
0 represent surfaces with the gradients ∇g1 and ∇g2 perpendicular to them. Jointly, the two conditions
represent a curve, with both ∇g1 and ∇g2 vertical to it. We want ∇f to also be perpendicular to the curve,
therefore we need it to be on the linear space spanned by the two gradients∇g1 and∇g2.

Example 8.4. We would like to minimize f(x, y, z) = x2 + y2 + z2 subject to x2 + y2 − 1 = 0, which
represents a cylinder, and x+ y + z − 1=0, which represents a plane. According to the theorem,

∇f = λ∇g1 + µ∇g2 ⇔ (2x, 2y, 2z) = λ(2x, 2y, 0) + µ(1, 1, 1),

therefore we have the conditions

2x = 2xλ+ µ, 2y = 2λy + µ, 2z = µ, x2 + y2 = 1, x+ y + z = 1.

Removing µ, we have

x = xλ+ z, y = λy + z, x2 + y1 = 1, x+ y + z = 1.

We now take cases:

1. If λ = 1, then z = 0, and we have

x2 + y2 = 1, x+ y = 1 ⇒ x2 + 1 + x2 − 2x = 1 ⇒ 2x2 = 2x

⇒ (x, y) = (0, 1) or (x, y) = (1, 0).

2. If λ ̸= 1, then

x = y =
z

1− λ
⇒ 2x2 = 1, 2x+ z = 1

⇒ (x, y, z) =

(√
2

2
,

√
2

2
, 1−

√
2

)
or (x, y, z) =

(
−
√
2

2
,−

√
2

2
, 1 +

√
2

)
.
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Σχήμα 8: Exercise 8.5.

Example 8.5. (2015 exam) Find all the extrema of the function f(x, y) = x2 − xy + y2 along the line
g(x, y) = 0 ⇔ y − x− c = 0, where c is a parameter of the problem not subject to optimization.

Note that
∇f = (2x− y,−x+ 2y), ∇g = (−1, 1),

therefore
∇f = λ∇g ⇔ 2x− y = −λ, −x+ 2y = λ.

From these equations, we have that

2x− y = x− 2y ⇒ x = −y,

and since we must also have y = x+ c, we have that y = c
2
. Concluding,

x = − c

2
, y =

c

2
, λ =

3c

2
.

See Fig. 8.

Example 8.6. (2016 exam)

1. We will find all the extrema of the function

3x2 + 2y2 + 2xy − 10x− 10y + 15

Are they minima or maxima?

2. Then, we will repeat the previous part with the additional constraint that

x+ y = −1,

using a Lagrange multiplier.
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1. We calculate the partial derivatives of f(x, y):

fx = 6x+ 2y − 10,

fy = 4y + 2x− 10,

fxx = 6,

fyy = 4,

fxy = 2.

We calculate points where the gradient is zero:

∇f = 0 ⇔ (6x+ 2y − 10, 4y + 2x− 10) = (0, 0) ⇔ 3x+ y = 5, 2y + x = 5 ⇔ x = 1, y = 2.

Also,
D = fxxfyy − (fxy)

2 = 6× 4− 22 = 20 > 0,

therefore we have a minimum at (x, y) = (1, 2).

2. We require that
∇f = λ∇g ⇔ 6x+ 2y − 10 = λ, 4y + 2x− 10 = λ.

Solving for λ, we find y = 2x, and using the constraint x + y = −1 we find that x = −1
3
, y = −2

3
.

We note that the given function is a positive definite quadratic form, therefore this extremum must be
a minimum.

9 Double Integrals
Refer to book

Example 9.1. We will calculate the double integral of the function f(x, y) = x2y2 in the triangle formed
by the points (0, 0), (0, 1), and (1, 1).

We will use both forms of Fubini’s theorem and arrive at the same result. In the first form, we have∫∫
A

x2y2 dA =

∫ 1

0

(∫ 1

x

x2y2 dy

)
dx =

∫ 1

0

x2

(∫ 1

x

(
y3

3

)′

dy

)
=

∫ 1

0

x2

(
1

3
− x3

3

)
dx =

∫ 1

0

(
x2

3
− x5

3

)
dx =

[
x3

9
− x6

18

]1
0

=
1

9
− 1

18
=

1

18
.

Using the second form, we have∫∫
A

x2y2 dA =

∫ 1

0

(∫ y

0

x2y2 dx

)
dy =

∫ 1

0

y2
(∫ y

0

(
x3

3

)′

dx

)
dy

=

∫ 1

0

y5

3
dy =

∫ 1

0

(
y6

18

)′

=
1

18
.

10 Vectors

Definition 10.1. (Vectors and their operations)
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1. We define a vector x of dimension n ∈ N to be an ordered set of n components xi ∈ R, 1 ≤ i ≤ n:

x =


x1

x2

. . .
xn

 or x =
[
x1 x2 . . . xn

]
.

The first notation is a column vector, the second notation a row vector. In the rest, we will mostly be
using the row vector notation, for convenience, but all definitions and theory apply for both notations,
mutatis mutandis.

2. We define the transpose of a row (column) vector to be the corresponding column (row) vector:
x1

x2

. . .
xn


T

=
[
x1 x2 . . . xn

]
,
[
x1 x2 . . . xn

]T
=


x1

x2

. . .
xn

 .

3. We define vector addition as follows:[
x1 x2 . . . xn

]
+
[
y1 y2 . . . yn

]
=
[
x1 + y1 x2 + y2 . . . xn + yn

]
.

4. We define multiplication of a vector with a real number as

a
[
x1 x2 . . . xn

]
=
[
ax1 ax2 . . . axn

]
.

5. We define the null vector or zero vector

0 =
[
0 0 . . . 0

]
.

6. We denote the space of all vectors as Rn, or, more specifically Rn×1, for column vectors, and R1×n,
for row vectors.

Theorem 10.1. (Vector operation properties) The following properties hold for all x, y, z ∈ Rn:

1. (Commutativity) x+ y = y+ x.

