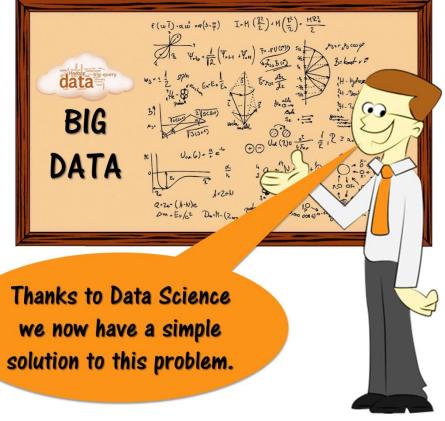


Elements of Statistics and Probability

LECTURE 5 – Simple Regression Xanthi Pedeli Assistant Professor, xpedeli@aueb.gr Department of Statistics, AUEB

Notes by Ioannis Ntzoufras, Professor Department of Statistics, AUEB



5. Correlation and Regression models Contents

Introduction

- ✓ Covariance between two variables
- ✓ Pearson's correlation measure
- ✓ Non-parametric correlation measures
- ✓ The model of simple linear regression

Multiple linear regression model

- ✓ The simple linear regression model
- ✓ Model assumptions
- ✓ Parameter interpretation
- ✓ Implementation in R (Example 5-3)
- ✓ Testing for the model assumptions
- ✓ Diagnostic residual plots
- ✓ Transforming variable
- Comparison to the paired t-test

Pearson's correlation coefficient

- arson's correlation coefficient > It is the normalized version of covariance $\rho = \frac{Cov(X,Y)}{\sigma_x \sigma_y}$
- \succ It measures the degree of linear dependence/relationship
- Bounded and defined in the interval from -1 to 1
 - 1 = perfect (non-random) positive linear relationship
 - ✓-1 = perfect (non-random) negative linear relationship
 - 0 = two variables are not correlated

for normal data => variable are independent

- Free of units
- Quantifies the degree of linear relation
- Does not separates the response from the explanatory

ONA AUEB

Pearson's correlation coefficient

Population correlation
$$\rho = \frac{Cov(X,Y)}{\sigma_x \sigma_y}$$

➤Sample estimator

$$r = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2 \sum_{i=1}^{n} (Y_i - \overline{Y})^2}} = \frac{S_{xy}}{S_x S_y}$$

> cor(salary\$salbeg, salary\$salnow)
[1] 0.8801175

Pearson's correlation in R

- > If X & Y independent \Rightarrow Correlation = 0
- \blacktriangleright Correlation = 0 \Rightarrow no linear dependence

but not necessarily independence

 \succ Correlation = 0 & X - Y normal \Rightarrow independence

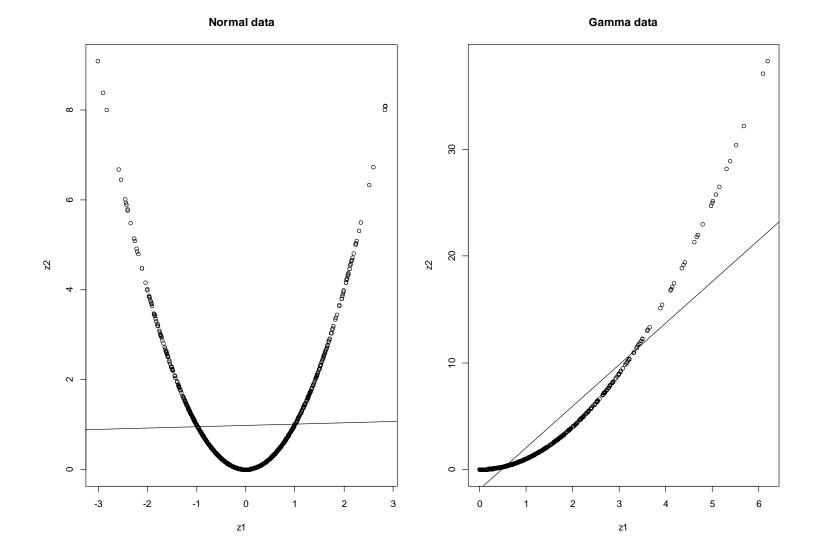
Pearson's correlation & independence

- > If X & Y independent \Rightarrow Correlation = 0
 - > z1<-rnorm(1000)
 > z2<-rnorm(1000)
 > cor(z1,z2)
 [1] 0.01802764
- > z1<-rgamma(1000,1,1)</pre>
- > z2<-rgamma(1000,1,1)</pre>
- > cor(z1,z2)
 [1] 0.008469119
- \blacktriangleright Correlation = 0 \Rightarrow no linear dependence

but not necessarily independence

```
> z1<-rnorm(1000)
> cor(z1,z1^2)
[1] 0.02178643
```

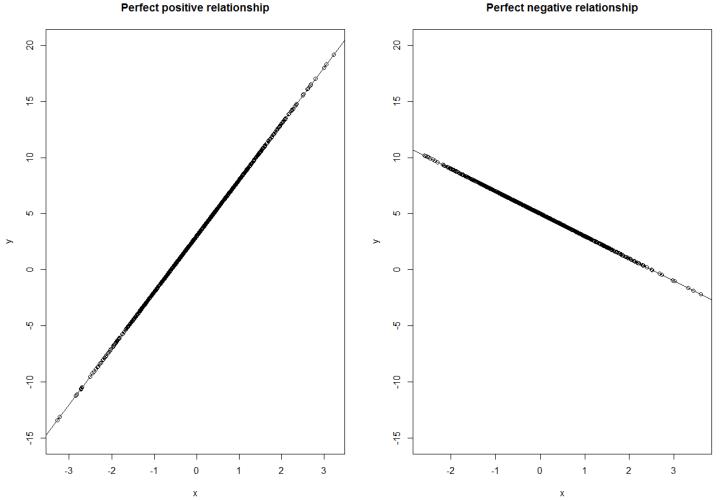
```
> z1<-rgamma(1000,1,1)
> cor(z1,z1^2)
[1] 0.9193777
```

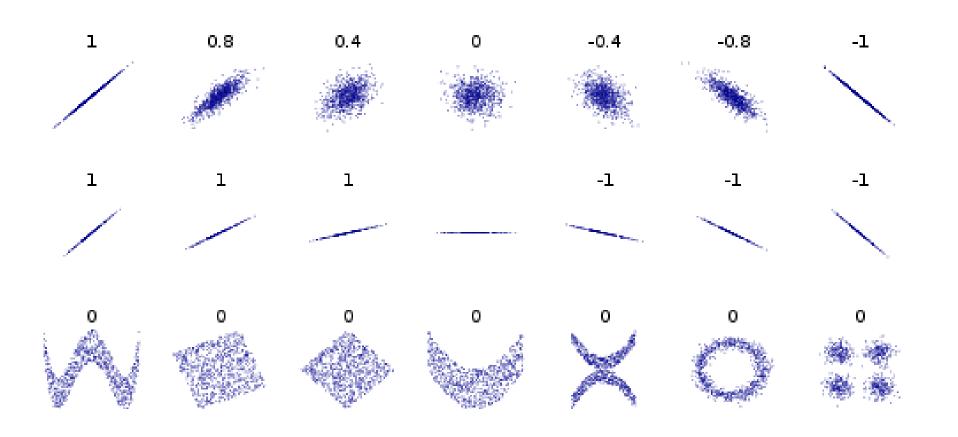
Pearson's correlation & linear functions

 \succ If Y is a linear function of X \Rightarrow Correlation = 1 or -1

> x<-rnorm(1000)
> y<- 5-2*x
> cor(x,y)
[1] -1
> x<-rnorm(1000)
> y<- 3+5*x
> cor(x,y)
[1] 1



Perfect negative relationship



Correlation matrix [using the observed data]

R is a pxp matrix with elements

- R_{jk} = Cor(X_j, X_k) sample correlation between X_j and X_k
- R_{jj} = 1

(the correlation of each variable with itself is one)

> cor(sal.num)

	id	salbeg	time	age	salnow	edlevel	work
id		-0.43118072	-0.012067260	0.10598470			
salbeg	-0.43118072	1.00000000	-0 019753475	-0.01104036	0.88011747	0.63319565	0.045147858
			1.000000000				
			0.051629754				
salnow	-0.41863174	0.88011747	0.084092267	-0.14591032	1.00000000	0.66055891	-0.097455333
edlevel	-0.33421423	0.63319565	0.047378777	-0.28084182	0.66055891	1.00000000	-0.252357836
work	0.01875927	0.04514786	0.002962074	0.80439717	-0.09745533	-0.25235784	1.000000000

The table is symmetric

Each element of the diagonal is 1 since each variable is fully correlated with itself (it is the 11 identity function)

Example 5-1 [salary]

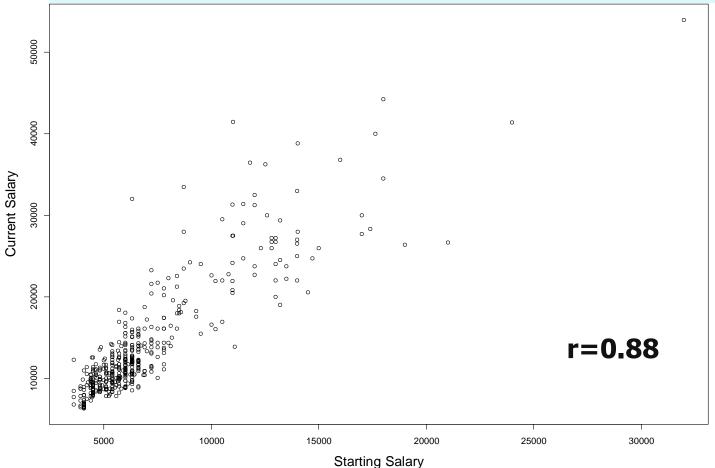
- Assess the possible linear relationships between starting and current salary
 - > x1<-salary\$salbeg
 > x2<-salary\$salnow
 > cor(x1,x2)
 - [1] 0.8801175
 - > cor.test(x1,x2)

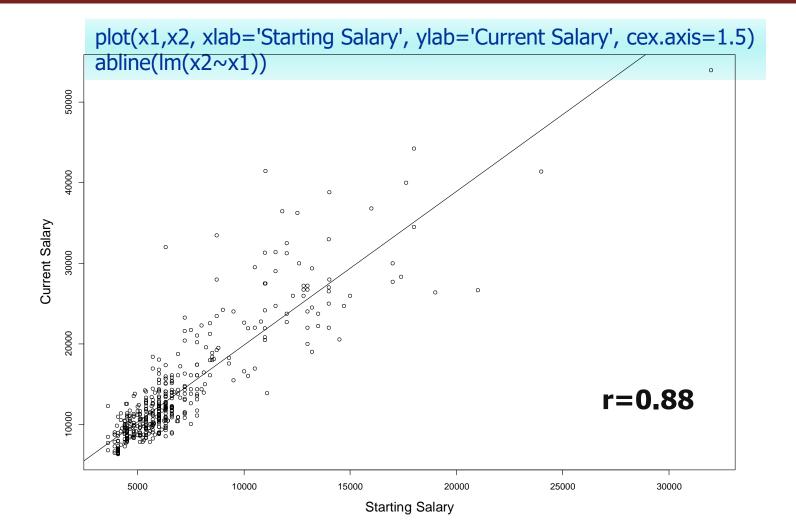
 $H_0: \rho=0$

i.e. there is no linear relationship between the current and the starting salary

Pearson's product-moment correlation

plot(x1,x2, xlab='Starting Salary', ylab='Current Salary', cex.axis=1.5)





