Elements of Statistics and Probability

?????

Thanks to Data Science
 we now have a simple solution to this problem.

5. Correlation and Regression models Contents

- Introduction
\checkmark Covariance between two variables
\checkmark Pearson's correlation measure
\checkmark Non-parametric correlation measures
\checkmark The model of simple linear regression
- Multiple linear regression model
\checkmark The simple linear regression model
\checkmark Model assumptions
\checkmark Parameter interpretation
\checkmark Implementation in R (Example 5-3)
\checkmark Testing for the model assumptions
\checkmark Diagnostic residual plots
\checkmark Transforming variable
- Comparison to the paired t-test

5. Correlation and Regression models
 5.1. Introduction - correlation

Pearson's correlation coefficient
$>$ It is the normalized version of covariance $\rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{x} \sigma_{y}}$
$>$ It measures the degree of linear dependence/relationship
$>$ Bounded and defined in the interval from -1 to 1
$\checkmark 1=$ perfect (non-random) positive linear relationship
$\checkmark-1=$ perfect (non-random) negative linear relationship
$\checkmark 0=$ two variables are not correlated for normal data => variable are independent
> Free of units
$>$ Quantifies the degree of linear relation
$>$ Does not separates the response from the explanatory

5. Correlation and Regression models
 5.1. Introduction - correlation

Pearson's correlation coefficient

$>$ Population correlation $\rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{x} \sigma_{y}}$
>Sample estimator

$$
r=\frac{\sum_{i=1}^{n}\left(\mathrm{X}_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(\mathrm{X}_{i}-\bar{X}\right)^{2} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}}=\frac{S_{x y}}{S_{x} S_{y}}
$$

> cor(salary\$salbeg, salary\$salnow)
[1] 0.8801175

5. Correlation and Regression models
 5.1. Introduction - correlation

Pearson's correlation in R
$>$ If $X \& Y$ independent \Rightarrow Correlation $=0$
$>$ Correlation $=0 \Rightarrow$ no linear dependence but not necessarily independence
$>$ Correlation $=0$ \& $\mathrm{X}-\mathrm{Y}$ normal \Rightarrow independence

5. Correlation and Regression models
 5.1. Introduction - correlation

Pearson's correlation \& independence
$>$ If $X \& Y$ independent \Rightarrow Correlation $=0$

```
\(>z 1<-r n o r m(1000)\)
\(>\) z1<-rgamma \((1000,1,1)\)
\(>z 2<-r \operatorname{norm}(1000) \quad>z 2<-r g a m m a(1000,1,1)\)
\(>\operatorname{cor}(z 1, z 2)\)
[1] 0.01802764
[1] 0.008469119
```

$>$ Correlation $=0 \Rightarrow$ no linear dependence but not necessarily independence

```
> z1<-rnorm(1000)
> cor(z1,z1^2)
```

> z1<-rgamma (1000,1,1)
$>\operatorname{cor}\left(z 1, z 1^{\wedge} 2\right)$
[1] 0.02178643 [1] 0.9193777

5. Correlation and Regression models
 5.1. Introduction - correlation

ORA
AUEB

Normal data

5. Correlation and Regression models
 5.1. Introduction - correlation

Pearson's correlation \& linear functions
$>$ If Y is a linear function of $X \Rightarrow$ Correlation $=1$ or -1

```
\(>x<-r n o r m(1000)\)
\(>\mathrm{y}<-5-2^{\star} \mathrm{x}\)
\(>\operatorname{cor}(\mathrm{x}, \mathrm{y})\)
    [1] -1
\(>\mathrm{x}<-\mathrm{rnorm}(1000)\)
\(>y<-3+5^{\star} \mathrm{x}\)
\(>\operatorname{cor}(\mathrm{x}, \mathrm{y})\)
[1] 1
```


5. Correlation and Regression models
 5.1. Introduction - correlation

Perfect positive relationship

Perfect negative relationship

5. Correlation and Regression models
 5.1. Introduction - correlation

OПА
AUEB

0.8

1
-1
-1
-1

5. Correlation and Regression models
 5.1. Introduction - correlation

Correlation matrix [using the observed data]

\mathbf{R} is a pxp matrix with elements

- $\mathrm{R}_{\mathrm{jk}}=\operatorname{Cor}\left(\mathrm{X}_{\mathrm{j}}, \mathrm{X}_{\mathrm{k}}\right)$ - sample correlation between X_{j} and X_{k}
- $\mathrm{R}_{\mathrm{jj}}=1$
(the correlation of each variable with itself is one)
> cor(sal.num)

	id	sal 1 her	time	age	salnow	1	work
id	1.00000000	-0.43118072	-0.012067260	0.10598470	-0.41863174	-0.33421423	0.018759273
salbeg	-0.43118072	1.00000000	019752475	-0.01104036	0.88011747	0.63319565	0.045147858
time	-0.01206726	-0.01975347	1.000000000	0.05162975	0.08409227	0.04737878	0.002962074
age	0.10598470	-0.01104036	0.051629754	1.00000000	-0.14591032	-0.28084182	0.804397166
salnow	-0.41863174	0.88011747	0.084092267	-0.14591032	1.00000000	0.66055891	-0.097455333
edlevel	-0.33421423	0.63319565	0.047378777	-0.28084182	0.66055891	1.00000000	ก. 252357836
work	0.01875927	0.04514786	0.002962074	0.80439717	-0.09745533	-0.25235784	1.000000000

The table is symmetric

Each element of the diagonal is 1 since each variable is fully correlated with itself (it is the ${ }_{11}$ identity function)

5. Correlation and Regression models
 5.1. Introduction - correlation

Example 5-1 [salary]

- Assess the possible linear relationships between starting and current salary

```
> x1<-salary$salbeg
> x2<-salary$salnow
> cor(x1,x2)
[1] 0.8801175
> cor.test(x1,x2)
```

$H_{0}: \rho=0$
i.e. there is no linear
relationship between the current and the starting salary

```
Pearson's product-moment correlation
```

data: $x 1$ and $x 2$
$\mathrm{t}=40.2755$, df $=472$, p-value $<2.2 \mathrm{e}-16$
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.85806960 .8989267
sample estimates:
cor
0.8801175