2. (Associativity) x+ (y+ z) = (x+ y) + z.

3. (Identity element) x+ 0 = 0+ x.

4. (Inverse element) x+ (−x) = 0.

5. a(bx) = (ab)x.

6. 1x = x.

7. (Distributive property) a(x+ y) = ax+ ay.

8. (Distributive property) (a+ b)x = ax+ bx.

Observations
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1. The proofs of these properties follow easily from the manner we have defined the operations of the
vectors.

2. Vectors are not the only mathematical constructs to satisfy the properties of the above theorem. Other
constructs exist as well. For example, real functions also satisfy the same properties, mutatis mutandis.
For this reason, all sets that satisfy the above theorem are called vector spaces.

Definition 10.2. (Vector length) We define the length or norm ∥x∥ of a vector x as

∥x∥ =
√
x2
1 + x2

2 + · · ·+ x2
n.

Theorem 10.2. (Properties of the length) The length of a vector satisfies the following properties, for all x,
y ∈ Rn, and all a ∈ R:

1. ∥x∥ ≥ 0.

2. ∥x∥ = 0 if and only if x = 0.

3. ∥ax∥ = |a|∥x∥.

4. (Triangle inequality) ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Observations

1. The proof of these properties follows easily from the manner we have defined the operations (except
the triangle inequality, which can most easily be proved using the Cauchy-Schwarz inequality, shown
later).

2. Again, vectors and their length, defined as above, are not the only mathematical constructs to satisfy
the properties of the above theorem. Other constructs exist as well. For example, vectors also satisfy
these properties if we define the length of a vector as

∥x∥ = (xp
1 + xp

2 + · · ·+ xp
n)

1
p ,

where p is any positive real number. Functions also satisfy the same properties if we define the length
of a function as, for example,

∥f∥ =

(∫ 1

0

|f(x)|p dx
) 1

p

,

for any p positive real number. All vector spaces equipped with a norm that satisfies the above theorem
are called normed spaces.

Definition 10.3. (Inner product) We define the inner product of two vectors x, y ∈ Rn as

x · y =
n∑

i=1

xiyi.

Theorem 10.3. (Properties of the inner product) For all x, y ∈ Rn and a ∈ R, the following properties
hold:

1. x · y = y · x.
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2. (ax) · y = a(x · y).

3. (x+ y) · z = x · z+ y · z.

4. x · x ≥ 0.

5. x · x = 0 ⇔ x = 0.

Observations

1. Observe that x · x = ∥x∥2.

2. The above thoerem is easily proved using the definition of the inner product.

3. Any vector space equipped with an inner product satisfying the above theorem is called an inner
product space. For example, The following will serve as an inner product of two real functions:

f · g =

∫ b

a

f(x)g(x) dx.

Theorem 10.4. (Cauchy-Schwarz Inequality) For all x, y ∈ Rn, the following inequality holds:

|x · y| ≤ ∥x∥∥y∥.

Απόδειξη. Observe that, for any λ ∈ R,

0 ≤ ∥x− λy∥2 = (x− λy) · (x− λy) = x · x− 2λy · x+ λ2y · y = λ2∥y∥2 − (2y · x)λ+ ∥x∥2.

The above trinomial is always positive, so the discriminant must be non-positive, i.e.,

4(y · x)2 − 4∥x∥2∥y∥2 ≤ 0 ⇔ |x · y| ≤ ∥x∥∥y∥.

Definition 10.4. (Angles between vectors)

1. When x · y = 0, the two vectors x, y are called orthogonal.

2. We define the angle θ between two vectors x and y as

cos θ =
x · y

∥x∥∥y∥
.

Observe that this definition is possible due to the Cauchy-Schwarz inequality, which ensures that x·y
∥x∥∥y∥ ∈

[−1, 1]

Definition 10.5. (Linear Independence) A set of m vectors x1, x2, . . . , xm are called linearly independent
if

a1x1 + a2x2 + · · ·+ amxm = 0 ⇒ a1 = a2 = · · · = am = 0.

Otherwise, they are called linearly dependent.
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Example 10.1. The vectors
[
2 1 0

]T , [1 2 3
]T and

[
4 5 6

]T are linearly dependent because21
0

+ 2

12
3

−

45
6

 =

00
0

 .

Observations

1. If a set of vectors are linearly dependent, then there is a set of numbers a1, a2, . . . , am, not all zero,
such that a1x1 + a2x2 + · · ·+ amxm = 0. This readily gives that there is one vector xk such that

xk = b1x1 + b2x2 + · · ·+ bk−1xk−1 + bk+1xk+1 + · · ·+ bmxm,

i.e., that vector can be written as a linear combination of the rest.

Definition 10.6. (Subspaces) A subspace S of Rn is a set closed under vector addition and multiplication
with a real number, i.e., if x1 and x2 belong to S, then so does k1x1 + k2x2, for all k1, k2 ∈ R.

Observation: Are lines and planes subspaces of R3?

Example 10.2. Let S = {x : a1x1 + a2x2 + · · · + anxn = 0}. Then it is straightforward to show that S is
a subspace. Indeed, let x, y ∈ S with

x =
[
x1 x2 . . . xn

]
, y =

[
y1 y2 . . . yn

]
,

k1x+ k2y =
[
k1x1 + k2y1 k1x2 + k2y2 . . . k1xn + k2yn

]
,

and observe that

a1(k1x1 + k2y1) + a2(k1x2 + k2y2) + · · ·+ an(k1xn + k2yn)

= k1(a1x1 + a2x2 + · · ·+ anxn) + k2(a1y1 + a2y2 + · · ·+ anyn) = 0.

Definition 10.7. (Orthogonal Subspaces)

1. Two subspaces S1 and S2 are called orthogonal if, for all s1 ∈ S1 and all s2 ∈ S2, we have s1 · s2 = 0.

2. The orthogonal complement S⊥ of a subspace S is the set of all vectors that are orthogonal to S
(which is easy to see it is a subspace itself).