Further comments (1)

- The coefficient assumes that both X and Y are random variables
- It can be used as a measure of linearity
- The hypothesis test assumes normality or large sample
- Alternatively, non-parametric correlation measures can be used
- If the relationship is strong but non-linear then the Pearson correlation coefficient will show how well this is approximated by a linear function

Further comments (2)

According with Chatfield & Collins (1980, p. 40-41)

- The test is conservatory i.e. small values of r will give significant relationship (of some kind) especially for large samples
- Empirical rule:
 - strong linear dependence for |r|>0.70
 - Medium linear dependence for 0.4<|r|<0.70
 - Weak linear dependence for |r|< 0.4
- The coefficient is not estimated reliably for small samples (n<12)

Example 5-1 [salary]

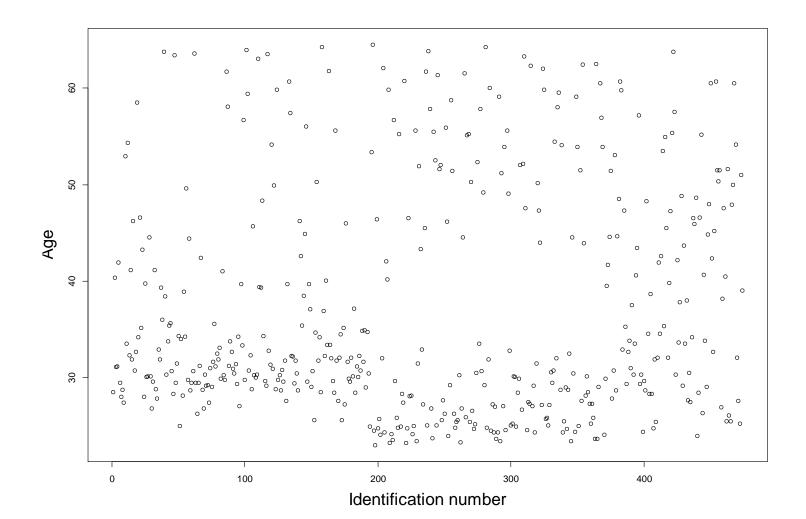
- Assess the possible linear relationships between age and the id?
 It seams that there is significant
 - > x1<-salary\$id
 > x2<-salary\$age</pre>
 - > cor(x1 x2)
 - [1] 0.1059847
 - > cor.test(x1,x2)

It seams that there is significant negative linear dependence between the the age and the id!!!

Does this makes sense?

Is the value of the coefficient large?

Pearson's product-moment correlation



Example 5-1 [salary]

 To assess the possible linear relationships between starting and current salary

	salbeg	salnow	
salbeg		0.880 ^{***} Pearson's correlatio starting and current	
salnow	0.880***	starting and curren	t Salal y

Computed correlation used pearson-method with pairwise-deletion.

* 0.01<p-value<0.05

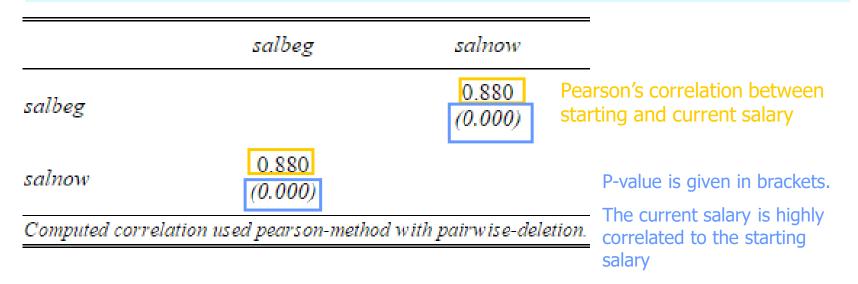
** 0.001<p-value<0.01

*** p-value <0.001

Example 5-1 [salary]

 To assess the possible linear relationships between starting and current salary

library(sjPlot)
sjt.corr(x, corMethod = "pearson", showPValues = TRUE,
 pvaluesAsNumbers = FALSE, fadeNS = TRUE, digits = 3)



Example 5-1 [salary]

 To assess the possible linear relationships between starting and current salary

sjt.corr(sal.num,
corMethod = "pearson",
showPValues = TRUE,
pvaluesAsNumbers = TRUE,
fadeNS = TRUE, digits = 3 ,
triangle = "both")

Non significant correlations are faded with grey color

	id	salbeg	time	age	salnow	edlevel	work
id		-0.431 (0.000)	-0.012 (0.793)	0.106 <i>(0.021)</i>	-0.419 (0.000)	-0.334 (0.000)	0.019 <i>(0.684)</i>
salbeg	-0.431 (0.000)		-0.020 (0.668)	-0.011 (0.811)	0.880 (0.000)	0.633 (0.000)	0.045 <i>(0.327)</i>
time	-0.012 <i>(0.793)</i>	-0.020 (0.668)		0.052 <i>(0.262)</i>	0.084 <i>(0.067)</i>	0.047 <i>(0.303)</i>	0.003 <i>(0.949)</i>
age	0.106 <i>(0.021)</i>	-0.011 (0.811)	0.052 <i>(0.262)</i>		-0.146 (0.001)	-0.281 (0.000)	0.804 (0.000)
salnow	-0.419 (0.000)	0.880 (0.000)	0.084 <i>(0.067)</i>	-0.146 (0.001)		0.661 (0.000)	-0.097 (0.034)
edlevel	-0.334 (0.000)	0.633 (0.000)	0.047 <i>(0.303)</i>	-0.281 (0.000)	0.661 (0.000)		-0.252 (0.000)
work	0.019 <i>(0.684)</i>	0.045 <i>(0.327)</i>	0.003 <i>(0.949)</i>	0.804 <i>(0.000)</i>	-0.097 (0.034)	-0.252 (0.000)	

Computed correlation used pearson-method with pairwise-deletion.

Example 5-1 [salary]

 To assess the possible linear relationships between starting and current salary

sjt.corr(sal.num, corMethod = "pearson", showPValues = TRUE, pvaluesAsNumbers = TRUE, fadeNS = TRUE, digits = 3, **triangle = "lower**")

Non significant correlations are faded with grey color

	id	salbeg	time	age	salnow	edlevel	work
id							
salbeg	-0.431 (0.000)						
time		-0.020 (0.668)					
age		-0.011 (0.811)					
salnow	-0.419 (0.000)	0.880 (0.000)	0.084 <i>(0.067)</i>	-0.146 (0.001)			
edlevel	-0.334 (0.000)	0.633 (0.000)	0.047 <i>(0.303)</i>	-0.281 (0.000)	0.661 (0.000)		
work					-0.097 (0.034)		

Computed correlation used pearson-method with pairwise-deletion.

Back to correlation matrices

> cor(sal.num)

	id	salbeg	time	age	salnow	edlevel	work
id	1.00000000	-0.43118072	-0.012067260	0.10598470	-0.41863174	-0.33421423	0.018759273
salbeg	-0.43118072	1.00000000	-0.019753475	-0.01104036	0.88011747	0.63319565	0.045147858
			1.000000000				
age	0.10598470	-0.01104036	0.051629754	1.00000000	-0.14591032	-0.28084182	0.804397166
			0.084092267				
edlevel	-0.33421423	0.63319565	0.047378777	-0.28084182	0.66055891	1.00000000	-0.252357836
work	0.01875927	0.04514786	0.002962074	0.80439717	-0.09745533	-0.25235784	1.000000000

How to tide up and make correlation matrices readable

- Keep only correlation measures (no p-values)
- Keep only one or two decimals
- Eliminate irrelevant variables (e.g. id)
- Group correlated variables
- Uses symbols or colors for high or significant correlations
- If even these changes, it does not makes any sense
 - Eliminate numbers and keep only colors or symbols
 - Use path diagrams

Correlation matrices

Eliminate decimal numbers & other values

<pre>> round(cor(sal.num),1)</pre>									
	id	salbeg	time	age	salnow	edlevel	work		
id	1.0	-0.4	0.0	0.1	-0.4	-0.3	0.0		
salbeg	-0.4	1.0	0.0	0.0	0.9	0.6	0.0		
time	0.0	0.0	1.0	0.1	0.1	0.0	0.0		
age	0.1	0.0	0.1	1.0	-0.1	-0.3	0.8		
salnow	-0.4	0.9	0.1	-0.1	1.0	0.7	-0.1		
edlevel	-0.3	0.6	0.0	-0.3	0.7	1.0	-0.3		
work	0.0	0.0	0.0	0.8	-0.1	-0.3	1.0		

Correlation matrices

Eliminate irrelevant values

> round (cor (sal.num), 1) [-1, -1] salbeg time age salnow edlevel work salbeg 1.0 0.0 0.0 0.9 0.6 0.0 time 0.0 1.0 0.1 0.1 0.0 0.0 age 0.0 0.1 1.0 -0.1 -0.3 0.8 salnow 0.9 0.1 -0.1 1.0 0.7 -0.1 edlevel 0.6 0.0 -0.3 0.7 1.0 -0.3 work 0.0 0.0 0.8 -0.1 -0.3 1.0

Correlation matrices

- Add colors
 - > temp<-round(cor(sal.num),1)[-1,-1]</pre>
 - > index<-c(1,4,5,3,2)</pre>
 - > temp[index,index]

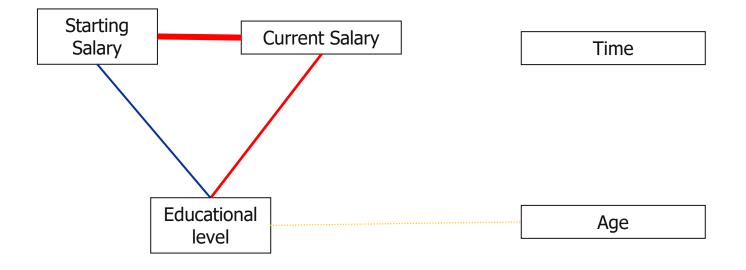
	salbeg	salnow	edlevel	age	time
salbeg	1.0	0.9	0.6	0.0	0.0
salnow	0.9	1.0	0.7	-0.1	0.1
edlevel	0.6	0.7	1.0	-0.3	0.0
age	0.0	-0.1	-0.3	1.0	0.1
time	0.0	0.1	0.0	0.1	1.0

Correlation matrices

- Re-arrange the matrix according to the correlations
 - > temp<-round(cor(sal.num),1)[-1,-1]</pre>
 - > index<-c(1,4,5,3,2)</pre>
 - > temp[index,index]

