1. Identify the locations of saddle points and extrema of the following function:

$$
f(x, y)=4 x y-x^{4}-y^{4} .
$$

2. Find the location on the curve $x y^{2}=54$ that is closest to the origin.
3. Compute the double integral of the function $f(x, y)=\cos (x+y)$ on the region R specified by the lines $x=0, y=0$, and $x+y=1$.
4. Use the Gram-Schmidt process to calculate a set of orthonormal vectors using the following vectors in the given order:

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] .
$$

5. Find the eigenvalues and eigenvectors of the matrix

$$
A=\left[\begin{array}{lll}
0 & 0 & 2 \\
0 & 2 & 0 \\
2 & 0 & 0
\end{array}\right]
$$

Then, find matrices S, Λ such that $A=S \Lambda S^{-1}$, and compute S^{-1}.

1. Identify the locations of saddle points and extrema of the following function:

$$
f(x, y)=4 x y-x^{4}-y^{4}
$$

Solution: Observe that

$$
\nabla f(x, y)=\left(4 y-4 x^{3}, 4 x-4 y^{3}\right)
$$

Therefore,

$$
\nabla f(x, y)=(0,0) \Leftrightarrow y=x^{3}, x=y^{3} .
$$

The above equations give
$x^{9}=x \Rightarrow x\left(x^{8}-1\right)=0 \Rightarrow\left(x^{4}-1\right)\left(x^{4}+1\right) x=0 \Rightarrow\left(x^{2}-1\right)\left(x^{2}+1\right) x=0 \Rightarrow(x-1)(x+1) x=0$.
It follows that there are three locations where we may have saddle points and extrema, i.e.,

$$
(0,0), \quad(1,1), \quad(-1,-1)
$$

Next, observe that

$$
f_{x x}(x, y)=-12 x^{2}, \quad f_{y y}(x, y)=-12 y^{2}, \quad f_{x y}(x, y)=4
$$

Regarding the point $(0,0)$, we have

$$
D(0,0)=0-4^{2}<0
$$

so this point is a saddle point. Regarding the point $(1,1)$, we have

$$
D(1,1)=144-4^{2}>0, \quad f_{x x}<0
$$

so we have a maximum at $(1,1)$. Likewise, at point $(-1,-1)$, again we have

$$
D(1,1)=144-4^{2}>0, \quad f_{x x}<0
$$

so this point is a maximum as well.
2. Find the location on the curve $x y^{2}=54$ that is closest to the origin.

Solution: The problem is equivalent to minimizing the function $x^{2}+y^{2}$ subject to the constraint

$$
g(x, y) \triangleq x y^{2}-54=0
$$

Note that

$$
\nabla f=(2 x, 2 y), \quad \nabla g=\left(y^{2}, 2 x y\right)
$$

Observe that $\nabla g=(0,0)$ at the origin, that is not a solution. Therefore, if there is a minimum, it will have to be at a location where, for some λ, we have

$$
\nabla f=\lambda \nabla g \Leftrightarrow(2 x, 2 y)=\left(\lambda y^{2}, 2 \lambda x y\right) \Leftrightarrow 2 x=\lambda y^{2}, \quad 2 y=2 \lambda x y \Leftrightarrow 2 x=\lambda y^{2}, \quad \lambda=\frac{1}{x} .
$$

From the last two equations, together with equation $x y^{2}=54$, it follows that

$$
2 x^{2}=y^{2}, \quad x y^{2}=54 \Rightarrow 2 x^{3}=54 \Rightarrow x=3 \Rightarrow y= \pm 3 \sqrt{2}
$$

therefore there are two locations, $(3,3 \sqrt{2})$ and $(3,-3 \sqrt{2})$, where the curve is closest to the origin.
3. Compute the double integral of the function $f(x, y)=\cos (x+y)$ on the region R specified by the lines $x=0, y=0$, and $x+y=1$.
Solution: Using Fubini's theorem, we have

$$
\begin{aligned}
\iint_{R} f(x, y) d A & =\int_{0}^{1}\left(\int_{0}^{1-x} \cos (x+y) d y\right) d x \\
& =\int_{0}^{1}\left(\int_{0}^{1-x}(\sin (x+y))^{\prime} d y\right) d x=\int_{0}^{1}(\sin (x+1-x)-\sin x) d x \\
& =\int_{0}^{1}(\cos x+x \sin 1)^{\prime} d x=\cos 1+\sin 1-1 .
\end{aligned}
$$