Observations

1. If S1 and S2 are orthogonal, which vectors do they have in common?

2. What are the orthogonal complements of lines and planes in R3?

Definition 10.8. (Bases) Let a subspace S and a set of vectors x1, x2, . . . , xm.

1. If, for any y ∈ S we can write y = k1x1 + k2x2 + · · ·+ kmxm, for some k1, k2, . . . , km ∈ R, then we
say that the vectors x1, x2, . . . , xm span S.

2. If, in addition, the vectors x1, x2, . . . , xm are linearly independent, then we call them a basis of S.

3. If, in addition, all basis vectors are orthogonal with each other, the basis is called orthogonal.

4. If, in addition, the vectors have unit length, the basis is called orthonormal.
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Theorem 10.5. (Dimension) For each subspace S, there is a number k called its dimension such that

1. Any p > k vectors are linearly dependent.

2. Any p = k linearly independent vectors span S.

3. No p < k vectors can span S.

Theorem 10.6. (Orthonormal basis for Rn) The space Rn has dimension n. One orthonormal basis is the
following:

e1 = [1 0 0 . . . , 0],

e2 = [0 1 0 . . . , 0],

e3 = [0 0 1 . . . , 0],

. . . . . . . . .

en = [0 0 0 . . . , 1].

Observation: Given any two vectors x and y, we can break y in two components, one component y∥ parallel
to x (its projection on x) and one component y⊥ perpendicular to x:

y∥ =
x · y
∥x∥2

x, y⊥ = y− y∥.

Indeed, y∥ is obviously parallel to x, and, furthermore, observe that

x · y⊥ = x · y− x · x
∥x∥2

(x · y) = 0.

This observation explains the formulas used in the Gram-Schmidt process.

Definition 10.9. (Gram-Schmidt process) Given a set v1, v2, . . . , vk of vectors, the following process creates
a set of linearly independent vectors of unit length e1, e2, . . . , ep, orthogonal to each other, that span the
same subspace as the original set v1, v2, . . . , vk, i.e., an orthonormal basis of that space:

q1 = v1, e1 = q1
∥q1∥ ,

q2 = v2 − (v2 · e1)e1, e2 = q2
∥q2∥ ,

q3 = v3 − (v3 · e1)e1 − (v3 · e2)e2, e3 = q3
∥q3∥ ,

. . . . . . . . . . . . . . . . . .

Observations

1. If at some stage qi = 0, then we just skip it and move to creating the next vector qi+1. Therefore, p
might be smaller than k.

2. Proof goes by induction, but is length and so is omitted. The basic idea is that, at each step, we subtract
from the new vector its part that can be written as a linear combination of the vectors already in the
set, its projections on those vectors already added to the set.

Example 10.3. (2016 exam) We will find an orthonormal basis for the subspace spanned by the vectors

v1 = [1 1 1 1], v2 = [1 2 1 0], v3 = [1 1 2 1]
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using the Gram-Schmidt process.
The first vector in the basis is

e1 =
v1
∥v1∥

=

[
1

2

1

2

1

2

1

2

]
.

Let

q2 = v2 − (e1 · v2)e1

= [1 2 1 0]−
([

1

2

1

2

1

2

1

2

]
· [1 2 1 0]

)[
1

2

1

2

1

2

1

2

]
= [1 2 1 0]− [1 1 1 1]

= [0 1 0 − 1],

therefore the second vector in the basis is

e2 =
q2

∥q2∥
=

[
0

√
2

2
0 −

√
2

2

]
.

Finally, let

q3 = v3 − (e1 · v3)e1 − (e2 · v3)e2

= [1 1 2 1]−
([

1

2

1

2

1

2

1

2

]
· [1 1 2 1]

)[
1

2

1

2

1

2

1

2

]
−

([
0

√
2

2
0 −

√
2

2

)
· [1 1 2 1]

)[
0

√
2

2
0 −

√
2

2

]

= [1 1 2 1]− 5

2

[
1

2

1

2

1

2

1

2

]
− 0

[
0

√
2

2
0 −

√
2

2

]

=

[
−1

4
− 1

4

3

4
− 1

4

]
,

with

∥q3∥ =

√
1

16
+

1

16
+

9

16
+

1

16
=

√
3

2
.

Therefore,

e3 =
q3

∥q3∥
=

[
− 1

2
√
3

− 1

2
√
3

3√
3

− 1

2
√
3

]
.
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11 Matrices

Definition 11.1. (Matrices and their operations)

1. We define a matrix A of sizem× n,m,n ∈ N, to be a collection of elements aij ∈ R arranged inm
rows and n columns as follows:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn

 .

2. We define the transpose AT of a matrix A as
a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn


T

=


a11 a21 . . . am1

a12 a22 . . . am2

. . . . . . . . . . . .
a1n a2n . . . amn

 .

3. We define the addition A+B of two matrices A and B of the same size m× n as
a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn

+


b11 b12 . . . b1m
b21 b22 . . . b2n
. . . . . . . . . . . .
bm1 bm2 . . . bmn

 =


a11 + b11 a12 + b12 . . . a1n + b1n
a21 + b21 a22 + b22 . . . a2n + b2n

. . . . . . . . . . . .
am1 + bm1 am2 + bm2 . . . amn + bmn

 .

4. We define the multiple of a matrix A with a real number k as

k


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn

 =


ka11 ka12 . . . ka1n
ka21 ka22 . . . ka2n
. . . . . . . . . . . .
kam1 kam2 . . . kamn

 .

5. We define the zero matrix

0m×n =


0 0 . . . 0
0 0 . . . 0
. . . . . . . . . . . .
0 0 . . . 0

 .