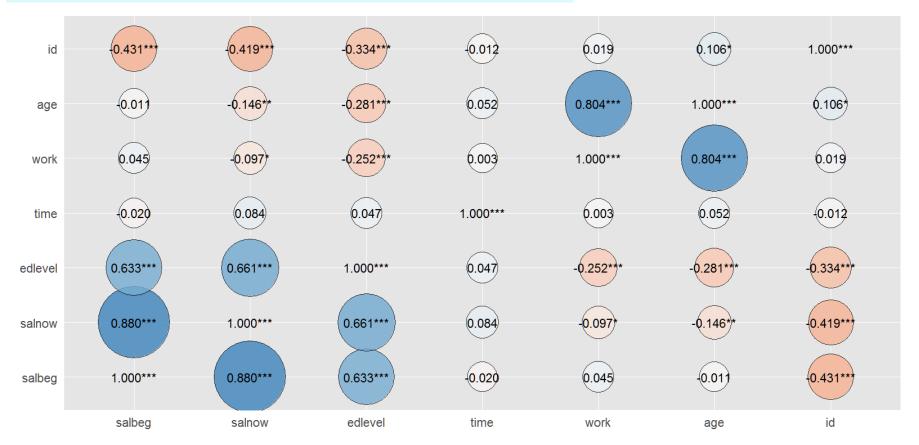
-	salbeg	salnow	edlevel	age	time
salbeg	1.0	0.9	0.6	0.0	0.0
salnow	0.9	1.0	0.7	-0.1	0.1
edlevel	0.6	0.7	1.0	-0.3	0.0
age	0.0	-0.1	-0.3	1.0	0.1
time	0.0	0.1	0.0	0.1	1.0

Path diagram



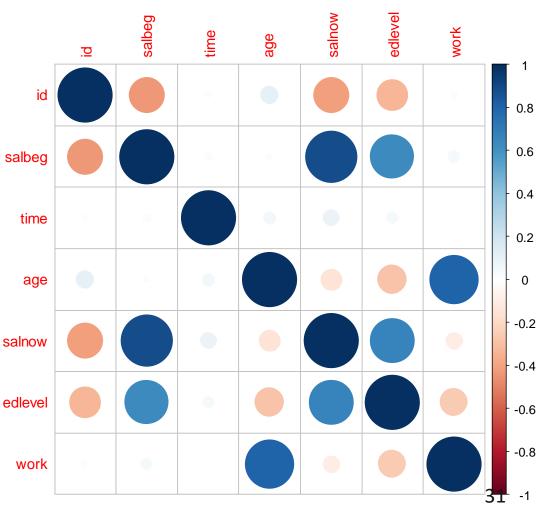
Fancy plots using sjPlot

x<-sal.num
libray(sjPlot); sjp.corr(x, corMethod = "pearson")</pre>

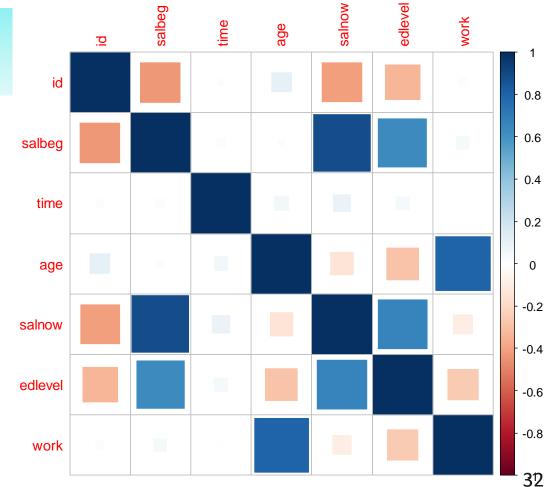


Fancy plots using corrplot

library(corrplot)
corrplot(cor(sal.num))

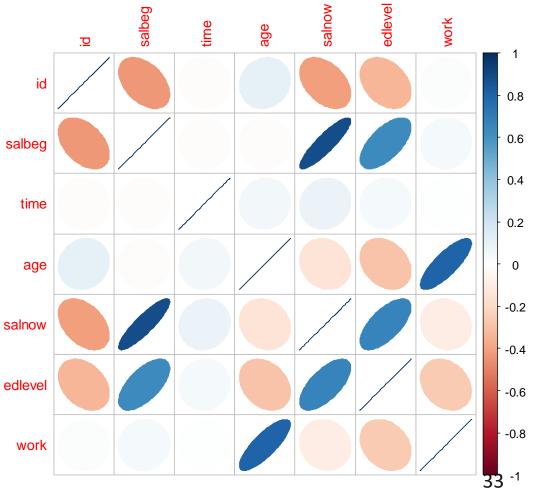


Fancy plots using corrplot



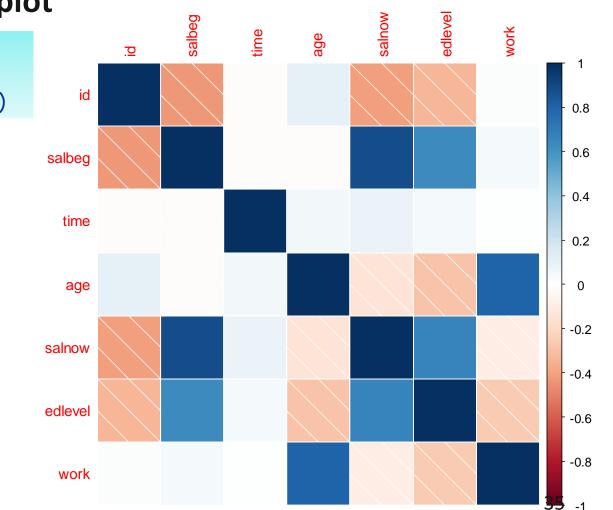
Fancy plots using corrplot

library(corrplot) corrplot(cor(sal.num), method= " ellipse ")



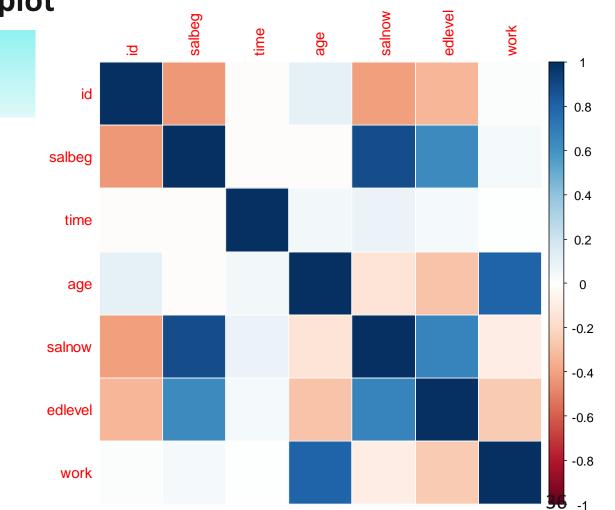
Fancy plots using corrplot

	<u>q</u> .	salbeg	time	age	salnow	edlevel	work	4
id	1	-0.43	-0.01	0.11	-0.42	-0.33	0.02	- 0.8
salbeg	-0.43	1	-0.02	-0.01	0.88	0.63	0.05	- 0.6
time	-0.01	-0.02	1	0.05	0.08	0.05	0	- 0.4
age	0.11	-0.01	0.05	1	-0.15	-0.28	0.8	- 0
salnow	-0.42	0.88	0.08	-0.15	1	0.66	-0.1	0.2
edlevel	-0.33	0.63	0.05	-0.28	0.66	1	-0.25	0.6
work	0.02	0.05	0	0.8	-0.1	-0.25	1	0.8
								34 -1



AUEB

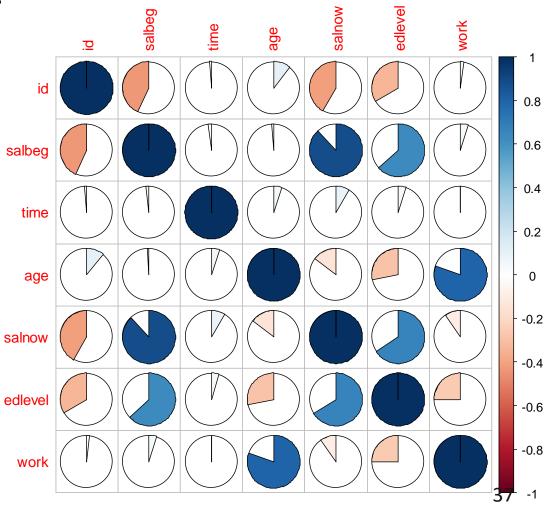
Fancy plots using corrplot



Fancy plots using corrplot

Fancy plots using corrplot

library(corrplot) corrplot(cor(sal.num), method= "pie")

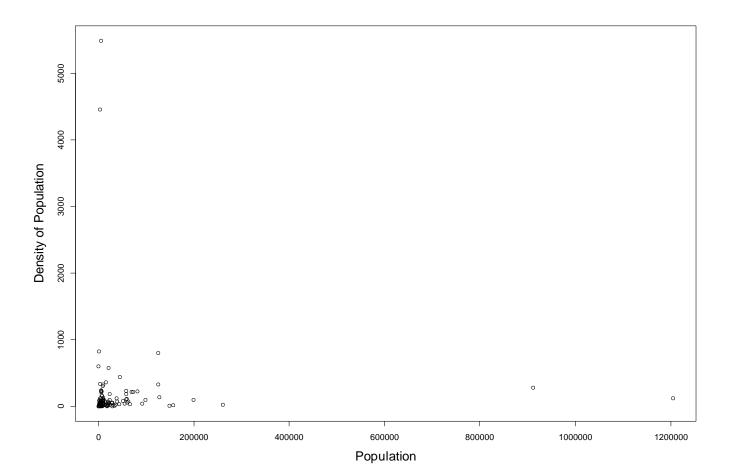


Example 5-2 [world95]

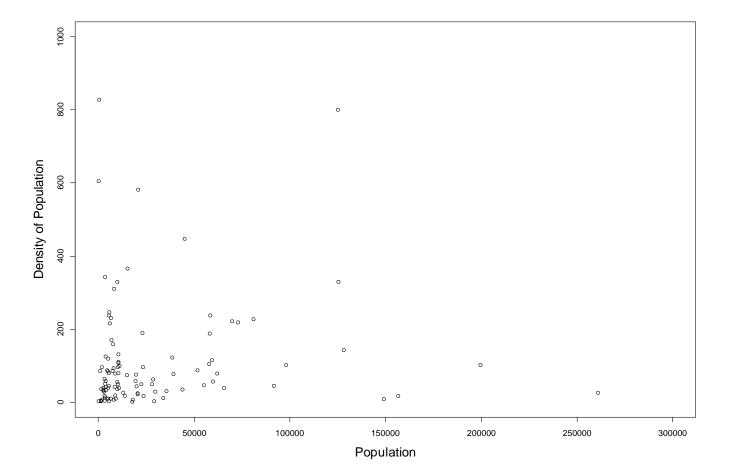
We would like to assess the correlation between the population and the density

> cor.test(world95\$popul,world95\$density)

Pearson's product-moment correlation



ORA AUEB



ОПА AUEB

Example 5-2 [world95]

We would like to assess the correlation between the population and the density

But by definition

DENSITY = POPULATION/AREA (in sq meters) = a + b * POPULATION with a=0 and b=1/AREA !!!! So why r≈0 instead of r=1????