4. Use the Gram-Schmidt process to calculate a set of orthonormal vectors using the following vectors in the given order:

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] .
$$

Solution: The first vector is found by normalization:

$$
\mathbf{e}_{1}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right]
$$

For the second vector, we have

$$
\mathbf{q}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]-\frac{1}{\sqrt{2}}\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2} \\
0
\end{array}\right] \Rightarrow \mathbf{e}_{2}=\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right] .
$$

Observe that

$$
\mathbf{e}_{1} \cdot \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\frac{1}{\sqrt{2}}, \quad \mathbf{e}_{2} \cdot \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c}
-\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\frac{1}{\sqrt{2}},
$$

therefore,

$$
\mathbf{q}_{3}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]-\frac{1}{\sqrt{2}}\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right]-\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

5. Find the eigenvalues and eigenvectors of the matrix

$$
A=\left[\begin{array}{lll}
0 & 0 & 2 \\
0 & 2 & 0 \\
2 & 0 & 0
\end{array}\right]
$$

Then, find matrices S, Λ such that $A=S \Lambda S^{-1}$, and compute S^{-1}.

Solution: The characteristic polynomial is

$$
\begin{aligned}
\left|\begin{array}{ccc}
-\lambda & 0 & 2 \\
0 & 2-\lambda & 0 \\
2 & 0 & -\lambda
\end{array}\right| & =0 \Leftrightarrow-\lambda(2-\lambda)(-\lambda)-2(2-\lambda) 2=0 \\
& \Leftrightarrow \lambda^{2}(2-\lambda)+4(\lambda-2)=(\lambda-2)(2-\lambda)(2+\lambda)=-(\lambda-2)^{2}(\lambda+2)=0,
\end{aligned}
$$

therefore the eigenvalues are $\lambda_{1}=2, \lambda_{2}=2$, and $\lambda_{3}=-2$, and

$$
\Lambda=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

To find the eigenvectors corresponding to the double eigenvalue $\lambda_{1}=\lambda_{2}=2$, we write

$$
\left[\begin{array}{ccc}
-2 & 0 & 2 \\
0 & 0 & 0 \\
2 & 0 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=0 \Leftrightarrow-x_{1}+x_{3}=0, \quad x_{1}-x_{3}=0 \Leftrightarrow x_{1}=x_{3}
$$

whereas x_{2} can take any value. We select the vectors $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$ and $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$.
To find the eigenvector corresponding to the single eigenvalue $\lambda_{3}=-2$, likewise, we write

$$
\left[\begin{array}{lll}
2 & 0 & 2 \\
0 & 4 & 0 \\
2 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Leftrightarrow x_{1}+x_{3}=0, \quad x_{2}=0
$$

We select the vector $\left[\begin{array}{ccc}1 & 0 & -1\end{array}\right]$.
Therefore,

$$
S=\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 0 & -1
\end{array}\right]
$$

It remains to find S^{-1}. To this effect, we can perform Gauss-Jordan elimination

$$
\begin{array}{cl}
{\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & -1 & 0 & 0 & 1
\end{array}\right]} \\
{\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -1 & -1 & 1 & 0 \\
0 & 0 & -2 & -1 & 0 & 1
\end{array}\right]} & (R 2=R 2-R 1, R 3=R 3-R 1) \\
{\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -1 & -1 & 1 & 0 \\
0 & 0 & 1 & \frac{1}{2} & 0 & -\frac{1}{2}
\end{array}\right]} & \left(R 3=-\frac{1}{2} R 3\right) \\
{\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 1 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\
0 & 0 & 1 & \frac{1}{2} & 0 & -\frac{1}{2}
\end{array}\right]} & (R 2=R 2+R 3, R 1=R 1-R 3)
\end{array}
$$