6. We define the product AB of a matrix A of size m× k with a matrix B of size k × n as the matrix C
of size m× n for which

cij =
∑

1≤p≤k

aipbpj, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

7. We denote the space of all matrices of size m× n as Rm×n.

Observations

1. Observe that vectors may be thought of as special cases of matrices of size n× 1 or 1× n.
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2. Among their many applications, matrices can be used to describe linear systems. Remember that the
system

a11x1 + a12x2 + · · ·+ a1nxn = b1,

a21x1 + a22x2 + · · ·+ a2nxn = b2,

. . . . . . . . .

am1x1 + am2x2 + · · ·+ amnxn = bm,

may be written more succinctly as Ax = b, where

A =


a11 a12 . . . a1n
a11 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn

 , x =


x1

x2

. . .
xn

 , b =


b1
b2
. . .
bn

 .

Theorem11.1. (Matrices are a vector space) LetA,B,C be anymatrices inRm×n. The following properties
hold.

1. (Commutativity) A+B = B + A.

2. (Associativity) A+ (B + C) = (A+B) + C.

3. (Identity element) A+ 0m×n = 0m×n + A.

4. (Inverse element) A+ (−A) = 0m×n.

5. a(bA) = (ab)A.

6. 1A = A.

7. (Distributive property) a(A+B) = aA+ aB.

8. (Distributive property) (a+ b)A = aA+ bA.

Observations

1. The proof of these properties follows easily from the manner we have defined the operations of the
matrices. Therefore,Rm×n is a vector space, with all this entails (i.e., we can define bases, subspaces,
etc.)

2. Let

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn

 , ai =


a1i
a2i
. . .
ami

 , 1 ≤ i ≤ n, bj =
[
bj1 bj2 . . . bjn

]
, 1 ≤ j ≤ m.

i.e., the vectors ai are the columns of the matrix and the vectors bj are its rows. Let also vectors

x =


x1

x2

. . .
xn

 , z =
[
z1 z2 . . . zm

]
.
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Then we can write

Ax =
[
a1 a2 . . . an

] 
x1

x2

. . .
xn

 =
n∑

i=1

xiai.

Therefore, we can think of a matrix as a collection of vectors, and multiplying it with another vector
creates an element of the subspace spanned by these vectors.
Likewise, we write

zA =
[
z1 z2 . . . zm

] 
b1

b2

. . .
bm

 =
m∑
j=1

zjbj,

which has a similar interpretation.

Theorem 11.2. (Properties of matrices) Let A a matrix of size m× k and B a matrix of size k × n.

1. (AB)T = BTAT .

2. However, AB = BA does not hold in general, even if m = n = k, so that the dimensions of the two
matrices allow both products to make sense.

Definition 11.2. (Fundamental subspaces) Let A be a m× n matrix.

1. We define the range, or column space, or image R(A) of A to be the subspace

R(A) = {b ∈ Rm×1 : b = Ax for some x ∈ Rn×1}.

We call the dimension of this space the rank of the matrix, and we denote it as rank(A).

2. The row space of A is R(AT ). Its dimension is also rank(A).

3. We define the null space or kernel N(A) of A to be the subspace

N(A) = {x ∈ Rn×1 : Ax = 0}.

The dimension of this space is called nullity and denoted by null(A).

4. The left null space is N(AT ).

Observations

1. It is straightforward to verify that these sets are indeed subspaces, i.e., they are closed under linear
combinations. Indeed, let, for example, b1,b2 ∈ R(A). Then, b1 = Ax1, b2 = Ax2, for some
x1, x2 ∈ Rm. Then k1b1 + k2b2 also belongs to R(A) because

A(k1x1 + k2x2) = k1(Ax1) + k2(Ax2) = k1b1 + k2b2.

Theorem 11.3. (Fundamental Theorem of Linear Algebra)

N(A) = (R(AT ))⊥, N(AT ) = (R(A))⊥.
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Definition 11.3. (Full rank matrices) Let A be a matrix of sizem×n. If either the columns or the rows are
linearly independent, we call the matrix full rank, otherwise we call it rank deficient.

12 Square Matrices

Definition 12.1. (Square matrices)

1. Matrices of size n× n are called square matrices.

2. The matrix

I =


1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .
0 0 . . . 1


is called the identity matrix.

3. If A is square and AT = A, then A is called symmetric.

4. If A is square and
AB = BA = I,

then B is called the inverse of A, and denoted by A−1. It is simple to see that the inverse is unique. If
the inverse of a matrix exists, we call that matrix non-singular, otherwise we call it singular.

5. Given the matrix A of size m × n, let Aij be the matrix of size (m − 1) × (n − 1) created from A if
we remove row i and column j.

6. We define the determinant det(A) or |A| of square matrix A by the recursive equation

|A| = (−1)i+1ai1|Ai1|+ (−1)i+2ai2|Ai2|+ · · ·+ (−1)i+nain|Ain|,

which holds for any row i.

Observation: We can find the inverse of a matrix A, if it exists, through the Gauss-Jordan method as shown
in the following example.

Example 12.1. (2016 exam) We will find the inverse of the following matrix, using the Gauss-Jordan
elimination method 1 2 3

2 3 4
1 1 0

 .
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We have:  1 2 3 1 0 0
2 3 4 0 1 0
1 1 0 0 0 1


 1 2 3 1 0 0

0 −1 −2 −2 1 0
0 −1 −3 −1 0 1

 (R2 = R2− 2R1, R3 = R3−R1)

 1 2 3 1 0 0
0 −1 −2 −2 1 0
0 0 −1 1 −1 1

 (R3 = R3−R2)

 1 2 3 1 0 0
0 1 2 2 −1 0
0 0 1 −1 1 −1

 (R2 = −R2, R3 = −R3)

 1 2 3 1 0 0
0 1 0 4 −3 2
0 0 1 −1 1 −1

 (R2 = R2−R3)

 1 2 0 4 −3 3
0 1 0 4 −3 2
0 0 1 −1 1 −1

 (R1 = R1−R3)

 1 0 0 −4 3 −1
0 1 0 4 −3 2
0 0 1 −1 1 −1

 (R1 = R1− 2R2)

Therefore, the inverse of the given matrix is−4 3 −1
4 −3 2
−1 1 −1

 .

Theorem 12.1. (Properties of square matrices)

1. (AB)−1 = B−1A−1.