5. Correlation and Regression models 5.1. Introduction - correlation

5. Correlation and Regression models
 5.1. Introduction - correlation

5. Correlation and Regression models
 5.1. Introduction - correlation

Further comments (1)

- The coefficient assumes that both X and Y are random variables
- It can be used as a measure of linearity
- The hypothesis test assumes normality or large sample
- Alternatively, non-parametric correlation measures can be used
- If the relationship is strong but non-linear then the Pearson correlation coefficient will show how well this is approximated by a linear function

5. Correlation and Regression models
 5.1. Introduction - correlation

Further comments (2)
According with Chatfield \& Collins (1980, p. 40-41)

- The test is conservatory i.e. small values of r will give significant relationship (of some kind) especially for large samples
- Empirical rule:
- strong linear dependence for $|r|>0.70$
- Medium linear dependence for $0.4<|r|<0.70$
- Weak linear dependence for $|\mathrm{r}|<0.4$
- The coefficient is not estimated reliably for small samples ($\mathrm{n}<12$)

5. Correlation and Regression models
 5.1. Introduction - correlation

Example 5-1 [salary]

- Assess the possible linear relationships between age and the id?

$>$ x1<-salary\$id
$>$ x2<-salary\$age
> cor(z1, x2)
$[1] 0.1059847$
> cor.test $(x 1, x 2)$

It seams that there is significant negative linear dependence between the the age and the id!!!

Does this makes sense?
Is the value of the coefficient large?
Pearson's product-moment correlation

```
data: x1 and x2
t = 2.3156, df = 472, p-value = 0.02101
alternative hypothesis: crue correlation is not equal to 0
95 percent confidence interval:
    0.01607248 0.19419663
sample estimates:
    cor
0.1059847
```


5. Correlation and Regression models 5.1. Introduction - correlation

5. Correlation and Regression models
 5.1. Introduction - correlation

Example 5-1 [salary]

- To assess the possible linear relationships between starting and current salary
library(sjPlot)
sjt.corr(x, corMethod = "pearson", showPValues = TRUE, pvaluesAsNumbers $=$ FALSE, fadeNS $=T R U E$, digits $=3$)

5. Correlation and Regression models 5.1. Introduction - correlation

Example 5-1 [salary]

- To assess the possible linear relationships between starting and current salary
library(sjPlot)
sjt.corr(x, corMethod = "pearson", showPValues = TRUE, pvaluesAsNumbers $=$ FALSE, fadeNS $=$ TRUE, digits $=3$)

	salbeg	salnow	
salbeg		0.880	Pearson's correlation between starting and current salary
		(0.000)	
	0.880		
salnow	(0.000)		
Computed correlation used pearson-method with pairwise-deletion.			

5. Correlation and Regression models
 5.1. Introduction - correlation

Example 5-1 [salary]

- To assess the possible linear relationships between starting and current salary

```
sjt.corr(sal.num,
    corMethod = "pearson",
    showPValues = TRUE,
    pvaluesAsNumbers = TRUE,
    fadeNS = TRUE, digits = 3,
    triangle = "both")
```

 Non significant
 correlations are faded
 with grey color
 | | id | salbeg | time | age | salnow | edlevel | work |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| id | | -0.431 | -0.012 | 0.106 | -0.419 | -0.334 | 0.019 |
| | | (0.000) | (0.793) | (0.021) | (0.000) | (0.000) | (0.684) |
| salbeg | -0.431 | | -0.020 | -0.011 | 0.880 | 0.633 | 0.045 |
| | (0.000) | | (0.668) | (0.811) | (0.000) | (0.000) | (0.327) |
| time | -0.012 | -0.020 | | 0.052 | 0.084 | 0.047 | 0.003 |
| | (0.793) | (0.668) | | (0.262) | (0.067) | (0.303) | (0.949) |
| age | 0.106 | -0.011 | 0.052 | | -0.146 | -0.281 | 0.804 |
| | (0.021) | (0.811) | (0.262) | | (0.001) | (0.000) | (0.000) |
| salnow | -0.419 | 0.880 | 0.084 | -0.146 | | 0.661 | -0.097 |
| | (0.000) | (0.000) | (0.067) | (0.001) | | (0.000) | (0.034) |
| edlevel | -0.334 | 0.633 | 0.047 | -0.281 | 0.661 | | -0.252 |
| | (0.000) | (0.000) | (0.303) | (0.000) | (0.000) | | (0.000) |
| work | 0.019 | 0.045 | 0.003 | 0.804 | -0.097 | -0.252 | |
| | (0.684) | (0.327) | (0.949) | (0.000) | (0.034) | (0.000) | |

5. Correlation and Regression models
 5.1. Introduction - correlation

Example 5-1 [salary]

- To assess the possible linear relationships between starting and current salary

```
sjt.corr(sal.num,
    corMethod = "pearson",
    showPValues = TRUE,
    pvaluesAsNumbers = TRUE,
    fadeNS = TRUE, digits = 3,
    triangle = "lower")
```