Therefore,

$$
S^{-1}=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
-\frac{1}{2} & 1 & -\frac{1}{2} \\
\frac{1}{2} & 0 & -\frac{1}{2}
\end{array}\right] .
$$

1. Identify the locations of saddle points and extrema of the following function:

$$
f(x, y)=x^{4}+y^{4}+4 x y .
$$

2. Find the location on the curve $x^{2}+x y+y^{2}=1$ that is closest to the origin.
3. Compute the double integral of the function $f(x, y)=(x+y)^{2}$ on the region R specified by the lines $x=0, y=1$, and $y=x$.
4. Use the Gram-Schmidt process to calculate a set of orthonormal vectors using the following vectors in the given order:

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] .
$$

5. Find the eigenvalues and eigenvectors of the matrix

$$
A=\left[\begin{array}{lll}
3 & 4 & 2 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

1. Identify the locations of saddle points and extrema of the following function:

$$
f(x, y)=x^{4}+y^{4}+4 x y .
$$

Solution: Observe that

$$
\nabla f(x, y)=\left(4 x^{3}+4 y, 4 y^{3}+4 x\right)
$$

Therefore,

$$
\nabla f(x, y)=(0,0) \Leftrightarrow x^{3}+y=0, \quad y^{3}+x=0
$$

The above equations give

$$
x^{9}=x \Rightarrow x=-1,0,1 .
$$

It follows that there are three locations where we may have saddle points and extrema, i.e.,

$$
(0,0), \quad(1,-1), \quad(-1,1)
$$

Next, observe that

$$
f_{x x}(x, y)=12 x^{2}, \quad f_{y y}(x, y)=12 y^{2}, \quad f_{x y}(x, y)=4
$$

Regarding the point $(0,0)$, we have

$$
D(0,0)=0-4^{2}<0,
$$

so this point is a saddle point. Regarding the point $(1,-1)$, we have

$$
D(1,-1)=144-4^{2}>0, \quad f_{x x}>0
$$

so we have a minimum at $(1,1)$. Likewise, at point $(-1,1)$, again we have

$$
D(-1,1)=144-4^{2}>0, \quad f_{x x}>0
$$

so this point is a minimum as well.
2. Find the location on the curve $x^{2}+x y+y^{2}=1$ that is closest to the origin.

Solution: The problem is equivalent to minimizing the function $f(x, y)=x^{2}+y^{2}$ subject to the constraint

$$
g(x, y) \triangleq x^{2}+x y+y^{2}-1=0 .
$$

Note that

$$
\nabla f=(2 x, 2 y), \quad \nabla g=(2 x+y, 2 y+x)
$$

Observe that $\nabla g=(0,0)$ at the location where

$$
2 x+y=0, \quad 2 y+x=0,
$$

i.e., the location $(0,0)$, which does not belong to the curve, therefore that location is excluded, and the extrema must all belong to locations where, for some λ, we have

$$
\nabla f=\lambda \nabla g \Leftrightarrow 2 x=\lambda(2 x+y), \quad 2 y=\lambda(2 y+x) \Leftrightarrow 2 x(1-\lambda)=\lambda y, \quad 2 y(1-\lambda)=\lambda x
$$