2. (AT )−1 = (A−1)T .

3.
|A| = (−1)i+1a1i|A1i|+ (−1)i+2a2i|A2i|+ · · ·+ (−1)i+nani|Ani|,

so we can select any column as well, when calculating the determinant.

4. |AT | = |A|.

5. |aA| = an|A|.

6. |AB| = |A||B|.

7. If B is created by exchanging two rows or two columns of matrix A, then |B| = −|A|.

8. If we add to any column or row the multiple of another column or row (respectively) the determinant
does not change.
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9. Let the k column vectors a1, a2, . . . , ak and the matrix

A =
[
a1 a2 . . . ak

]
The vectors are linearly independent if we can delete some of the rows of A such that a matrix of size
k × k of non-zero determinant is created.

Theorem 12.2. (Non-singular matrices) Let A be a square matrix of size n× n. The following statements
are equivalent:

1. The matrix has an inverse A−1.

2. The determinant |A| ̸= 0.

3. rank(A) = n.

4. A has n linearly independent columns and n linearly independent rows.

5. N(A) = N(AT ) = {0}.

6. All eigenvalues of A (to be defined shortly) are non-zero.

Example 12.2. (2015 exam) We will answer the following questions:
What is the rank of the following matrices?1 1 1

1 2 1
1 1 1

 ,

1 1 1
1 1 1
1 1 1

 ,

1 2 3
4 5 6
7 8 9

 ,

To which of the above matrices does the vector [1 − 1 10]T belong to the range?
Regarding the first matrix, observe that the first and the third rows are equal, so the rank cannot be 3. On

the other hand, the determinant of the matrix that is created if we remove the last row and the last column
is 1 × 2 − 1 × 1 = 1, therefore the rank is 2. For the vector [1 − 1 10]T to belong to the range of that
matrix, it is necessary for the following system to have a solution:1 1 1

1 2 1
1 1 1

x1

x2

x3

 =

 1
−1
10

 .

However, subtracting the first system from the last one shows that the system has no solution, so the given
vector does not belong to the range of the matrix.

Regarding the second matrix, all rows are equal, so the rank must be 1. Again, for the vector [1 −
1 10]T to belong to the range of that matrix, it is necessary for the following system to have a solution:1 1 1

1 1 1
1 1 1

x1

x2

x3

 =

 1
−1
10

 .

The system clearly does not have a solution, so the given vector does not belong to the range of the matrix.
Regarding the final matrix, observe that the determinant∣∣∣∣∣∣

1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣ = 1× (5× 9− 6× 8)− 2× (4× 9− 6× 7) + 3× (4× 8− 5× 7) = 0,
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so again the rank of that matrix cannot be 3. Indeed, if we try to solve the system1 2 3
4 5 6
7 8 9

×

x1

x2

x3

 =

00
0

 ,

we find that the system becomes: 1 2 3 0
4 5 6 0
7 8 9 0


⇔

 1 2 3 0
0 −3 −6 0
0 −6 −12 0

 (R2 = R1 − 4R1, R3 = R3 − 7R1)

⇔

 1 2 3 0
0 1 2 0
0 0 0 0

 (R2 = −1

3
R2, R3 = R3 − 2R1)

therefore one solution is x3 = 1, x1 = 1, x2 = −2. Regarding the given vector, we try to solve the system1 2 3
4 5 6
7 8 9

x1

x2

x3

 =

 1
−1
10

 .

as follows:  1 2 3 1
4 5 6 −1
7 8 9 10


⇔

 1 2 3 1
0 −3 −6 −5
0 −6 −12 3

 (R2 = R1 − 4R1, R3 = R3 − 7R1)

⇔

 1 2 3 1
0 1 2 5

3

0 0 0 13

 , (R2 = −1

3
R2, R3 = R3 − 2R1)

which has no solution, therefore the vector [1 − 1 10]T does not belong to the range of that matrix as
well

Definition 12.2. (Characteristic polynomial) We define the characteristic polynomial of matrix A be the
polynomial of λ of order n given by

|A− λI| = 0.

Its n roots are called eigenvalues. If λ is such a root, any vector x such that Ax = λx is called a (right)
eigenvector and any vector x such that xA = λx is called a left eigenvector.

Example 12.3. We will find the eigenvalues and eigenvectors of the matrix

A =

[
1 −1
2 4

]
.
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The characteristic polynomial is

det(A− λI) = 0 ⇔
∣∣∣∣ 1− λ −1

2 4− λ

∣∣∣∣ = 0 ⇔ (1− λ)(4− λ) + 2 = 0

⇔ λ2 − 5λ+ 6 = 0 ⇔ λ1 = 2, λ2 = 3.

Regarding the first eigenvector, we have

Ax = 2x ⇔
[
−1 −1
2 2

] [
x1

x2

]
=

[
0
0

]
⇔ x1 + x2 = 0 ⇔ x1 = −x2.

Therefore, one eigenvector is
[

1√
2
,− 1√

2

]T
.

Regarding the second eigenvector, we have

Ax = 3x ⇔
[
−2 −1
2 1

] [
x1

x2

]
=

[
0
0

]
⇔ 2x1 + x2 = 0 ⇔ x2 = −2x1.

Therefore, one eigenvector is
[

1√
5
,− 2√

5

]T
.

Observations

1. Eigenvalues are special, in that when λ is an eigenvalue, there are non-zero vectors x such that Ax =
λx, i.e., multiplication with A does not change the direction of the vector x, only its magnitude.

2. The set of eigenvectors belonging to a specific eigenvalue form a subspace, as it is easy to show.

Theorem 12.3. (Properties of eigenvalues)

1. Diagonal and triangular matrices have their eigenvalues on the main diagonal.

2. If λ1 ̸= λ2 eigenvalues, then the eigenvectors of λ1 cannot belong to the subspace spanned by the
eigenvectors of λ2.

3. Symmetric matrices have real eigenvalues and eigenvectors corresponding to different eigenvalues
are orthogonal to each other.