Let us assume that we have two quantitative variables

- X: explanatory or independent variable
- Y: response or dependent variable

If we believe that X influences (or affects) in a some way the response Y then it is sensible to assume that a function h(x) exists such that:

y = h(x)

[perfect/deterministic relationship]

Since we mainly study random phenomena/experiments then it is sensible to add a random (unpredicted) component (i.e. error term)

 $egin{array}{rcl} y &=& h(x) + arepsilon \ arepsilon &\sim {
m Distribution}(heta) \end{array}$

Two quantitative variables

- X: explanatory or independent variable
- Y: response or dependent variable Regression model assumes
- linear relationship (function) between X and Y

 $h(x) = \beta_0 + \beta_1 x$

• Normal errors

$$arepsilon \sim N(0,\sigma^2)$$

So the regression model is now given by $y = \beta_0 + \beta_1 x + \varepsilon$

$$N(0,\sigma^2)$$

 $\varepsilon \sim$

Two quantitative variables

- X: explanatory or independent variable
- Y: response or dependent variable

Regression model

- $y = \beta_0 + \beta_1 x + \varepsilon$
- $arepsilon~\sim~N(0,\sigma^2)$
- WHY LINEAR?
- WHY NORMAL?
- WHY ZERO MEAN OF ERRORS?
- WHAT σ^2 means?

More general approach [GLM]

(and more appropriate in terms of modeling)

- X: explanatory or independent variable
- Y: response or dependent variable $Y \sim \text{Distribution}(\theta)$

 $Y \sim ext{Distribution}(heta) \ g(heta) = h(x)$

- ✓ Distribution(θ): stochastic (random) component
- ✓ h(x): deterministic (non random) component
- g(θ): link function between stochastic and deterministic component
- ✓ Usually $h(x) \Leftrightarrow$ linear function of X \Leftrightarrow also called linear predictor

More general approach [GLM]

(and more appropriate in terms of modeling)

- X: explanatory or independent variable
- Y: response or dependent variable
- Y ~ Normal(μ, σ^2) [$\theta^{T} = (\mu, \sigma^2)$]
- $\mu = \beta_0 + \beta_1 x$ [g(θ)= μ]

Two ways to write a regression model:

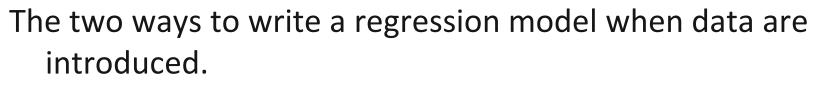
Using the error term representation

$$egin{array}{rcl} y &=& eta_0+eta_1x+arepsilon\ arepsilon&\sim& N(0,\sigma^2) \end{array}$$

or equivalently

Using the stochastic response (GLM type) representation

 $egin{array}{rcl} Y &\sim& N(\mu,\sigma^2) \ \mu &=& eta_0+eta_1 x \end{array}$



We need to introduce an indicator for the study unit/observation :

- Representing by Y_i, X_i (for i=1,2, ..., n) the pairs of the response & explanatory values for each study unit <*i*>
- Using the error term representation $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ $\varepsilon_i \sim N(0, \sigma^2)$

or equivalently

Using the stochastic response (GLM type) representation

$$Y_i \sim N(\mu_i, \sigma^2)$$

 $\mu_i = \beta_0 + \beta_1 x_i$

Terminology and estimators

- $\hat{\beta}_0, \hat{\beta}_1$: Sample estimators/estimates of β_0 and β_1
- ŷ_i : Expected value according to the model or fitted value for <*i*> study unit/ observation/subject
- e_i : Regression residual (estimate of ε_i)
- $\hat{\sigma}^2$: Estimator/estimate of the error $\hat{\sigma}^2 = rac{1}{n-2}\sum_{i=1}^n e_i^2$ variance

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

$$e_i = y_i - \hat{y}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$$

Terminology and estimators

- R² : Coefficient of determination
 ✓ This is a goodness of fit measure
 - ✓ Takes values from 0 to 1
 - Interpretation: % of variability explained by the model
 - ✓ In simple regression $R^2=r^2$
- R_{adj}² : Adjusted coefficient of determination
 - ✓ Takes values from 0 to 1
 - Interpretation: % of variance explained by the model
 - ✓ More useful in multiple regression

$$R^{2} = 1 - \frac{(n-2)\hat{\sigma}^{2}}{(n-1)s_{Y}^{2}}$$

$$R_{adj}^2 = 1 - \frac{\hat{\sigma}^2}{s_{\rm Y}^2}$$

$$\widehat{\sigma}^2 = rac{1}{n-2}\sum_{i=1}^n e_i^2$$
 50

Terminology and estimators

Sample estimators of model coefficients $\beta_0 \& \beta_1$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} X_{i}Y_{i} - n\overline{X}\overline{Y}}{\sum_{i=1}^{n} X_{i}^{2} - n\overline{X}^{2}} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$
$$= \frac{\sqrt{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}}{\sqrt{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}} \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}} = \frac{s_{y}}{s_{x}}r$$

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

5. Correlation and Regression models 5.2.1. Model assumptions (summary)

ASSUMPTIONS (to be checked):

- Independence of errors (and of Y_i)
- Normality of errors (and of Y_i)
- Homoscedasticity of errors (and Y_i)
- Linearity between X & Y
- We work with the residuals e_i

We will discuss in more detail about regression diagnostics and residual analysis later on in this presentation

We use a regression model to

- Describe and understand the association between the two variables
- To predict future values of Y
- Both

When we are interested in the relationship between X & Y:

- **Primary test**: H_0 : $\beta_1 = 0$ vs. H_1 : $\beta_1 \neq 0$
- **Test of secondary importance**: H_0 : $\beta_0=0$ vs. H_1 : $\beta_0 \neq 0$

In case that we are interested in prediction:

• we need to know if we can use the fitted model for prediction

Testing for the relationship between X&Y

- $H_0: \beta_1=0 \text{ vs. } H_1: \beta_1 \neq 0$
 - \checkmark Equivalent to testing for the correlation between X & Y
 - \checkmark It provides the slope of the fitted line
 - ✓ We are interested in the interpretation of CAUSAL relationships between variables (i.e. characteristics or phenomena).

Interpretation: It tests how much we expect that Y will increase if X increases by one unit

- ✓ The value of β_1 is affected by the scale and the units of measurement of both X & Y.
- The correlation measures (ρ & r) and the corresponding tests (for ρ or β1) are not affected by linear changes.

Testing for the relationship between X & Y

Secondary hypothesis test: $H_0: \beta_0=0$ vs. $H_1: \beta_0 \neq 0$

- ✓ Intercept of the fitted line
- ✓ It provides the point where the fitted line intersects with the vertical axis YY' i.e. the value of Y when X=0

Interpretation: Is the expected value of Y when X=0.

- Many times this value does not have direct interpretation (since this value is not possible or outside the observed range
- ✓ Sometimes we constraint $\beta_0=0$ due to logic or an assumed theory
- ✓ Other times it is convenient to consider instead of X, the centered version X'=X − X. Then
 - $\checkmark \beta_1$ remains the same
 - \checkmark β_0 gives the expected value of Y when X is equal to the sample mean 55

Deciding whether we can use the fitted model for prediction

- We can predict the expected value of Y for each X
- > The error variance $\sigma^2 \& R^2$ quantify the precision of the prediction
 - ✓ R^2 >0.7 ⇔ good predictions
 - ✓ R^2 >0.9 ⇔ very good predictions

Predicting outside the observed values

[Extrapolation – a trip to the unknown?]

- **BECAREFUL**: predictions are reliable and acceptable only for values of X that we have observed (and hence we have some information about it)
- We cannot predict something that we have not any information about it and therefore we have not studied it
- Sometimes we are forced to make predictions outside the observed range of X (extrapolation)
 - > This predictions should be used only as a rough yardstick
 - We assume the same (linear) relationship is valid also for these unobserved values of X

Example 5-3 [data frame cargo]

- The head of the logistics department of a large company is interested to estimate the delivery time and therefore the corresponding cost of each cargo depending on the distance
- For this reason, we randomly selected 10 cargo deliveries and recorded the distance in miles and the days until the delivery
- Construct a model that can assist the manager in his aim

Cargo delivery	1	2	3	4	5	6	7	8	9	10
Distance in Miles	825	215	1070	550	480	920	1350	325	670	1215
Delivery time in days	3.5	1.0	4.0	2.0	1.0	3.0	4.5	1.5	3.0	5.0

ORA AUEB

Example 5-3

- Study Unit: cargo
- Sample size: n=10 cargos
- Characteristics: p=3
 - ✓ Cargo id
 - ✓ Distance
 - ✓ Delivery time
- Which is X & which is Y?

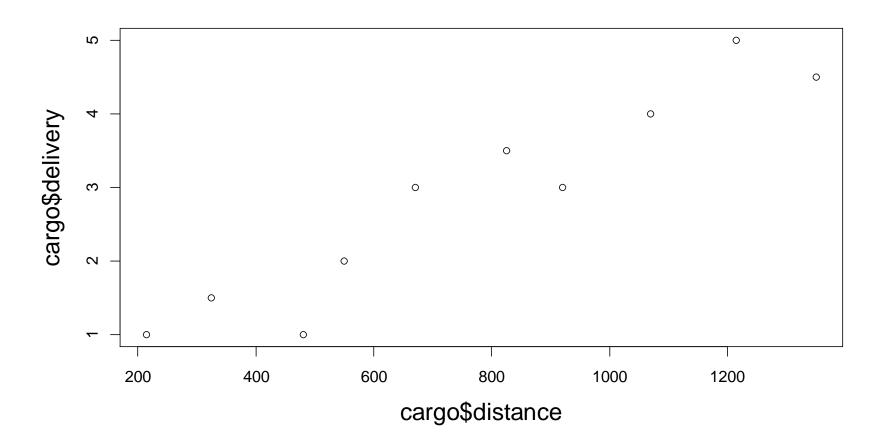
	id	distance	delivery
1	1	825	3.5
2	2	215	1
3	3	1070	4
4	4	550	2
5	5	480	1
6	6	920	3
7	7	1350	4.5
8	8	325	1.5
9	9	670	3
10	10	1215	5
11			