Multiplying the two equations we arrive at $4 x y(1-\lambda)^{2}=\lambda^{2} x y$. Now observe that if $x=0$, when we must either have $y=0$, which is impossible because $x=y=0$ does not satisfy the constraint, or
$\lambda=1$, which then leads to $y=0$ and again the constraint is not satisfied. So we must have $x \neq 0$. By a similar argument, $y \neq 0$. It then follows, dividing by $x y$, that

$$
4(1-\lambda)^{2}=\lambda^{2} \Leftrightarrow 4+4 \lambda^{2}-8 \lambda=\lambda^{2} \Leftrightarrow 3 \lambda^{2}-8 \lambda+4=0 \Leftrightarrow \lambda_{1}=2, \lambda_{2}=\frac{2}{3}
$$

Regarding the case $\lambda=2$, it leads to

$$
-2 x=2 y, \quad-2 y=2 x \Leftrightarrow x=-y,
$$

and plugging this to the constraint we arrive at

$$
x^{2}=1 \Rightarrow x= \pm 1 \Rightarrow y=\mp 1,
$$

therefore we find the locations $(1,-1)$ and $(-1,1)$, which are both at a distance $\sqrt{2}$ from the origin. Regarding the case $\lambda=\frac{2}{3}$, it leads to $x=y$, and plugging this to the constraint we arrive at

$$
3 x^{2}=1 \Rightarrow x=y= \pm \frac{1}{\sqrt{3}},
$$

therefore we find the locations $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ and $\left(-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)$ which are both at a distance $\sqrt{\frac{2}{3}}$ from the origin.

Therefore, the first two locations we found are maxima, and the last two locations we found are minima.
3. Compute the double integral of the function $f(x, y)=(x+y)^{2}$ on the region R specified by the lines $x=0, y=1$, and $y=x$.
Solution: Using Fubini's theorem, we have

$$
\begin{aligned}
\iint_{R} f(x, y) d A & =\int_{0}^{1}\left(\int_{x}^{1}(x+y)^{2} d y\right) d x=\int_{0}^{1}\left(\int_{x}^{1}\left(\frac{(x+y)^{3}}{3}\right)^{\prime} d y\right) d x \\
& =\int_{0}^{1}\left(\frac{(x+1)^{3}}{3}-\frac{8 x^{3}}{3}\right) d x=\int_{0}^{1}\left(\frac{(x+1)^{4}}{12}-\frac{8 x^{4}}{12}\right)^{\prime} d x \\
& =\frac{16}{12}-\frac{8}{12}-\frac{1}{12}+0=\frac{7}{12}
\end{aligned}
$$

4. Use the Gram-Schmidt process to calculate a set of orthonormal vectors using the following vectors in the given order:

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] .
$$

Solution: The first vector is found by normalization:

$$
\mathbf{e}_{1}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|}=\left[\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right]
$$

For the second vector, we have, since $\mathbf{v}_{2} \cdot \mathbf{e}_{1}=\frac{1}{\sqrt{2}}$, that

$$
\mathbf{q}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]-\frac{1}{\sqrt{2}}\left[\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right] .
$$

Normalizing,

$$
\mathbf{e}_{2}=\frac{\mathbf{q}_{2}}{\left\|\mathbf{q}_{2}\right\|}=\left[\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] .
$$

Finally, noting that $\mathbf{v}_{3} \cdot \mathbf{e}_{1}=\frac{1}{\sqrt{2}}$ and $\mathbf{v}_{3} \cdot \mathbf{e}_{2}=\frac{1}{\sqrt{2}}$, we have

$$
\mathbf{q}_{3}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]-\frac{1}{\sqrt{2}}\left[\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right]-\frac{1}{\sqrt{2}}\left[\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],
$$

from which it follows that

$$
\mathbf{e}_{3}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] .
$$

5. Find the eigenvalues and eigenvectors of the matrix

$$
A=\left[\begin{array}{lll}
3 & 4 & 2 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