Non significant correlations are faded with grey color

	id	salbeg	time	age	salnow	edlevel work
id						
salbeg	$\begin{aligned} & -0.431 \\ & (0.000) \end{aligned}$					
time	$\begin{aligned} & -0.012 \\ & (0.793) \end{aligned}$	$\begin{aligned} & -0.020 \\ & (0.668) \end{aligned}$				
age	$\begin{gathered} 0.106 \\ (0.021) \end{gathered}$	$\begin{aligned} & -0.011 \\ & (0.811) \end{aligned}$	$\begin{gathered} 0.052 \\ (0.262) \end{gathered}$			
salnow	$\begin{aligned} & -0.419 \\ & (0.000) \end{aligned}$	$\begin{gathered} 0.880 \\ (0.000) \end{gathered}$	$\begin{gathered} 0.084 \\ (0.067) \end{gathered}$	$\begin{aligned} & -0.146 \\ & (0.001) \end{aligned}$		
edlevel	$\begin{aligned} & -0.334 \\ & (0.000) \end{aligned}$	$\begin{gathered} 0.633 \\ (0.000) \end{gathered}$	$\begin{aligned} & 0.047 \\ & (0.303) \end{aligned}$	$\begin{aligned} & -0.281 \\ & (0.000) \end{aligned}$	$\begin{gathered} 0.661 \\ (0.000) \end{gathered}$	
work	$\begin{gathered} 0.019 \\ (0.684) \end{gathered}$	$\begin{gathered} 0.045 \\ (0.327) \end{gathered}$	$\begin{gathered} 0.003 \\ (0.949) \end{gathered}$	$\begin{gathered} 0.804 \\ (0.000) \end{gathered}$	$\begin{aligned} & -0.097 \\ & (0.034) \end{aligned}$	$\begin{aligned} & -0.252 \\ & (0.000) \end{aligned}$

5. Correlation and Regression models 5.1. Introduction - correlation

Back to correlation matrices

```
> cor(sal.num)
```

	id	salbeg	time	age	salnow	edlevel	work
id	1.00000000	-0.43118072	-0.012067260	0.10598470	-0.41863174	-0.33421423	0.018759273
salbeg	-0.43118072	1.00000000	-0.019753475	-0.01104036	0.88011747	0.63319565	0.045147858
time	-0.01206726	-0.01975347	1.000000000	0.05162975	0.08409227	0.04737878	0.002962074
age	0.10598470	-0.01104036	0.051629754	1.00000000	-0.14591032	-0.28084182	0.804397166
salnow	-0.41863174	0.88011747	0.084092267	-0.14591032	1.00000000	0.66055891	-0.097455333
edlevel	-0.33421423	0.63319565	0.047378777	-0.28084182	0.66055891	1.00000000	-0.252357836
work	0.01875927	0.04514786	0.002962074	0.80439717	-0.09745533	-0.25235784	1.000000000

5. Correlation and Regression models
 5.1. Introduction - correlation

How to tide up and make correlation matrices readable

- Keep only correlation measures (no p-values)
- Keep only one or two decimals
- Eliminate irrelevant variables (e.g. id)
- Group correlated variables
- Uses symbols or colors for high or significant correlations
- If even these changes, it does not makes any sense
- Eliminate numbers and keep only colors or symbols
- Use path diagrams

5. Correlation and Regression models

5.1. Introduction - correlation

Correlation matrices

- Eliminate decimal numbers \& other values

> round(cor(sal.num), 1)							
	id salbeg	time		age	salnow edlevel	work	
id	1.0	-0.4	0.0	0.1	-0.4	-0.3	0.0
salbeg	-0.4	1.0	0.0	0.0	0.9	0.6	0.0
time	0.0	0.0	1.0	0.1	0.1	0.0	0.0
age	0.1	0.0	0.1	1.0	-0.1	-0.3	0.8
salnow	-0.4	0.9	0.1	-0.1	1.0	0.7	-0.1
edlevel	-0.3	0.6	0.0	-0.3	0.7	1.0	-0.3
work	0.0	0.0	0.0	0.8	-0.1	-0.3	1.0

5. Correlation and Regression models

5.1. Introduction - correlation

Correlation matrices

- Eliminate irrelevant values

$>$	round (cor $($ sal. num), 1$)[-1,-1]$						
	salbeg	time	age	salnow	edlevel	work	
salbeg	1.0	0.0	0.0	0.9	0.6	0.0	
time	0.0	1.0	0.1	0.1	0.0	0.0	
age	0.0	0.1	1.0	-0.1	-0.3	0.8	
salnow	0.9	0.1	-0.1	1.0	0.7	-0.1	
edlevel	0.6	0.0	-0.3	0.7	1.0	-0.3	
work	0.0	0.0	0.8	-0.1	-0.3	1.0	

5. Correlation and Regression models

5.1. Introduction - correlation

Correlation matrices

- Add colors
$>$ temp<-round (cor(sal.num),1) [-1,-1]
$>$ index<-c (1, 4, 5, 3, 2)
$>$ temp [index,index]
salbeg salnow edlevel age time

salbeg	1.0	0.9	0.6	0.0	0.0
salnow	0.9	1.0	0.7	-0.1	0.1
edlevel	0.6	0.7	1.0	-0.3	0.0
age	0.0	-0.1	-0.3	1.0	0.1
time	0.0	0.1	0.0	0.1	1.0

5. Correlation and Regression models

5.1. Introduction - correlation

Correlation matrices

- Re-arrange the matrix according to the correlations
$>$ temp<-round (cor(sal.num),1) [-1,-1]
$>$ index<-c (1, 4, 5, 3, 2)
$>$ temp [index,index]
salbeg salnow edlevel age time

salbeg	1.0	0.9	0.6	0.0	0.0
salnow	0.9	1.0	0.7	-0.1	0.1
edlevel	0.6	0.7	1.0	-0.3	0.0
age	0.0	-0.1	-0.3	1.0	0.1
time	0.0	0.1	0.0	0.1	1.0

5. Correlation and Regression models
 5.1. Introduction - correlation

Path diagram

Age

5. Correlation and Regression models 5.1. Introduction - correlation

AUEB

Fancy plots using sjPlot

```
x<-sal.num
libray(sjPlot); sjp.corr(x, corMethod = "pearson")
```

salnem

5. Correlation and Regression models
 5.1. Introduction - correlation

AUEB

Fancy plots using corrplot

library(corrplot) corrplot(cor(sal.num))

5. Correlation and Regression models 5.1. Introduction - correlation

Fancy plots using corrplot

```
library(corrplot)
corrplot(cor(sal.num),
    method= "square")
```


5. Correlation and Regression models
 5.1. Introduction - correlation

ОПА
AUEB

Fancy plots using corrplot

library(corrplot)
corrplot(cor(sal.num),
method= $=$ ellipse ")