13 Diagonalization
Let us assume that a square matrix A has n linearly independent eigenvectors, x1, x2, . . . , xn. Let us create
a matrix whose columns are these vectors:

S =
[
x1 x2 . . . xn

]
.

Let also Λ the diagonal matrix with the corresponding eigenvalues in the diagonal, i.e.,

Λ =


λ1 0 . . . . . .
0 λ2 . . . . . .
. . . . . . . . . . . .
0 0 . . . λn


We have

A = SΛS−1.
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To prove this, note that

AS = A
[
x1 x2 . . . xn

]
=
[
Ax1 Ax2 . . . Axn

]
=

[
λ1x1 λ2x2 . . . λnxn

]
=
[
x1 x2 . . . xn

]
Λ

= SΛ,

from which the result follows.
Diagonalization is useful for a number of reasons. For example, observe that

Ak = SΛS−1SΛS−1 . . . SΛS−1 = SΛkS−1,

where

Λk =


λk
1 0 . . . . . .
0 λk

2 . . . . . .
. . . . . . . . . . . .
0 0 . . . λk

n


Unfortunately, not all matrices can be diagonalized, as diagonalization requires n linearly independent

eigenvectors, and not all matrices have them. See the next example

Example 13.1. We will calculate the eigenvalues and eigenvectors of

A =

[
0 1
0 0

]
.

The characteristic polynomial is ∣∣∣∣−s 1
0 −s

∣∣∣∣ = 0 ⇔ s2 = 0 ⇔ s1 = s2 = 0.

Regarding the eigenvectors, we have [
0 1
0 0

] [
x1

x2

]
⇔ x2 = 0,

therefore the subspace of eigenvectors is the one-dimensional set {(x1, 0) : x1 ∈ R}.

Example 13.2. We will find the eigenvalues and eigenvectors of the matrix

A =

[
3 1
1 3

]
,

and then write it in the form A = SΛS−1 where Λ is a diagonal matrix.
To find the eigenvalues, we solve the equation∣∣∣∣3− s 1
1 3− s

∣∣∣∣ = 0 ⇔ (s− 3)2 − 1 = 0 ⇔ s2 + 9− 6s− 1 = 0 ⇔ s2 − 6s+ 8 = 0

⇔ s =
6±

√
36− 32

2
= 2, 4.

To find the eigenvector corresponding to the eigenvalue s1 = 2, we have[
3 1
1 3

] [
x1

x2

]
= 2

[
x1

x2

]
⇔ 3x1 + x2 = 2x1, x1 + 3x2 = 2x2 ⇔ x1 + x2 = 0.
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Therefore, one choice for an eigenvector is
[

1√
2
− 1√

2

]T
.

Likewise, to find the eigenvector corresponding to the eigenvalue s1 = 4, we have[
3 1
1 3

] [
x1

x2

]
= 4

[
x1

x2

]
⇔ 3x1 + x2 = 4x1, x1 + 3x2 = 4x2 ⇔ x1 = x2.

Therefore, one choice for an eigenvector is
[

1√
2

1√
2

]T
.

It follows that we can write A as
A = SΛS−1,

where

S =

[
1√
2

1√
2

− 1√
2

1√
2

]
, Λ =

[
2 0
0 4

]
,

and

S−1 = ST =

[
1√
2

− 1√
2

1√
2

1√
2

]
,

since S is orthonormal.

Example 13.3. We will compute the diagonalization of the matrix

A =

1 1 1
1 1 1
1 1 1

 .

To this effect, we calculate the roots of the characteristic polynomial:

det(A− λI) = 0 ⇔

∣∣∣∣∣∣
1− λ 1 1
1 1− λ 1
1 1 1− λ

∣∣∣∣∣∣ = 0

⇔ (1− λ)
[
(1− λ)2 − 1

]
− (1− λ− 1) + (1− 1 + λ) = 0 ⇔ (1− λ)(λ2 − 2λ) + 2λ = 0

⇔ (1− λ)λ(λ− 2) + 2λ = λ(2 + (1− λ)(λ− 2)) = λ(2 + λ− 2− λ2 + 2λ) = λ2(3− λ) = 0,

therefore the eigenvalues are
λ1 = λ2 = 0, λ3 = 3.

Therefore, matrix Λ is

Λ =

0 0 0
0 0 0
0 0 3


Regarding the eigenvectors of the first eigenvalue, we have:1 1 1

1 1 1
1 1 1

x1

x2

x3

 =

00
0

⇔ x1 + x2 + x3 = 0.

Therefore, we have two degrees of freedom, and two eigenvectors are x1 = [1 − 1 0]T and x2 =
[1 0 − 1]T .
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Regarding the eigenvectors of the second eigenvalue, we have:1− 3 1 1
1 1− 3 1
1 1 1− 3

x1

x2

x3

 =

00
0

⇔ −2x1 + x2 + x3, x1 − 2x2 + x3 = 0, x1 + x2 − 2x3 = 0.

Two of these three equations are independent. We can then set the values of two components, and find the
third. For example, one eigenvector is [1 1 1]T .

Therefore, the required matrix S is

S =

 1 1 1
−1 0 1
0 −1 1

 .

It remains to find the inverse of S. To this effect, we can use Gauss-Jordan elimination: 1 1 1 1 0 0
−1 0 1 0 1 0
0 −1 1 0 0 1


⇔

 1 1 1 1 0 0
0 1 2 1 1 0
0 −1 1 0 0 1

 (R2 = R2 +R1)

⇔

 1 1 1 1 0 0
0 1 2 1 1 0
0 0 3 1 1 1

 (R3 = R3 +R2)

⇔

 1 1 1 1 0 0
0 1 2 1 1 0
0 0 1 1

3
1
3

1
3

 (R3 = R3/3)

⇔

 1 1 1 1 0 0
0 1 0 1

3
1
3

−2
3

0 0 1 1
3

1
3

1
3

 (R2 = R2 − 2R3)

⇔

 1 0 0 1
3

−2
3

1
3

0 1 0 1
3

1
3

−2
3

0 0 1 1
3

1
3

1
3

 (R1 = R1 −R2 −R3)

Therefore,

S−1 =

1
3

−2
3

1
3

1
3

1
3

−2
3

1
3

1
3

1
3

 .