Example 5-3

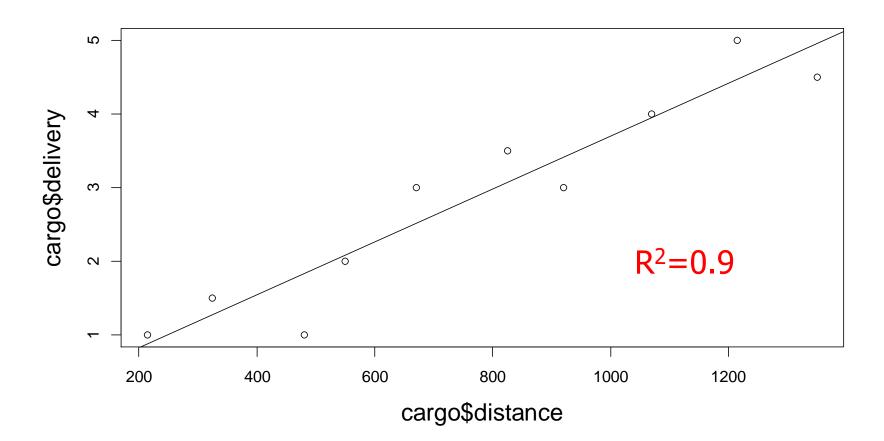
Analysis in steps

- Analysis of each variable separately
- Visualization using a scatter-plot
- Correlation measures
- Regression model
- Testing for the assumptions (residual analysis)
- Revise model if necessary

Example 5-3: Visualization <u>SCATTERPLOT</u>



Example 5-3: Visualization SCATTERPLOT



Example 5-3: Testing for normality of the original variables

> library(nortest)

> lillie.test(cargo\$distance)

Lilliefors (Kolmogorov-Smirnov) normality test

data: cargofdistance D = 0.1117, <mark>p-value = 0.9769</mark>

> shapiro.test(cargo\$distance)

Shapiro-Wilk normality test

data: cargo<u>Sdistance</u> W = 0.9701, <mark>p-value = 0.8915</mark>

> lillie.test(cargo\$delivery)

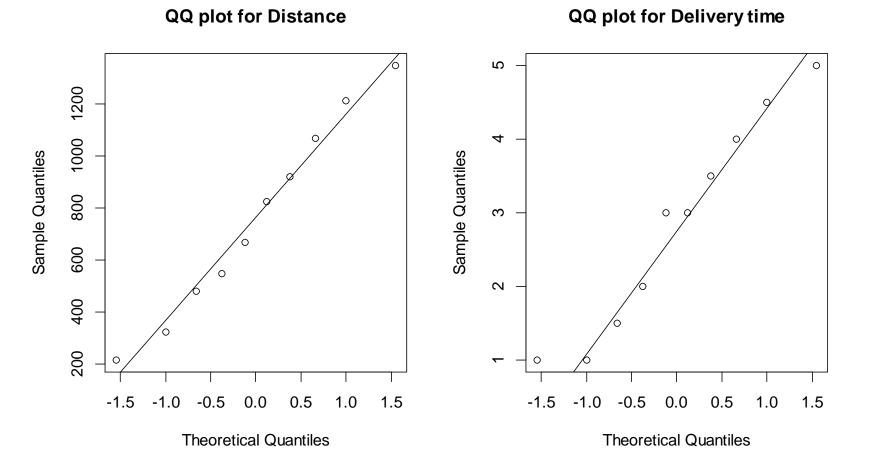
Lilliefors (Kolmogorov-Smirnov) normality test

data: cargoSdelivery D = 0.1416 p-value = 0.8243

> shapiro.test(cargo\$delivery)

Shapiro-Wilk normality test

Example 5-3: Testing for normality of the original variables



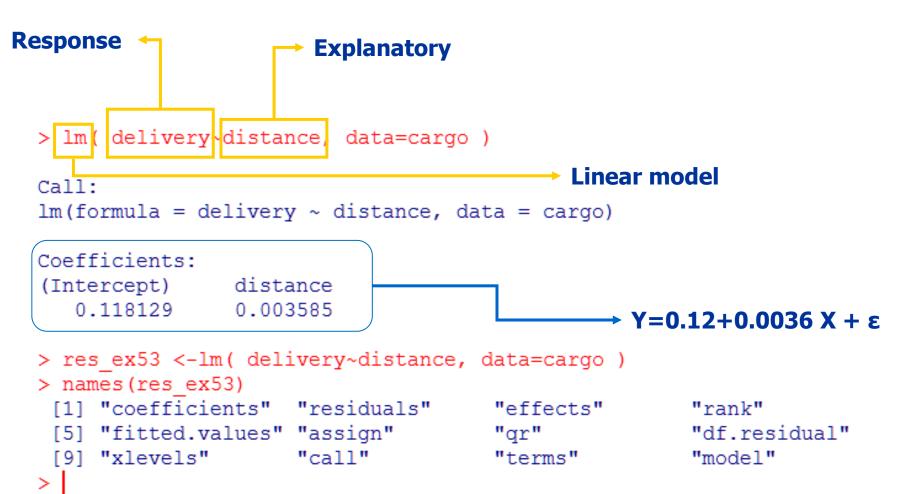
Example 5-3: Monitoring correlation

> cor.test(cargo\$distance, cargo\$delivery)

Pearson's product-moment correlation

0.9489428

Example 5-3: Fitting the regression model



Example 5-3: Summarizing the regression model

```
> summary(res_ex53)
```

```
Call:
lm(formula = delivery ~ distance, data = cargo)
Residuals:
    Min 10 Median 30
                                      Max
-0.83899 -0.33483 0.07842 0.37228 0.52594
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1181291 0.3551477 0.333 0.748
distance 0.0035851 0.0004214 8.509 2.79e-05 ***
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1
Residual standard error: 0.48 on 8 degrees of freedom
Multiple R-squared: 0.9005, Adjusted R-squared: 0.8881
F-statistic: 72.4 on 1 and 8 DF, p-value: 2.795e-05
```

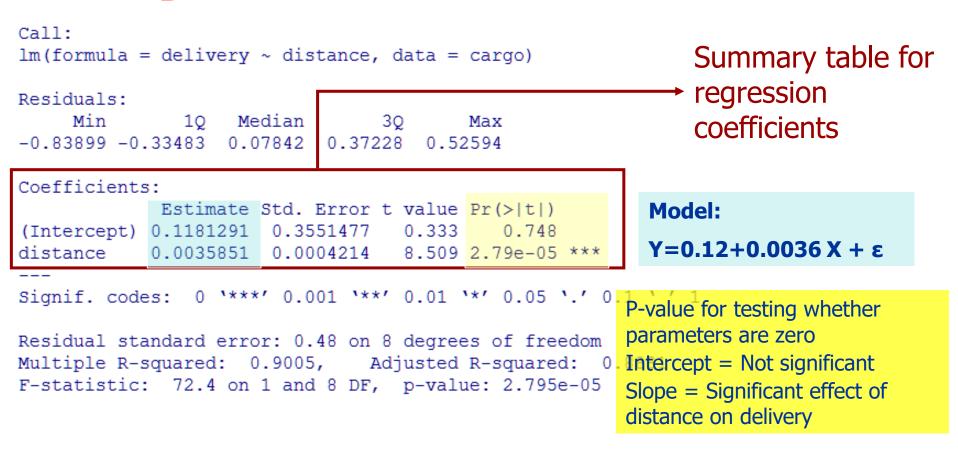

Example 5-3: Summarizing the regression model

> summary(res_ex53)

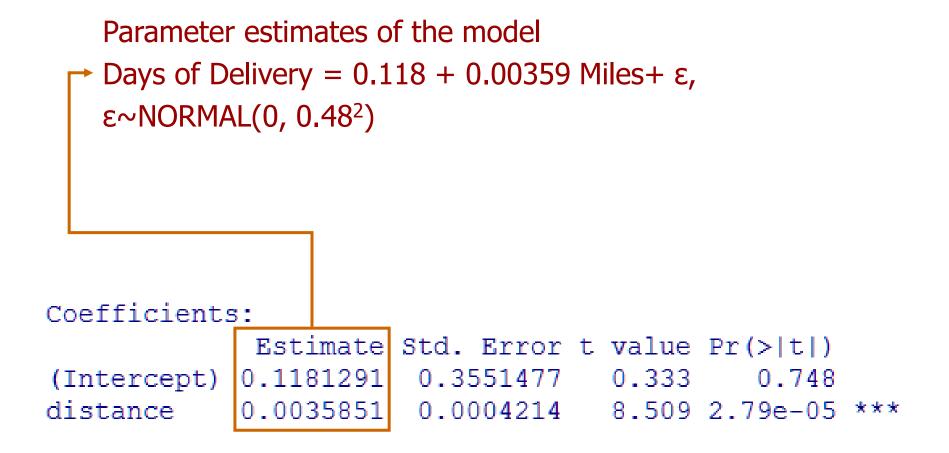
```
Call:
lm(formula = delivery ~ distance, data = cargo)
                                                          Summary statistics
                                                          for residuals
Residuals:
    Min
            10 Median 30
                                      Max
-0.83899 -0.33483 0.07842 0.37228 0.52594
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1181291 0.3551477 0.333 0.748
distance 0.0035851 0.0004214 8.509 2.79e-05 ***
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1
Residual standard error: 0.48 on 8 degrees of freedom
Multiple R-squared: 0.9005, Adjusted R-squared: 0.8881
F-statistic: 72.4 on 1 and 8 DF, p-value: 2.795e-05
```


Example 5-3: Summarizing the regression model

> summary(res_ex53)



Example 5-3: Summarizing the regression model



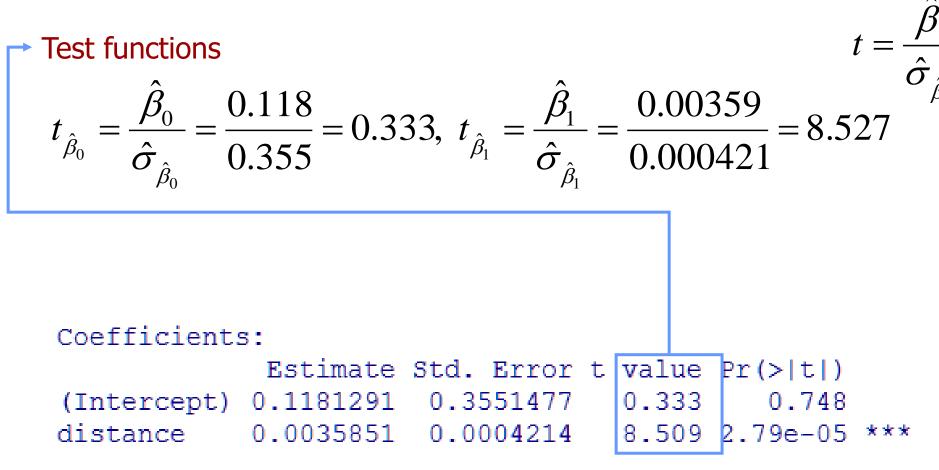
Example 5-3: Summarizing the regression model

Standard errors of the estimates

$$\hat{\sigma}_{\hat{\beta}_0} = \sqrt{Var(\hat{\beta}_0)} = 0.355, \hat{\sigma}_{\hat{\beta}_1} = \sqrt{Var(\hat{\beta}_1)} = 0.000421$$

Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.1181291 0.3551477 0.333 0.748 distance 0.0035851 0.0004214 8.509 2.79e-05 ***

Example 5-3: Summarizing the regression model



Example 5-3: Summarizing the regression model

P-values for testing the hypothesis that each coefficient is zero

Coefficients	s:				
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	0.1181291	0.3551477	0.333	0.748	
distance	0.0035851	0.0004214	8.509	2.79e-05 *	**

Example 5-3: Summarizing the regression model

Standardized coefficients (or beta coefficients)

```
✓ The are the regression coefficients when we standardize all variables
✓ We can use the command scale within the formula in Im in R
✓ The beta coefficient of β_0 is always zero (0)
```

 \checkmark **Interpretation of b**₁: How many standard deviations of Y we expect Y to change when X increases by one standard deviation (of X)

```
> res_ex53beta
Call:
lm(formula = scale(delivery) ~ scale(distance), data = cargo)
Coefficients:
  (Intercept) scale(distance)
  -7.022e-17 9.489e-01
> round(res_ex53peta$coef, 3)
  (Intercept) scale(distance)
      0.000 0.949
```


Example 5-3: Summarizing the regression model

Standardized coefficients (or beta coefficients)

> round(cor(cargo[,-1]),3) \checkmark In simple linear regression the beta distance delivery coefficient is equal to the Pearson's correlation 0.949 distance 1.000coefficient 0.949 1.000 delivery

```
> res ex53beta
```

```
Call:
lm(formula = scale(delivery) ~ scale(distance), data = cargo)
Coefficients:
    (Intercept) scale(distance)
     -7.022e-17
                       9.489e-01
> round(res ex53beta$coef, 3)
    (Intercept) scale(distance)
          0.000
                           0.949
```


Why the standardized coefficient is equal to the correlation

$$\hat{\beta}_{0}^{(st)} = \overline{Z}_{y} - \hat{\beta}_{1}^{(st)} \overline{Z}_{x} = 0 \qquad \qquad \hat{\beta}_{1}^{(st)} = \frac{S_{Z_{y}}}{S_{Z_{x}}} r_{Z_{x}Z_{y}} = r_{Z_{x}Z_{y}}$$

$$r_{Z_{x}Z_{y}} = \frac{\sum_{i=1}^{n} (Z_{x,i} - \overline{Z}_{x})(Z_{y,i} - \overline{Z}_{y})}{\sqrt{\sum_{i=1}^{n} (Z_{x,i} - \overline{Z}_{x})^{2} \sum_{i=1}^{n} (Z_{y,i} - \overline{Z}_{y})^{2}}} = \frac{\sum_{i=1}^{n} Z_{x,i}Z_{y,i}}{\sqrt{\sum_{i=1}^{n} Z_{x,i}^{2} \sum_{i=1}^{n} Z_{y,i}^{2}}} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X}_{y,i} - \overline{Y}_{y,i})}{\sqrt{\sum_{i=1}^{n} (X_{i} - \overline{X}_{y,i} - \overline{Y}_{y,i})^{2}}} = r_{XY}$$

Example 5-3: Summarizing the regression model

```
> summary(res_ex53)
```

```
Call:
                                                                  Residual standard
lm(formula = delivery ~ distance, data = cargo)
                                                                  deviation
Residuals:
     Min
                10 Median
                                   3Q
                                            Max
                                                                 \sigma = 0.48
-0.83899 -0.33483 0.07842 0.37228
                                                                  \checkmark It measures the
Coefficients:
                                                                  precision of the
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1181291 0.3551477 0.333
                                               0.748
                                                                  model predictions
            0.0035851 0.0004214 8.509 2.79e-05 ***
distance
                 0 **** 0.001 *** 0.01 ** 0.05 *. 0.1 * 1
Signif. codes:
                                                                Full Model:
Residual standard error: 0.48 on 8 degrees of freedom
                                                         0.8881
                                                                Y = 0.12 + 0.0036 X + \varepsilon
It means that the accuracy of the prediction is 0,5 day
                                                      -05
 Fitted value \pm 0,5 day will include 66% of the cases
                                                                ε~N( 0, 0,48<sup>2</sup>)
 Fitted value \pm 1 day will include 95% of the cases
```


Example 5-3: Summarizing the regression model

- $R^2 = \%$ of variability explained by the model
- \checkmark It uses the biased estimates of variance
- $\checkmark \mbox{It}$ is used as a measure of goodness of fit
- ✓Increases with every covariate we add (even if it is rubbish)
- ✓ Therefore it should not be used as a variable or model selection criterion
 ✓ We can only compare models with the same number of covariate and same response

```
✓In simple linear regression R^2 = r^2
```

distance 0.0035851 0.0004214 8.509 2.79e-05 ***

```
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 10
```

```
Residual standard error: 0.48 on 8 degrees of freedom
Multiple R-squared: 0.9005, Adjusted R-squared: 0.8881
F-statistic: 72.4 on 1 and 8 DF, p-value: 2.795e-05
```

Coefficients of determination 90% of the variability is explained only using the distance as covariate

distance as covariate

Example 5-3: Summarizing the regression model

 $R_{adi}^2 = \%$ of variance explained by the model adjusted for the number of covariates \checkmark It considers the number of covariates \checkmark It uses the unbiased variance estimators \checkmark It is used as a measure of goodness of fit \checkmark It does not increases always (adding very bad covariates will decrease R_{adi}^2) \checkmark It can be used as a variable or model selection criterion \checkmark In simple linear regression it does not differ a lot from R². (Intercept) 0.1181291 0.3551477 0.333 0.748 distance 0.0035851 0.0004214 8.509 2.79e-05 *** Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' Coefficients of determination standard error: 0 48 or 8 degrees of Multiple R-squared: 0.9005, Adjusted R-squared: 0.8881 88% of the variability is 72.4 on 1 and 8 DF, p-value: 2.795e-05 explained only using the

Example 5-3: Summarizing the regression model

ANOVA table details for regression models

 \checkmark In simple regression it tests for: H₀: β₁=0 vs. H₁: β₁ ≠ 0

✓ Be careful: in multiple regression the assumption involves all covariate effects!

 \checkmark Generally tests how much the current model differs from the constant (or null) model (that is, y= $\beta_0 + \epsilon$)

Coefficients:	
Estimate Std. Error t value Pr(> t)	
(Intercept) 0.1181291 0.3551477 0.333 0.748	
distance 0.0035851 0.0004214 8.509 2.79e-05 ***	Anova table details
	We reject the null
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `'	1 ve reject the num
Residual standard error: 0.48 on 8 degrees of freedom	different from the constant
Multiple R-squared: 0.9005, Adjusted R-squared: 0.8881	the delivery is significant
F-statistic: 72.4 on 1 and 8 DF, p-value: 2.795e-05	for the model

Example 5-3: ANOVA table for the regression model

ANOVA table details for regression models

 \checkmark In simple regression it tests for: H₀: β₁=0 vs. H₁: β₁ ≠ 0

✓ Be careful: in multiple regression the assumption involves all covariate effects!

 \checkmark Generally tests how much the current model differs from the constant (or null) model (that is, $y=\beta_0+\epsilon$)

Example 5-3: Interpretation of the results

- Parameter β_1 =0.00359 (the slope)
- ✓ Is there a linear effect? YES
 - P=0.000<0.05 i.e. we reject the null (H_0)=> Therefore the distance influences the delivery time
- ✓ Of what direction is the relationship? POSITIVE

 $\beta_1 > 0$ which implies positive relationship => the longer the distance, the more delayed is the delivery

- How much the distance influences the delivery?
 - Each extra mile of distance increases the expected time by 0.00359 days (approximately 5 minutes)
 - With every extra 100 miles, the expected delivery increases by 0.359 days (approximately 8.6 hours)

Example 5-3: Interpretation of the results

Why this interpretation?

Parameter β_1

Let us assume two different explanatory values X₁=X & X₂=X+1 then

•
$$\mu_1 = \beta_0 + \beta_1 X_1 = \beta_0 + \beta_1 X$$

- $\mu_2 = \beta_0 + \beta_1 X_2 = \beta_0 + \beta_1 (X+1)$
- $\Delta \mu = \mu_2 \mu_1 = \beta_0 + \beta_1 (X+1) \beta_0 \beta_1 X = \beta_1$

Example 5-3: Interpretation of the results

Parameter $\beta_0 = 0.118$ (the intercept)

 Can be removed from the equation without changing much the fit/predictions? YES

P=0.748>0.05 i.e. we do not reject the null (H_0) => Therefore the constant/intercept can be assumed to be equal to zero and be removed from the model

Example 5-3: Interpretation of the results

Parameter $\beta_0 = 0.118$ (the intercept)

✓ INTERPRETATION:

- When the distance is zero then the delivery time is 0.118 days (2.8 ώρες)
- It shows the delivery time when the cargo destination is very close
- BE CAREFUL this value is outside the range of X since the smallest destination is 215 miles away

> range(cargo\$distance)
[1] 215 1350

✓ Shall we remove it? Possibly YES.

The logic here says that we should remove this term from the model

Example 5-3: Interpretation of the results

Predictive performance and goodness of fit

✓ R=r=0.95 & R²=0.89;

- > High correlation between the two variables
- > Well fitted model and accurate predictions
- > 89% of the variance is explained by the model which means that if we know the distance we can accurately predict the delivery time

Example 5-3: Interpretation of the results

Standardized coefficient $b_1 = 0.949$

 If the distance increases by a standard deviation (i.e. 380 miles) then the delivery time is expected to increase by 0.95 standard deviations of Y (that is, by 0.949*1.435=1.36 days).

```
> sapply( cargo[,-1], sd)
    distance delivery
379.745529 1.434689
```


ASSUMPTIONS (to be checked):

- Normality of errors (and of Y_i)
- Homoscedasticity of errors (and Y_i)
- Independence of errors (and of Y_i)
- Linearity between X & Y
- We work with the residuals e_i

Types of residuals:

• (Unstandardised) Residuals $e_{m{i}}=y_{m{i}}-\widehat{y}_{m{i}}$

 $=\frac{y_i-y_i}{2}$ SPSS, e_i^* Standardized residuals R – Wikipedia $\frac{y_i - \hat{y}_i}{s.e.(y_i - \hat{y}_i)} = \frac{y_i - \hat{y}_i}{\hat{\sigma}\sqrt{1 - h_{ii}}}$ **SPSS** h_{ii} is the diagonal elements of the Wikipedia hat matrix H Studentized residuals $\mathbf{H} = \mathbf{X} \left(\mathbf{X}^T \mathbf{X} \right)^{-1} \mathbf{X}^T$ (internally studentized)

Types of residuals:

Standardized residuals

R – Wikipedia (internally studentized) $e_i^* = \frac{y_i - \hat{y}_i}{s.e.(y_i - \hat{y}_i)} = \frac{y_i - \hat{y}_i}{\hat{\sigma}\sqrt{1 - h_{ii}}}$ SPSS Wikipedia h_{ii} is the diagonal elements of the