5. Correlation and Regression models
 5.1. Introduction - correlation

Fancy plots using corrplot

```
library(corrplot)
corrplot(cor(sal.num),
    method= " number")
```


5. Correlation and Regression models
 5.1. Introduction - correlation

Fancy plots using corrplot

library(corrplot)
corrplot(cor(sal.num),
method $="$ shade" $)$

5. Correlation and Regression models
 5.1. Introduction - correlation

Fancy plots using corrplot

library(corrplot)
corrplot(cor(sal.num),
method $=$ " color" $)$

5. Correlation and Regression models

5.1. Introduction - correlation

Fancy plots using corrplot

\author{
library(corrplot) corrplot(cor(sal.num),
 ```
method= "pie")

```
}


\section*{5. Correlation and Regression models \\ 5.1. Introduction - correlation}

\section*{Example 5-2 [world95]}

We would like to assess the correlation between the population and the density
> cor.test(world95\$popul,world95\$density)
Pearson's product-moment correlation
data: world95\$popul and world95\$density \(\mathrm{t}=-0.1894\), \(\mathrm{df}=107\), p -value \(=0.8501\)
alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval: -0.2057032 0.1703786
sample estimates:
cor
-0.01830997

Non-significant linear relationship between the population and the density.

Also the coefficient is very small indicating minor or no linear relationship38

\section*{5. Correlation and Regression models 5.1. Introduction - correlation}


\section*{5. Correlation and Regression models 5.1. Introduction - correlation}


\section*{5. Correlation and Regression models \\ 5.1. Introduction - correlation}

Example 5-2 [world95]
We would like to assess the correlation between the population and the density

But by definition

DENSITY = POPULATION/AREA (in sq meters)
\(=a+b * P O P U L A T I O N\)
with \(a=0\) and \(b=1 / A R E A!!!!\)
So why \(r \approx 0\) instead of \(r=1\) ????

\section*{5. Correlation and Regression models \\ 5.1. Introduction - the simple linear model}

Let us assume that we have two quantitative variables
- X: explanatory or independent variable
- Y: response or dependent variable

If we believe that X influences (or affects) in a some way the response \(Y\) then it is sensible to assume that a function \(h(x)\) exists such that:
\[
y=h(x)
\]

\section*{[perfect/deterministic relationship]}

Since we mainly study random phenomena/experiments then it is sensible to add a random (unpredicted) component (i.e. error term)
\[
\begin{aligned}
& y=h(x)+\varepsilon \\
& \varepsilon \sim \operatorname{Distribution}(\theta)
\end{aligned}
\]

\section*{5. Correlation and Regression models \\ 5.1. Introduction - the simple linear model}

Two quantitative variables
- X: explanatory or independent variable
- Y: response or dependent variable

Regression model assumes
- linear relationship (function) between X and Y
\[
h(x)=\beta_{0}+\beta_{1} x
\]
- Normal errors
\[
\varepsilon \sim N\left(0, \sigma^{2}\right)
\]

So the regression model is now given by \(y=\beta_{0}+\beta_{1} x+\varepsilon\)
\[
\varepsilon \sim N\left(0, \sigma^{2}\right)
\]

\section*{5. Correlation and Regression models \\ 5.1. Introduction - the simple linear model}

Two quantitative variables
- X: explanatory or independent variable
- Y: response or dependent variable

Regression model
\[
\begin{aligned}
& y=\beta_{0}+\beta_{1} x+\varepsilon \\
& \varepsilon \sim N\left(0, \sigma^{2}\right)
\end{aligned}
\]
- WHY LINEAR?
- WHY NORMAL?
- WHY ZERO MEAN OF ERRORS?
- WHAT \(\sigma^{2}\) means?

\section*{5. Correlation and Regression models \\ 5.1. Introduction - the simple linear model}

More general approach [GLM] (and more appropriate in terms of modeling)
- X: explanatory or independent variable
- Y: response or dependent variable \(\quad Y \sim \operatorname{Distribution}(\theta)\)
\[
g(\theta)=h(x)
\]
\(\checkmark\) Distribution( \(\boldsymbol{\theta}\) ): stochastic (random) component
\(\checkmark \mathrm{h}(\mathrm{x})\) : deterministic (non random) component
\(\checkmark \mathrm{g}(\theta)\) : link function between stochastic and deterministic component
\(\checkmark\) Usually \(h(x) \Leftrightarrow\) linear function of \(X \Leftrightarrow\) also called linear predictor

\section*{5. Correlation and Regression models}
5.1. Introduction - the simple linear model

More general approach [GLM]
(and more appropriate in terms of modeling)
- X: explanatory or independent variable
- Y: response or dependent variable
- \(Y \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)\)
- \(\mu=\beta_{0}+\beta_{1} x\)
\[
\begin{aligned}
& {\left[\theta^{\top}=\left(\mu, \sigma^{2}\right)\right]} \\
& {[\mathrm{g}(\theta)=\mu]}
\end{aligned}
\]

\section*{5. Correlation and Regression models \\ 5.2. The simple linear regression model}

Two ways to write a regression model:
- Using the error term representation
\[
\begin{aligned}
& y=\beta_{0}+\beta_{1} x+\varepsilon \\
& \varepsilon \sim N\left(0, \sigma^{2}\right)
\end{aligned}
\]
or equivalently
- Using the stochastic response (GLM type) representation
\[
\begin{aligned}
Y & \sim N\left(\mu, \sigma^{2}\right) \\
\mu & =\beta_{0}+\beta_{1} x
\end{aligned}
\]

\section*{5. Correlation and Regression models \\ 5.2. The simple linear regression model}

The two ways to write a regression model when data are introduced.