Then, find matrices S, Λ such that $A=S \Lambda S^{-1}$, and compute S^{-1}.
Solution: The characteristic polynomial is

$$
|A-\lambda I|=0 \Leftrightarrow\left|\begin{array}{ccc}
3-\lambda & 4 & 2 \\
0 & 1-\lambda & 2 \\
0 & 0 & -\lambda
\end{array}\right|=0 \Leftrightarrow-(3-\lambda)(1-\lambda) \lambda=0 \Leftrightarrow(\lambda-3)(\lambda-1) \lambda=0,
$$

therefore the three eigenvalues are the

$$
\lambda_{1}=0, \quad \lambda_{2}=3, \quad \lambda_{3}=1 .
$$

Regarding the first eigenvector, we have

$$
\begin{aligned}
& {\left[\begin{array}{lll}
3 & 4 & 2 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Leftrightarrow 3 x_{1}+4 x_{2}+2 x_{3}=0, \quad x_{2}+2 x_{3}=0} \\
& \Leftrightarrow x_{2}=-2 x_{3}, \quad 3 x_{1}=-2 x_{3}+8 x_{3} \Leftrightarrow x_{2}=-2 x_{3}, \quad x_{1}=2 x_{3} \Leftrightarrow x_{1}=2 x_{3}, \quad x_{2}=-2 x_{3} .
\end{aligned}
$$

So, for example, one candidate eigenvector is $\left[\begin{array}{lll}2 & -2 & 1\end{array}\right]^{T}$.

Regarding the second eigenvector, we have

$$
\left[\begin{array}{ccc}
0 & 4 & 2 \\
0 & -2 & 2 \\
0 & 0 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Leftrightarrow 4 x_{2}+2 x_{3}=0, \quad-2 x_{2}+2 x_{3}=0, \quad x_{3}=0 \Leftrightarrow x_{2}=x_{3}=0
$$

So, for example, one candidate eigenvector is $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{T}$.
Regarding the third eigenvector, we have

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & 4 & 2 \\
0 & 0 & 2 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Leftrightarrow 2 x_{1}+4 x_{2}+2 x_{3}=0, \quad x_{3}=0, \quad x_{3}=0 } \\
& \Leftrightarrow x_{1}=-2 x_{2}, \quad x_{3}=0
\end{aligned}
$$

So, for example, one candidate eigenvector is $\left[\begin{array}{ccc}-2 & 1 & 0\end{array}\right]^{T}$.
Therefore,

$$
\Lambda=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right], \quad S=\left[\begin{array}{ccc}
2 & 1 & -2 \\
-2 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

It remains to find S^{-1}. To this effect, we can perform Gauss-Jordan elimination

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
2 & 1 & -2 & 1 & 0 & 0 \\
-2 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ccc|ccc}
1 & \frac{1}{2} & -1 & \frac{1}{2} & 0 & 0 \\
0 & 1 & -1 & 1 & 1 & 0 \\
0 & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 1
\end{array}\right] \quad\left(R 1=\frac{1}{2} R 1, R 2=R 2+R 1, R 3=R 3-\frac{1}{2} R 1\right)} \\
& {\left[\begin{array}{ccc|ccc}
1 & \frac{1}{2} & -1 & \frac{1}{2} & 0 & 0 \\
0 & 1 & -1 & 1 & 1 & 0 \\
0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 1
\end{array}\right] \quad\left(R 3=R 3+\frac{1}{2} R 2\right)} \\
& {\left[\begin{array}{ccc|ccc}
1 & \frac{1}{2} & 0 & \frac{1}{2} & 1 & 2 \\
0 & 1 & 0 & 1 & 2 & 2 \\
0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 1
\end{array}\right] \quad(R 2=R 2+2 R 3, R 1=R 1+2 R 3)} \\
& {\left[\begin{array}{lll|lll}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 2 & 2 \\
0 & 0 & 1 & 0 & 1 & 2
\end{array}\right] \quad\left(R 1=R 1-\frac{1}{2} R 2\right)}
\end{aligned}
$$

Therefore,

$$
S^{-1}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 2 & 2 \\
0 & 1 & 2
\end{array}\right]
$$