- Studentized residuals
- (Deleted) Studentized residuals $\mathbf{H} = \mathbf{X} \left(\mathbf{X}^T \mathbf{X}
 ight)^{-1} \mathbf{X}^T$
 - (or jack-knife residuals)

(externally studentized) When using estimating the standard error from the regression model without using the i-th observation

hat matrix **H**

Types of residuals in R:

• (Unstandardized) Residuals

res_ex53\$residuals residuals(res_ex53) resid(res_ex53)

Standardized residuals

rstandard(res_ex53) library(MASS) round(stdres(res_ex53),3)

- Studentized residuals (Jack-knife residuals)
- NOTE: That all "standardized" studres(res_ residuals will be similar for reasonably large n

rstudent(res_ex53)
library(MASS)
studres(res_ex53)

ORA AUEB

ASSUMPTIONS (to be checked):

Theoretical errors

Estimated sample residuals

$$egin{array}{rll} E(arepsilon_i)&=&0&E(e_i)&=&0\ Var(arepsilon_i)&=&\sigma^2&Var(e_i)&=&\sigma^2(1-h_{ii})\ Cov(arepsilon_i,arepsilon_j)&=&0&Cov(e_i,e_j)&=&-\sigma^2h_{ij} \end{array}$$

ASSUMPTIONS (to be checked):

- Normality of errors (and of Y_i)
 Use studentized residuals
- Homoscedasticity of errors (and Y_i)

Use standardized or studentized residuals (with expected variance eq. to 1)

Independence of errors (and of Y_i)

Use studentized/Jack-knife residuals

(expected correlation eq. to 0)

Linearity between X & Y

(for reasonably large n you can use any of them since they will be similar)

ASSUMPTIONS: The Normality assumption

Consequences of departures from Normality:

- The performance of hypothesis tests and confidence intervals can be compromised.
- Though, these procedures are generally robust to small departures from Normality.
- How to cure the problem:
 - Use transformations (log or Box-Cox)
 - Use non-normal errors
 - Use GLM models for non-normal responses
 - Use non-parametric regression models

ASSUMPTIONS: The normality assumption

Use un-standardized residuals

- Normality QQ-plots for unstandardized residuals
- Student QQ-plots for studentized residuals
- Lilliefors KS & Shapiro test
- Other normality tests

ASSUMPTIONS : Checking for independence

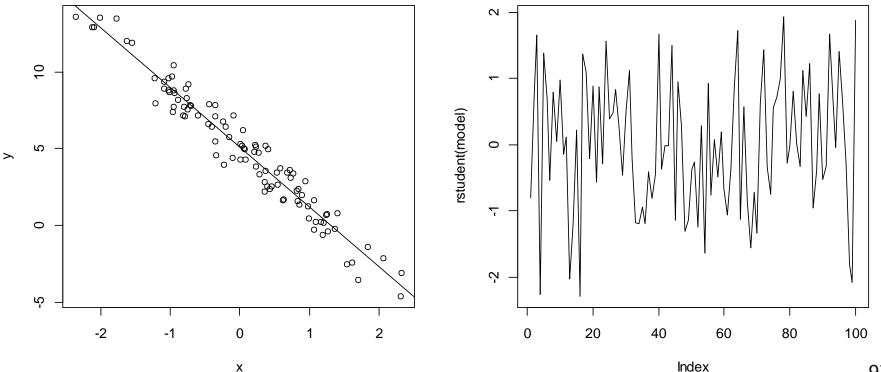
Error independence cannot be checked easily.

Some diagnostics are the following:

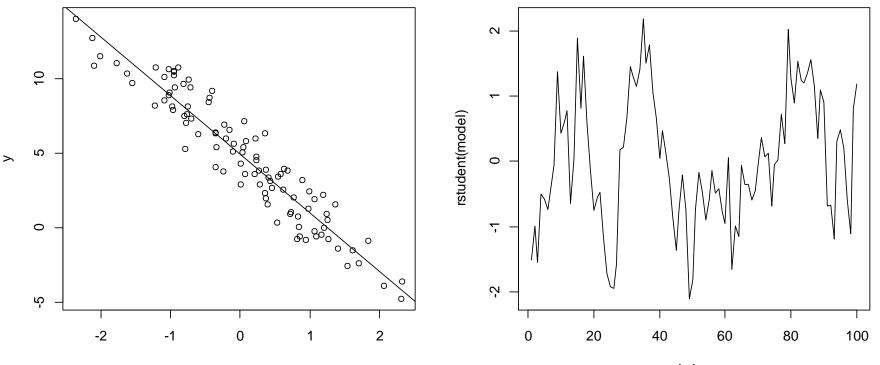
- If the data have meaning in terms of time sequence then this analysis should be skipped since it is not possible to check for indepdendence
- Time sequence plot (against id or any variable with chronological meaning)
- Test for non randomness using the runs test
- Tests for auto-correlations
 - ✓ Durbin Watson test (testing for serial correlation of order one)
 - ✓ ACF Plots & Tests for autocorrelations
 - ✓ AR models

For details see Ryan 1997 p. 46-47

ASSUMPTIONS : Checking for independence Simple time-sequence plot - Example of independence



ASSUMPTIONS : Checking for independence Simple time-sequence plot - Examples of dependence



ASSUMPTIONS : Checking for independence

standard(res_ex53)

Simple time-sequence plot

0.4

0.2

0.0

-0.2

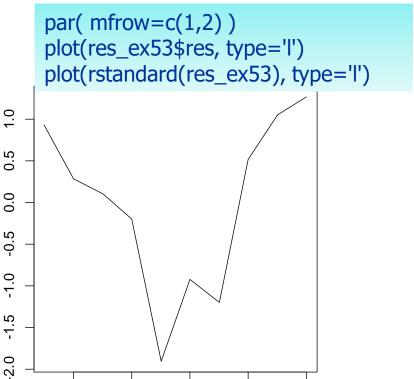
-0.4

-0.6

-0.8

2

res_ex53\$res



6

4

8

10

Index

6

4

2

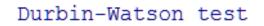
10

8

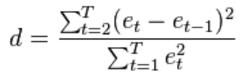
ASSUMPTIONS : Checking for independence

The Durbin-Watson test for serial correlation

- ✓ 0<D<4
- ✓ 0<D<2 positive autocorrelation</p>
- ✓ 2<D<4 negative autocorrelation</p>
- ✓ D=2 ⇔ no autocorrelation



data: res_ex53
DW = 0.7533, p-value = 0.01374 Uses asymptotic test
alternative hypothesis: true autocorrelation is greater than 0



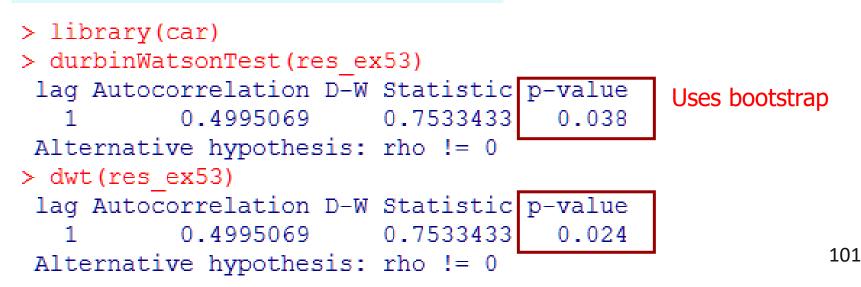
library(Imtest)
dwtest(res_ex53)

ASSUMPTIONS : Checking for independence

The Durbin-Watson test for serial correlation

$$d = \frac{\sum_{t=2}^{T} (e_t - e_{t-1})^2}{\sum_{t=1}^{T} e_t^2}$$

library(car)
durbinWatsonTest(res_ex53)
dwt(res_ex53)
dwt(res_ex53\$resid)



ASSUMPTIONS: Homoscedasticity of errors (and Y_i)

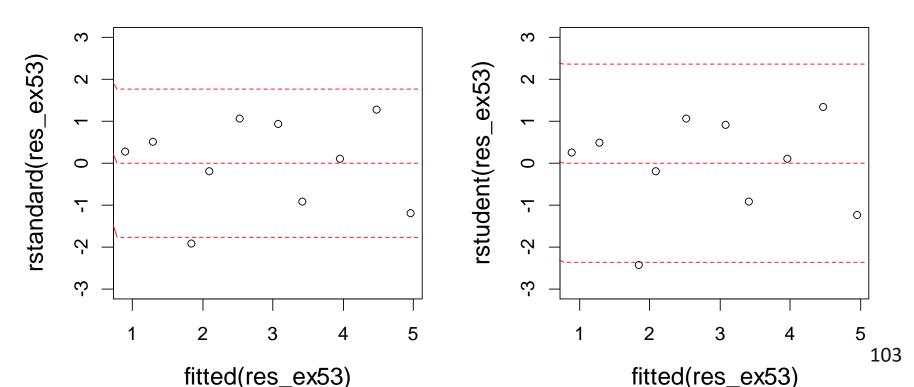
- Plot of covariates vs. residuals
- Plot fitted values vs. residuals
- Plot fitted values vs. squared residuals
- Plot of fitted values vs. squared root residuals
- Checking for equality of variance in quartiles of fitted values
- Score tests for nonconstant error variance (Breusch & Pagan, 1979 Cook & Weisberg, 1983)

For more details see

- Fox (2002. 1st edition p. 206-209)
- Draper & Smith (1998, 3rd edition, p. 56-59, 62-67)
- Gunst & Mason (1980, p 237)

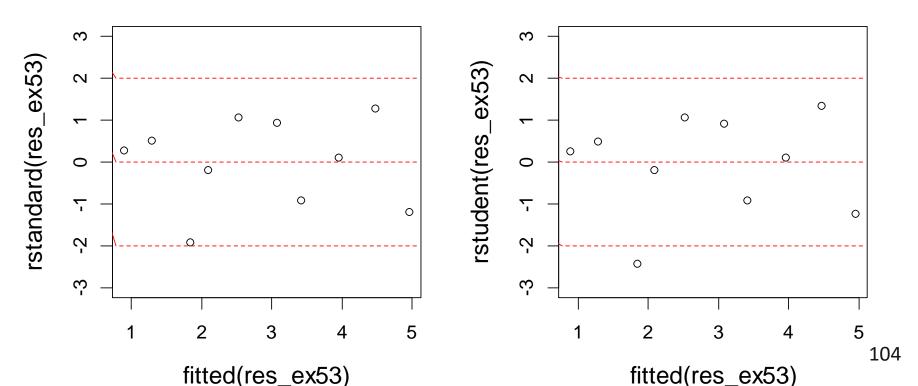
ASSUMPTIONS: Homoscedasticity of errors

 Fitted values vs. standardized or studentized residuals using 95% quantiles from the correct distributions



ASSUMPTIONS: Homoscedasticity of errors

 Fitted values vs. standardized or studentized residuals using ±2 (i.e. 95% quantiles assuming approximate normality)



ASSUMPTIONS: Homoscedasticity of errors

abline(h=c(-ub,0,ub), col=2, lty=2)

 Fitted values vs. standardized or studentized residuals using 95% quantiles from the correct distributions

```
par( mfrow=c(1,2), cex=1.3, cex.lab=1.3)
n<-nrow(cargo)
p<-2
plot( fitted(res_ex53), rstandard(res_ex53), ylim= range( c(-3,3,
rstandard(res_ex53)) ) )
ub <- sqrt(qbeta( 0.95, 0.5, 0.5*(n-p-1) )*(n-p-1))
abline( h=c(-ub,0,ub), col=2,lty=2 )
plot( fitted(res_ex53), rstudent(res_ex53), ylim= range( c(-3,3,
rstandard(res_ex53)) ) )
ub <- qt( 0.975, (n-p-1) )</pre>
```

ASSUMPTIONS: Non-linearity

Consequences of departures from linearity: if linearity fails

- The error variance will appear as non-constant even if it is constant due to the model misspecification
- the model is inadequate, especially for prediction.