We need to introduce an indicator for the study unit/observation :
Representing by \(Y_{i}, X_{i}\) (for \(i=1,2, \ldots, n\) ) the pairs of the response \& explanatory values for each study unit <i>
- Using the error term representation \(Y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}\)
\[
\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)
\]
or equivalently
- Using the stochastic response (GLM type) representation
\[
\begin{aligned}
& Y_{i} \sim N\left(\mu_{i}, \sigma^{2}\right) \\
& \mu_{i}=\beta_{0}+\beta_{1} x_{i}
\end{aligned}
\]

\section*{5. Correlation and Regression models}
5.2. The simple linear regression model

\section*{Terminology and estimators}
- \(\hat{\beta}_{0}, \hat{\beta}_{1}\) : Sample estimators/estimates of \(\beta_{0}\) and \(\beta_{1}\)
- \(\hat{y}_{i}\) : Expected value according to the model or fitted value for <i> study unit/ observation/subject
- \(e_{i} \quad\) : Regression residual
\[
e_{i}=y_{i}-\hat{y}_{i}=y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}
\] (estimate of \(\varepsilon_{\mathrm{i}}\) )
- \(\hat{\sigma}^{2}\) : Estimator/estimate of the error variance
\[
\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}
\]
\[
\widehat{\sigma}^{2}=\frac{1}{n-2} \sum_{i=1}^{n} e_{i}^{2}
\]

\section*{5. Correlation and Regression models \\ 5.2. The simple linear regression model}

Terminology and estimators
- \(R^{2} \quad\) : Coefficient of determination
\(\checkmark\) This is a goodness of fit measure
\[
R^{2}=1-\frac{(n-2) \hat{\sigma}^{2}}{(n-1) s_{\mathrm{Y}}^{2}}
\]
\(\checkmark\) Takes values from 0 to 1
\(\checkmark\) Interpretation: \% of variability explained by the model
\(\checkmark\) In simple regression \(R^{2}=r^{2}\)
- \(\mathrm{R}_{\mathrm{adj}}{ }^{2}\) : Adjusted coefficient of determination
\[
R_{a d j}^{2}=1-\frac{\hat{\sigma}^{2}}{s_{\mathrm{Y}}^{2}}
\]
\(\checkmark\) Takes values from 0 to 1
\(\checkmark\) Interpretation: \% of variance explained by the model
\(\checkmark\) More useful in multiple regression
\[
\widehat{\sigma}^{2}=\frac{1}{n-2} \sum_{i=1}^{n} e_{i}^{2}
\]

\section*{5. Correlation and Regression models}
5.2. The simple linear regression model

Terminology and estimators
Sample estimators of model coefficients \(\beta_{0} \& \beta_{1}\)
\[
\begin{aligned}
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n} X_{i} Y_{i}-n \bar{X} \bar{Y}}{\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& =\frac{\sqrt{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}} \frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}}=\frac{s_{y}}{s_{x}} r \\
& \hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}
\end{aligned}
\]

\section*{5. Correlation and Regression models \\ 5.2.1. Model assumptions (summary)}

ASSUMPTIONS (to be checked):
- Independence of errors (and of \(Y_{i}\) )
- Normality of errors (and of \(\mathrm{Y}_{\mathrm{i}}\) )
- Homoscedasticity of errors (and \(Y_{i}\) )
- Linearity between X \& Y
- We work with the residuals \(\mathrm{e}_{\mathrm{i}}\)

We will discuss in more detail about regression diagnostics and residual analysis later on in this presentation

\section*{5. Correlation and Regression models \\ 5.2.2. Model interpretation}

We use a regression model to
- Describe and understand the association between the two variables
- To predict future values of \(Y\)
- Both

When we are interested in the relationship between \(X \& Y\) :
- Primary test: \(H_{0}: \beta_{1}=0\) vs. \(H_{1}: \beta_{1} \neq 0\)
- Test of secondary importance: \(\mathrm{H}_{0}: \beta_{0}=0\) vs. \(\mathrm{H}_{1}: \beta_{0} \neq 0\)

In case that we are interested in prediction:
- we need to know if we can use the fitted model for prediction

\section*{5. Correlation and Regression models 5.2.2. Parameter interpretation}

\section*{Testing for the relationship between \(X\) \& \(Y\)}
\(\mathrm{H}_{0}: \beta_{1}=0\) vs. \(\mathrm{H}_{1}: \beta_{1} \neq 0\)
\(\checkmark\) Equivalent to testing for the correlation between X \& Y
\(\checkmark\) It provides the slope of the fitted line
\(\checkmark\) We are interested in the interpretation of CAUSAL relationships between variables (i.e. characteristics or phenomena).

Interpretation: It tests how much we expect that \(Y\) will increase if \(X\) increases by one unit
\(\checkmark\) The value of \(\beta_{1}\) is affected by the scale and the units of measurement of both X \& Y.
\(\checkmark\) The correlation measures ( \(\rho \& r\) ) and the corresponding tests (for \(\rho\) or \(\beta 1\) ) are not affected by linear changes.

\section*{5. Correlation and Regression models 5.2.2. Parameter interpretation}

\section*{Testing for the relationship between X \& Y}

Secondary hypothesis test: \(\mathrm{H}_{0}: \beta_{0}=0\) vs. \(\mathrm{H}_{1}: \beta_{0} \neq 0\)
\(\checkmark\) Intercept of the fitted line
\(\checkmark\) It provides the point where the fitted line intersects with the vertical axis \(\mathrm{Y} Y^{\prime}\) i.e. the value of Y when \(\mathrm{X}=0\)

Interpretation: Is the expected value of Y when \(\mathrm{X}=0\).
\(\checkmark\) Many times this value does not have direct interpretation (since this value is not possible or outside the observed range
\(\checkmark\) Sometimes we constraint \(\beta_{0}=0\) due to logic or an assumed theory
\(\checkmark\) Other times it is convenient to consider instead of \(X\), the centered version \(X^{\prime}=X-X\). Then
\(\checkmark \beta_{1}\) remains the same
\(\checkmark \beta_{0}\) gives the expected value of \(Y\) when \(X\) is equal to the sample mean

\section*{5. Correlation and Regression models}
5.2.2. Parameter interpretation

Deciding whether we can use the fitted model for prediction
\(>\) We can predict the expected value of \(Y\) for each \(X\)
\(>\) The error variance \(\sigma^{2} \& R^{2}\) quantify the precision of the prediction
\(\checkmark \mathrm{R}^{2}>0.7 \Leftrightarrow\) good predictions
\(\checkmark R^{2}>0.9 \Leftrightarrow\) very good predictions