Concluding, we have

A = SΛS−1

=

 1 1 1
−1 0 1
0 −1 1

0 0 0
0 0 0
0 0 3

1
3

−2
3

1
3

1
3

1
3

−2
3

1
3

1
3

1
3

 .

As a means of verification, observe that if we get the product we have 1 1 1
−1 0 1
0 −1 1

0 0 0
0 0 0
0 0 3

1
3

−2
3

1
3

1
3

1
3

−2
3

1
3

1
3

1
3

 =

0 0 3
0 0 3
0 0 3

1
3

−2
3

1
3

1
3

1
3

−2
3

1
3

1
3

1
3

 =

1 1 1
1 1 1
1 1 1
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Alternatively, we could have observed that A is symmetric, so we can make an orthonormal basis with
its eigenvectors, and use this to construct S, in which case S−1 is simply equal to ST . That would have
made the Gauss-Jordan elimination unnecessary.

14 Symmetric matrices

Definition 14.1. Let A be a symmetric (i.e. AT = A) n× n matrix.

1. The expression
xTAx

is called a quadratic form.

2. Matrix A is called positive definite if for all x ̸= 0, we have xTAx > 0.

3. Matrix A is called positive semidefinite if for all x ̸= 0, we have xTAx ≥ 0.

4. Matrix A is called negative definite if for all x ̸= 0, we have xTAx < 0.

5. Matrix A is called negative semidefinite if for all x ̸= 0, we have xTAx ≤ 0.

6. Matrix A is called indefinite if for some x ̸= 0, we have xTAx > 0 and for some x ̸= 0, we have
xTAx < 0.

Theorem 14.1. 1. A matrix A is positive definite if all its eigenvalues are positive.

2. A matrix A is positive semidefinite if all its eigenvalues are nonnegative.

3. A matrix A is negative definite if all its eigenvalues are negative.

4. A matrix A is negative semidefinite if all its eigenvalues are nonpositive.

5. A matrix A is indefinite if it has both positive and negative eigenvalues

Example 14.1. Which of the following matrices are positive (or negative) definite?[
1 0
0 1

]
,

[
1 0
0 −

]
,

[
10 1
1 10

]
.

To answer this question, it suffices to calculate the eigenvalues of the matrices.
Regarding the first one, which is the identity matrix, we clearly have λ1, λ2 = 1 > 0, therefore that

matrix is positive definite.
Regarding the second one, we have

det(A− λI) = 0 ⇔
∣∣∣∣ 1− λ 0

0 −1− λ

∣∣∣∣ = 0 ⇔ λ2 − 1 = 0 ⇔ λ = ±1,

therefore that matrix is indefinite.
Finally, regarding the third matrix, we have

det(A− λI) = 0 ⇔
∣∣∣∣ 10− λ 1

1 10− λ

∣∣∣∣ = 0 ⇔ (10− λ)2 = 1 ⇔ λ1 = 9, λ2 = 11,

therefore this matrix is positive definite.
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15 Singular Value Decomposition
Any n×m matrix A can be written as follows:

A = UΣV T .

This is the Singular Value Decomposition (SVD) of matrix A. In the above,

1. Σ is a diagonal matrix of size n ×m, whose diagonal elements are the square roots σi =
√
λi of the

non-zero eigenvalues of matrix AAT (and also ATA), in decreasing order.

2. U is an orthogonal matrix of size n× n, comprised of columns that are the eigenvectors of AAT .

3. V is an orthogonal matrix of sizem×m, comprised of columns that are the eigenvectors of ATA.

Note that the eigenvectors appearing in the i-place ofU and V must correspond to the i-larger eigenvalue.
Note that ATA always has real non-negative eigenvalues.

The geometric interpretation of the SVD is as follows: a vector multiplied byA is first rotated in its own
space, then its components are individually scaled, and then the resulting vector is rotated in the space of
the output vector.

Observe that

A =
[
u1 u2 . . . um

] 
σ1 0 0 . . .
0 σ2 0 . . .
0 0 σ3 . . .
. . . . . . . . . . . .



vT1
vT2
. . .
vTn ]

 =
[
σ1u1 σ2u2 . . .

] 
vT1
vT2
. . .
vTn ]

 =
k∑

i=1

uiσiv
T
i ,

where k is the number of singular values. Based on this equation, we have

Avi = σiui, ATui = σivi

Example 15.1. We will find the SVD of the matrix

A =

[
1 1 0
0 1 1

]
.

We have

AAT =

[
1 1 0
0 1 1

]1 0
1 1
0 1

 =

[
2 1
1 2

]
,

whose eigenvalues are given by the equation

det(A− λI) =

∣∣∣∣ 2− λ 1
1 2− λ

∣∣∣∣ = (λ− 2)2 − 1 = 0,

therefore λ1 = 1 and λ2 = 3.
Therefore,

Σ =

[√
3 0 0
0 1 0

]
.

Regarding the first eigenvalue, we have[
−1 1
1 −1

] [
x1

x2

]
=
[
0 0

]
⇔ x1 = x2,
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therefore an eigenvector of unit length is
[

1√
2

1√
2

]
.

Regarding the second eigenvector, we have[
1 1
1 1

] [
x1

x2

]
=
[
0 0

]
⇔ x1 + x2 = 0,

therefore an eigenvector of unit length is
[

1√
2
− 1√

2

]
.

It follows that

U =

[
1√
2

1√
2

1√
2

− 1√
2

]
.

Regarding the eigenvectors of V , we could repeat the above process, however since the eigenvectors
have an arbitrary direction, and V is not uniquely determined it is not certain that we will arrive at a V that
will satisfy the SVD equation. One solution is to use the method of the next exercises.