How to cure the problem:

- Transform the response
- Transform the covariates
- Use polynomial regression or non-parametric regression models
- Use non-linear models

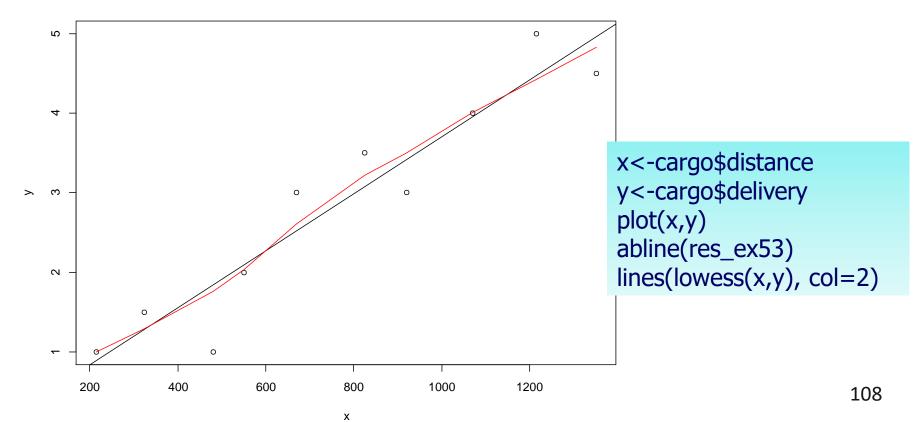
ASSUMPTIONS: Non-linearity

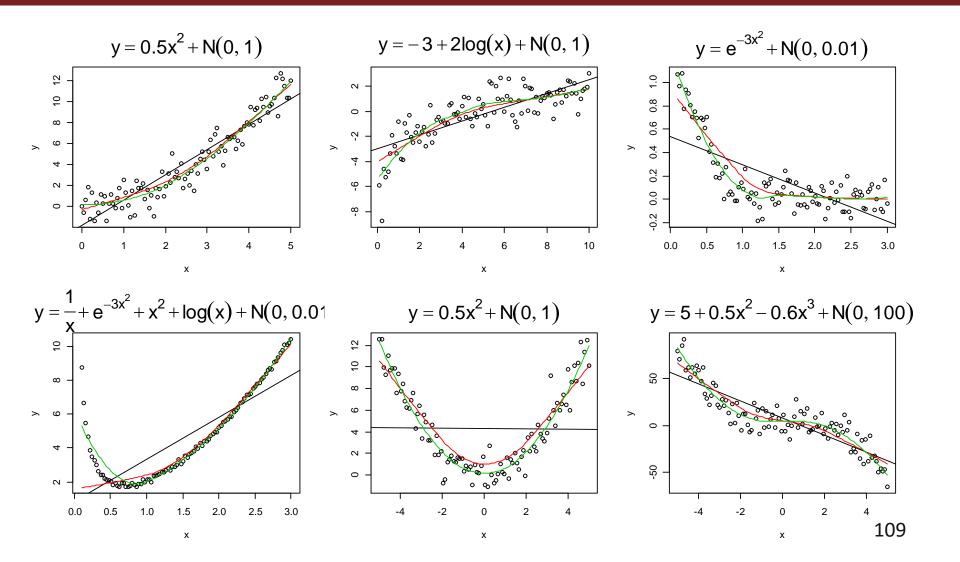
- Plot of X vs. Y
- Plot of residuals vs. covariates
- Tukey's test and residualPlot
- Fit polynomial models
- Partial residual plots (cr.plot)

ASSUMPTIONS: Non-linearity

Plot of X vs. Y

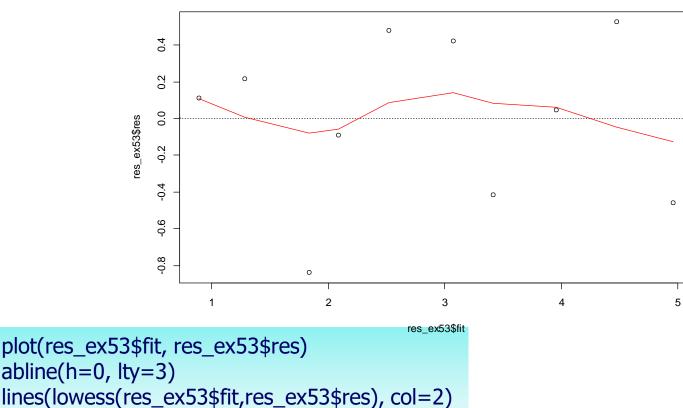
- There are several types of nonparametric regression. The most commonly used is the *lowess* (or loess) procedure first developed by Cleveland (1979)
 - Lowess (or loess) is an acronym for *locally weighted* scatterplot smoothing
 - These models fit local polynomial regressions and join them together





ASSUMPTIONS: Non-linearity

• Plot of residuals vs. covariates

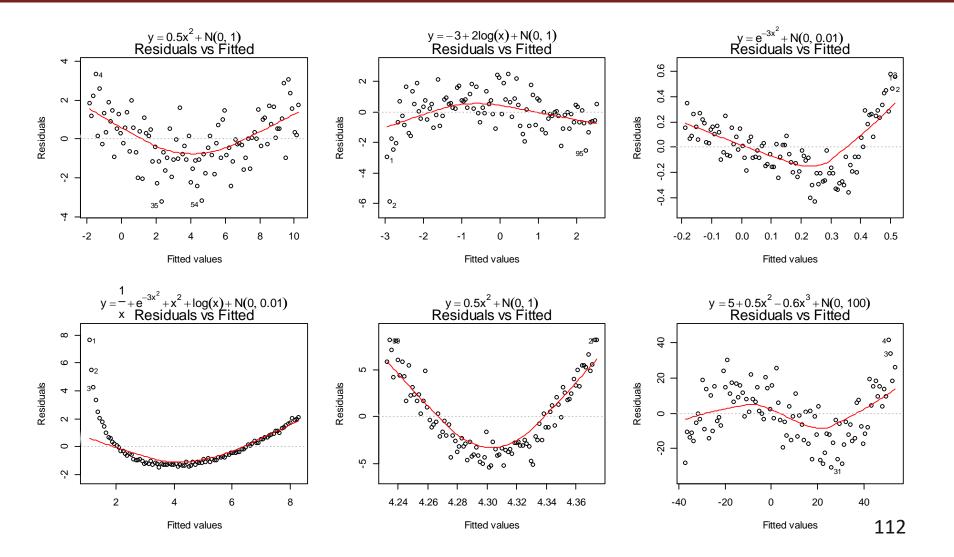


ASSUMPTIONS: Non-linearity

Plot of residuals vs. covariates



plot(res_ex53, which=1)



0

ASSUMPTIONS: Non-linearity

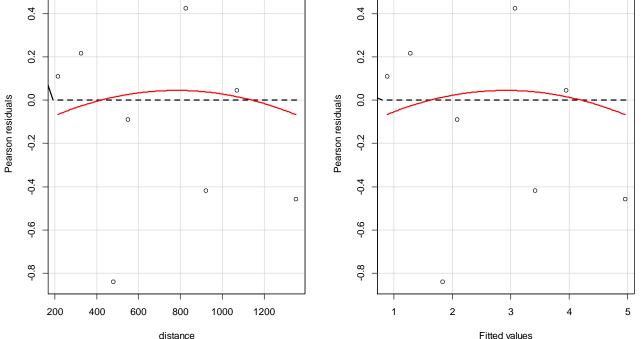
о

Tukey's test and residualPlot

<pre>> residualPlots(res ex53)</pre>						
	Test stat	Pr(> t)				
distance	-0.25	0.810				
Tukey test	-0.25	0.803				

ο

о

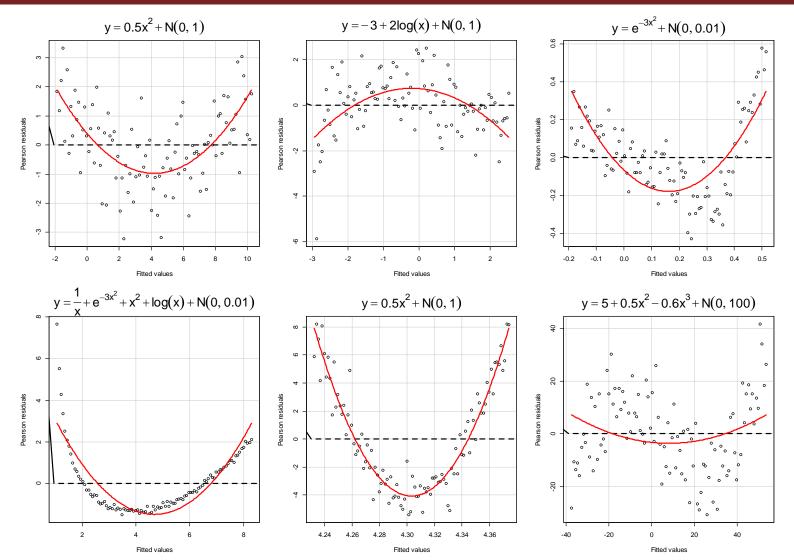


• Tukey's test ar

SUMPTIONS: Non-linearity	<pre>> residualPlots(res_ex53)</pre>			
Tukey's test and residualPlot	distance Tukey test	-0.25	0.810	ϡ
> summary(lm(delivery~distance+I(distan	ce^2), data=ca	(rgo))		
Call: lm(formula = delivery ~ distance + I(dis	tance^2), data	a = cargo)		
Residuals: Min 1Q Median 3Q Max -0.8527 -0.3224 0.1033 0.3457 0.5461				
Coefficients: Estimate Std. Error t va	lue Pr(> t)			
(Intercept) -4.824e-02 7.664e-01 -0. distance 4.127e-03 2.216e-03 1.	063 0.952			
I(distance^2) -3.465e-07 1.389e-06 -0.				

magidualDlata(mag.avE2)

Residual standard error: 0.5109 on 7 degrees of freedom Multiple R-squared: 0.9014, Adjusted R-squared: 0.8732 F-statistic: 31.99 on 2 and 7 DF, p-value: 0.0003013



115