\section*{5. Correlation and Regression models 5.2.2. Parameter interpretation}

\section*{Predicting outside the observed values}

\section*{[Extrapolation - a trip to the unknown?]}

BECAREFUL: predictions are reliable and acceptable only for values of \(X\) that we have observed (and hence we have some information about it)
\(\checkmark\) We cannot predict something that we have not any information about it and therefore we have not studied it
\(\checkmark\) Sometimes we are forced to make predictions outside the observed range of \(X\) (extrapolation)
\(>\) This predictions should be used only as a rough yardstick
\(>\) We assume the same (linear) relationship is valid also for these unobserved values of \(X\)

\section*{5. Correlation and Regression models \\ 5.2.3. A simple example in \(R\)}

\section*{Example 5-3 [data frame cargo]}
- The head of the logistics department of a large company is interested to estimate the delivery time and therefore the corresponding cost of each cargo depending on the distance
- For this reason, we randomly selected 10 cargo deliveries and recorded the distance in miles and the days until the delivery
- Construct a model that can assist the manager in his aim
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|}
\hline Cargo delivery & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline Distance in Miles & 825 & 215 & 1070 & 550 & 480 & 920 & 1350 & 325 & 670 & 1215 \\
\hline Delivery time in days & 3.5 & 1.0 & 4.0 & 2.0 & 1.0 & 3.0 & 4.5 & 1.5 & 3.0 & 5.0 \\
\hline
\end{tabular}

\section*{5. Correlation and Regression models \\ 5.2.3. A simple example in \(R\)}

\section*{Example 5-3}
- Study Unit: cargo
- Sample size: n=10 cargos
- Characteristics: \(p=3\)
\(\checkmark\) Cargo id
\(\checkmark\) Distance
\(\checkmark\) Delivery time
- Which is \(X\) \& which is \(Y\) ?
\begin{tabular}{|r|l|l|l|}
\cline { 2 - 4 } \multicolumn{1}{c|}{} & id & distance & delivery \\
\hline 1 & 1 & 825 & 3.5 \\
\hline 2 & 2 & 215 & 1 \\
\hline 3 & 3 & 1070 & 4 \\
\hline 4 & 4 & 550 & 2 \\
\hline 5 & 5 & 480 & 1 \\
\hline 6 & 6 & 920 & 3 \\
\hline 7 & 7 & 1350 & 4.5 \\
\hline 8 & 8 & 325 & 1.5 \\
\hline 9 & 9 & 670 & 3 \\
\hline 10 & 10 & 1215 & 5 \\
\hline 11 & & & \\
\hline & & & \\
\hline
\end{tabular}

\section*{5. Correlation and Regression models \\ 5.2.3. A simple example in \(R\)}

\section*{Example 5-3}

Analysis in steps
- Analysis of each variable separately
- Visualization using a scatter-plot
- Correlation measures
- Regression model
- Testing for the assumptions (residual analysis)
- Revise model if necessary

\title{
5. Correlation and Regression models \\ 5.2.3. A simple example in \(R\)
}

\section*{Example 5-3: Visualization SCATTERPLOT}


\title{
5. Correlation and Regression models \\ 5.2.3. A simple example in \(R\)
}

\section*{Example 5-3: Visualization \\ SCATTERPLOT}


\section*{5. Correlation and Regression models \\ 5.2.3. A simple example in \(R\)}

\section*{Example 5-3: Testing for normality of the original variables}
```

> library(nortest)
> lillie.test(cargo$distance)
Lilliefors (Kolmogorov-Smirnov) normality test
data:
carg
p-value = 0.9769
D = 0.1117,
> shapiro.test(cargo$distance)
Shapiro-Wilk normality test
data: cargosdictom~
W = 0.9701, p-value = 0.8915

```
```

> lillie.test(cargo$delivery)
 Lilliefors (Kolmogorov-Smirnov) normality test
data: cargosdeliverv
D = 0.1416 p-value = 0.8243
> shapiro.test(cargo$delivery)
Shapiro-Wilk normality test
data: cargoSdeliverv
W = 0.937, p-value = 0.5203

```

\section*{5. Correlation and Regression models \\ 5.2.3. A simple example in \(R\)}

Example 5-3: Testing for normality of the original variables

QQ plot for Distance


QQ plot for Delivery time


\title{
5. Correlation and Regression models \\ 5.2.3. A simple example in \(R\)
}

\section*{Example 5-3: Monitoring correlation}
> cor.test (cargo\$distance, cargo\$delivery )

Pearson's product-moment correlation
data: cargo\$distance and cargo\$delivery
\(\mathrm{t}=8.5086\), \(\mathrm{df}=8, \mathrm{p}\)-value \(=2.795 \mathrm{e}-05\)
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.79329210 .9881624
sample estimates:
cor
0.9489428

\section*{5. Correlation and Regression models \\ 5.2.3. A simple example in \(R\)}

\section*{Example 5-3: Fitting the regression model}


\title{
5. Correlation and Regression models 5.2.3. A simple example in \(R\)
}

\section*{Example 5-3: Summarizing the regression model}
```

> summary(res_ex53)
Call:
lm(formula = delivery ~ distance, data = cargo)
Residuals:
Min 1Q Median 3Q Max
-0.83899 -0.33483 0.07842 0.37228 0.52594
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1181291 0.3551477 0.333 0.748
distance 0.0035851 0.0004214 8.509 2.79e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 `.' 0.1 ' ' 1
Residual standard error: 0.48 on 8 degrees of freedom
Multiple R-squared: 0.9005, Adjusted R-squared: 0.8881
F-statistic: 72.4 on 1 and 8 DF, p-value: 2.795e-05