Alternatively, note that vi = 1
σi
ATui, therefore, for the first two vectors at least, we have

v1 =
1√
3

1 0
1 1
0 1

[ 1√
2

1√
2

]
=


1√
6
2√
6
1√
6

 ,

v2 =

1 0
1 1
0 1

[ 1√
2
− 1√

2

]
=

 1√
2

0
− 1√

2

 .

We cannot find v3 with this method, however we know that it must form an orthonormal basis together
with v1 andv2 and so, using, for example, the Gram-Schmidt process, we find that v3 =

[
− 1√

3
1√
3
− 1√

3

]
.

Therefore,

V =


1√
6

1√
2

− 1√
3

2√
6

0 1√
3

1
sqrt6

− 1√
2

− 1√
3


Note that we could also have found the eigenvectors of V first, and use them to find the two eigenvectors

of U . Indeed,

ATA =

1 0
1 1
0 1

[1 1 0
0 1 1

]
=

1 1 0
1 2 1
0 1 1

 ,

whose characteristic polynomial is

det(ATA− λI) =

∣∣∣∣∣∣
1− λ 1 0
1 2− λ 1
0 1 1− λ

∣∣∣∣∣∣ = (1− λ)[(λ− 1)(λ− 2)− 1)]− (1− λ)

= (1− λ)(λ2 + 1− λ− 2λ) + λ− 1 = (1− λ)(λ2 + 1− 3λ) + λ

= λ2 + 1− 3λ− λ3 − λ+ 3λ2 + λ− 1

= λ(λ− 3− λ2 − 1 + 3λ+ 1) = λ(λ− 3− λ2 + 3λ) = λ[(λ− 3)− λ(λ− 3)]

= λ(λ− 3)(1− λ),

therefore the eigenvalues are
λ1 = 3, λ2 = 1, λ3 = 0,
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as expected.
Regarding the first eigenvector,−2 1 0

1 −1 1
0 1 −2

 [x1 x2 x3

]
=

00
0

⇔ −2x1 + x2 = 0, x2 − 2x3 = 0,

therefore one eigenvector is [1 2 1]T , which, normalizing to have unit length, becomes
[

1√
6

2√
6

1√
6

]T
.

Regarding the second eigenvector,0 1 0
1 1 1
0 1 0

 [x1 x2 x3

]
=

00
0

⇔ x2 = 0, x3 = −x1,

therefore one eigenvector is [1 0 − 1]T , which, normalizing to have unit length, becomes
[

1√
2
0 − 1√

2

]T
.

Regarding the third eigenvector,1 1 0
1 2 1
0 1 1

 [x1 x2 x3

]
=

00
0

⇔ x2 = −x1, x2 = −x3,

therefore one eigenvector is [−1 1 − 1]T , which, normalizing, becomes
[
− 1√

3
1√
3
− 1√

3

]T
.

Observe that the eigenvectors we found with this method coincide with those found with the previous
one, but this is a coincidence.

Example 15.2. One method of finding the SVD is to solve the eigenvalue system[
0 AT

A 0

] [
V V
U −U

]
=

[
V V
U −U

] [
Σ 0
0 −Σ

]
⇔ ATU = V Σ, −ATU = −V Σ, AV = UΣ, AV = UΣ ⇔ A = UΣV T

where 0 is a matrix with zeros and proper dimensions. Observe that the large block matrix is symmetric,
therefore it is guaranteed to have an orthogonal set of eigenvectors.

Example 15.3. (2015 exam) We will find the SVD of the matrix

A =

[
1 2
2 4

]
We have

AAT =

[
1 2
2 4

] [
1 2
2 4

]
=

[
5 10
10 20

]
,

whose characteristic polynomial is

det(AAT−λI) =

∣∣∣∣ 5− λ 10
10 20− λ

∣∣∣∣ = (λ−5)(λ−20)−100 = 0 ⇔ λ2−25λ+100−100 = 0 ⇔ λ(λ−25) = 0.

Therefore, we have

Σ =

[
5 0
0 0

]
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Next, we find the eigenvectors of AAT . Regarding the eigenvector corresponding to λ = 0, we have[
5 10
10 20

] [
x1

x2

]
=

[
0
0

]
⇔ 5x1 + 10x2 = 0,

therefore one eigenvector is [2− 1]T . Normalizing it, gives the eigenvector of unit length
[

2√
5
− 1√

5

]
.

Regarding the eigenvector corresponding to λ = 25, we have[
5− 25 10
10 20− 25

] [
x1

x2

]
=

[
0
0

]
⇔ 10x1 − 5x2 = 0,

therefore one eigenvector is [12]T . Normalizing it, gives the eigenvector of unit length
[

1√
5

2√
5

]
.

Therefore, we found that

U =

[
1√
5

2√
5

2√
5

− 1√
5

]
Regarding V , we note that vi = 1

σi
ATui, therefore, regarding the first one,

v1
1

5

[
1 2
2 4

] [ 1√
5
2√
5

]
=

[
1√
5
2√
5

]

Regarding the second column of V , as the corresponding singular value is zero, we can use the method
above. Requiring, however v2 to form an orthonormal basis together with v1, we readily find

V =

[
1√
5

2√
5

2√
5

− 1√
5

]

Wrapping everything up, we found that[
1 2
2 4

]
=

[
1√
5

2√
5

2√
5

− 1√
5

] [
5 0
0 0

][ 1√
5

2√
5

2√
5

− 1√
5

]T
Alternatively, we could have notices that A is symmetric with an eigenvector space of dimension 2,

therefore its SVD coincides with its diagonalization! The required calculations would be fewer.

16 Example Exercises
Multivariate Calculus

1. Find extrema when there are no constraints

2. Find extrema with constraints

3. Plot contour lines.

Linear Algebra

1. Find eigenvalues

2. Find SVD
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3. Find if a set of vectors are linearly independent.

4. Find inverse matrix

5. What is a positive (negative) (semi)definite matrix, and how to determine if a given matrix belongs
to any of these classes of matrices

6. Find the rank, range, and null space of a matrix.
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