```

\title{
5. Correlation and Regression models 5.2.3. A simple example in \(R\)
}

\section*{Example 5-3: Summarizing the regression model}
```

> summary(res_ex53)
Call:
lm(formula = delivery ~ distance, data = cargo)

Residuals:									
Min	$1 Q$	Median	$3 Q$	Max					
-0.83899	-0.33483	0.07842	0.37228	0.52594					

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $0.1181291 \quad 0.3551477 \quad 0.333 \quad 0.748$
distance $0.00358510 .0004214 \quad 8.5092 .79 \mathrm{e}-05$ ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.48 on 8 degrees of freedom
Multiple R-squared: 0.9005, Adjusted R-squared: 0.8881
F-statistic: 72.4 on 1 and 8 DF, p-value: 2.795e-05

```

Summary statistics for residuals

\section*{5. Correlation and Regression models 5.2.3. A simple example in \(R\)}

\section*{Example 5-3: Summarizing the regression model}


\section*{5. Correlation and Regression models \\ 5.2.3. A simple example in \(R\)}

Example 5-3: Summarizing the regression model
Parameter estimates of the model
\(\longrightarrow\) Days of Delivery \(=0.118+0.00359\) Miles \(+\varepsilon\), \(\varepsilon \sim \operatorname{NORMAL}\left(0,0.48^{2}\right)\)

Coefficients:
(Intercept)
distance
\begin{tabular}{|r|}
\hline Estimate \\
0.1181291 \\
0.0035851
\end{tabular}

Std. Error t value
\(\operatorname{Pr}(>|t|)\)
\(0.3551477 \quad 0.333 \quad 0.748\)
\(0.00042148 .5092 .79 \mathrm{e}-05\)

\section*{5. Correlation and Regression models \\ 5.2.3. A simple example in \(R\)}

Example 5-3: Summarizing the regression model
\(\rightarrow\) Standard errors of the estimates
\[
\hat{\sigma}_{\hat{\beta}_{0}}=\sqrt{\operatorname{Var}\left(\hat{\beta}_{0}\right)}=0.355, \hat{\sigma}_{\hat{\beta}_{1}}=\sqrt{\operatorname{Var}\left(\hat{\beta}_{1}\right)}=0.000421
\]

Coefficients:
\begin{tabular}{r|r|rr} 
Estimate & Std. Error & t value \(\operatorname{Pr}(>\mid \mathrm{t} \|)\) \\
0.1181291 & 0.3551477 & 0.333 & 0.748 \\
0.0035851 & 0.0004214 & 8.509 & \(2.79 \mathrm{e}-05 \quad * *\)
\end{tabular}

\section*{5. Correlation and Regression models}
5.2.3. A simple example in \(R\)

Example 5-3: Summarizing the regression model
Test functions
\[
t_{\hat{\beta}_{0}}=\frac{\hat{\beta}_{0}}{\hat{\sigma}_{\hat{\beta}_{0}}}=\frac{0.118}{0.355}=0.333, t_{\hat{\beta}_{1}}=\frac{\hat{\beta}_{1}}{\hat{\sigma}_{\hat{\beta}_{1}}}=\frac{0.00359}{0.000421}=8.527
\]

Coefficients:
\begin{tabular}{|c|c|c|c|c|}
\hline & Estimate & Std. Error t & value & \(\operatorname{Pr}(>|t|)\) \\
\hline (Intercept) & 0.1181291 & 0.3551477 & 0.333 & 0.748 \\
\hline distance & 0.0035851 & 0.0004214 & 8.509 & \(2.79 \mathrm{e}-05\) *** \\
\hline
\end{tabular}

\title{
5. Correlation and Regression models \\ 5.2.3. A simple example in \(R\)
}

\section*{Example 5-3: Summarizing the regression model}

P-values for testing the hypothesis that each coefficient is zero

Coefficients:
\begin{tabular}{lrcc|c|} 
& Estimate & Std. Error & t value & \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
(Intercept) & 0.1181291 & 0.3551477 & 0.333 & 0.748 \\
distance & 0.0035851 & 0.0004214 & 8.509 & \(2.79 \mathrm{e}-05 * * *\) \\
\hline
\end{tabular}

\section*{5. Correlation and Regression models \\ 5.2.3. A simple example in \(R\)}

\section*{Example 5-3: Summarizing the regression model}

\section*{Standardized coefficients (or beta coefficients)}
\(\checkmark\) The are the regression coefficients when we standardize all variables
\(\checkmark\) We can use the command scale within the formula in Im in R
\(\checkmark\) The beta coefficient of \(\beta_{0}\) is always zero (0)
\(\checkmark\) Interpretation of \(b_{1}\) : How many standard deviations of \(Y\) we expect \(Y\) to change when \(X\) increases by one standard deviation (of \(X\) )
```

> res_ex53beta
Call:
lm(formula = scale(delivery) ~ scale(distance), data = cargo)
Coefficients:
(Intercept) scale(distance)
-7.022e-17 9.489e-01
> round(res_ex53beta\$coef, 3)
(Intercept) scale(distance)
0.000 0.949

```

\section*{5. Correlation and Regression models \\ 5.2.3. A simple example in \(R\)}

\section*{Example 5-3: Summarizing the regression model}

\section*{Standardized coefficients (or beta coefficients)}
\(\checkmark\) In simple linear regression the beta
            \(>\) round (cor (cargo \([,-1]), 3)\)
coefficient is equal to the Pearson's correlation coefficient
> res_ex53beta
Call:
lm(formula \(=\) scale(delivery) \(\sim\) scale(distance), data \(=\) cargo)
Coefficients:
(Intercept) scale(distance)
-7.022e-17
\(9.489 \mathrm{e}-01\)
> round (res_ex53betascoef, 3)
(Intercept) scale(dlstance)
0.000
0.949

\section*{5. Correlation and Regression models \\ 5.2.3. A simple example in \(R\)}

Why the standardized coefficient is equal to the correlation
\[
\begin{aligned}
\hat{\beta}_{0}^{(s t)}=\bar{Z}_{y}-\hat{\beta}_{1}^{(s t)} \bar{Z}_{x}=0 & \hat{\beta}_{1}^{(s t)}=\frac{s_{Z_{y}}}{s_{Z_{x}}} r_{Z_{x} Z_{y}}
\end{aligned}=r_{Z_{x} Z_{y}} .
\]

\title{
5. Correlation and Regression models 5.2.3. A simple example in \(R\)
}

\section*{Example 5-3: Summarizing the regression model}


\section*{5. Correlation and Regression models 5.2.3. A simple example in \(R\)}

\section*{Example 5-3: Summarizing the regression model}
\(\mathrm{R}^{2}=\%\) of variability explained by the model
\(\checkmark\) It uses the biased estimates of variance
\(\checkmark\) It is used as a measure of goodness of fit
\(\checkmark\) Increases with every covariate we add (even if it is rubbish)
\(\checkmark\) Therefore it should not be used as a variable or model selection criterion
\(\checkmark\) We can only compare models with the same number of covariate and same response
\(\checkmark\) In simple linear regression \(R^{2}=r^{2}\)
distance 0.003b8bl 0.0004214

Signif. codes. \(\xrightarrow{\longrightarrow}\)
Decidnal otandard error: 0.48 on 8 degrees of freedom
Multiple R-squared: 0.9005 , Adjusted R-squared: 0.8881
Coefficients of
determination
\(90 \%\) of the variability is explained only using the distance as covariate

\section*{5. Correlation and Regression models 5.2.3. A simple example in \(R\)}

\section*{Example 5-3: Summarizing the regression model}
\(R_{a d j}^{2}=\%\) of variance explained by the model adjusted for the number of covariates \(\checkmark\) It considers the number of covariates
\(\checkmark\) It uses the unbiased variance estimators
\(\checkmark\) It is used as a measure of goodness of fit
\(\checkmark\) It does not increases always (adding very bad covariates will decrease \(R_{a d j}{ }^{2}\) )
\(\checkmark\) It can be used as a variable or model selection criterion
\(\checkmark\) In simple linear regression it does not differ a lot from \(R^{2}\).
\begin{tabular}{llllrl} 
(Intercept) & 0.1181291 & 0.3551477 & 0.333 & 0.748 \\
distance & 0.0035851 & 0.0004214 & 8.509 & \(2.79 \mathrm{e}-05\) & ***
\end{tabular}
---
Signif. codes: \(0{ }^{\imath * * * '} 0.001{ }^{\text {'**' } 0.01 ~ ' * ' ~} 0.05\) '.' 0.1 ' ' 1 Coefficients of Besidual standard error: 0.48 or 8 ciegrees of freediom
Multiple R-squared: 0.9005 , Adjusted R-squared: 0.8881 determination \(88 \%\) of the variability is explained only using the distance as covariate

\section*{5. Correlation and Regression models 5.2.3. A simple example in \(R\)}

\section*{Example 5-3: Summarizing the regression model}

\section*{ANOVA table details for regression models}
\(\checkmark\) In simple regression it tests for: \(\mathrm{H}_{0}: \boldsymbol{\beta}_{1}=0\) vs. \(\mathrm{H}_{1}: \boldsymbol{\beta}_{1} \neq 0\)
\(\checkmark\) Be careful: in multiple regression the assumption involves all covariate effects!
\(\checkmark\) Generally tests how much the current model differs from the constant (or null) model (that is, \(\mathrm{y}=\boldsymbol{\beta}_{0}+\boldsymbol{\varepsilon}\) )
Coefficients:
Estimate Std. Error t value \(\operatorname{Pr}(>|\mathrm{t}|)\)
\(\begin{array}{llllrl}\text { (Intercept) } & 0.1181291 & 0.3551477 & 0.333 & 0.748 \\ \text { distance } & 0.0035851 & 0.0004214 & 8.509 & 2.79 \mathrm{e}-05 & * * *\end{array}\) Anova table details
Signif. codes: \(0{ }^{\text {-***' }} 0.001\) '**' 0.01 '*' 0.05 '.' 0.1 , , \({ }_{1}\) We reject the null hypothesis, so the model is different from the constant the delivery is significant for the model

\title{
5. Correlation and Regression models 5.2.3. A simple example in \(R\)
}

\section*{Example 5-3: ANOVA table for the regression model}

\section*{ANOVA table details for regression models}
\(\checkmark\) In simple regression it tests for: \(\mathbf{H}_{0}: \boldsymbol{\beta}_{1}=0\) vs. \(\mathbf{H}_{1}: \boldsymbol{\beta}_{1} \neq 0\)
\(\checkmark\) Be careful: in multiple regression the assumption involves all covariate effects!
\(\checkmark\) Generally tests how much the current model differs from the constant (or null) model (that is, \(\mathbf{y}=\boldsymbol{\beta}_{\mathbf{0}}+\boldsymbol{\varepsilon}\) )
> anova(res_ex53)
Analysis of Variance Table We reject the null hypothesis, so the model is different from the constant the delivery is significant for the model
Response: delivery
```

Pr(>F)

```
distance \(116.681616 .6816 \quad 72.396 \quad 2.795 \mathrm{e}-05\) ***
Residuals 8 1.8434 0.2304
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

\section*{5. Correlation and Regression models}
5.2.3. A simple example in \(R\)

Example 5-3: Interpretation of the results
Parameter \(\beta_{1}=0.00359\) (the slope)
\(\checkmark\) Is there a linear effect? YES
\(P=0.000<0.05\) i.e. we reject the null \(\left(H_{0}\right)=>\) Therefore the distance influences the delivery time
\(\checkmark\) Of what direction is the relationship? POSITIVE
\(\beta_{1}>0\) which implies positive relationship => the longer the distance, the more delayed is the delivery
\(\checkmark\) How much the distance influences the delivery?
Each extra mile of distance increases the expected time by 0.00359 days (approximately 5 minutes)
With every extra 100 miles, the expected delivery increases by 0.359 days (approximately 8.6 hours)

\section*{5. Correlation and Regression models}
5.2.3. A simple example in \(R\)

\section*{Example 5-3: Interpretation of the results} Why this interpretation?
Parameter \(\beta_{1}\)
- Let us assume two different explanatory values \(X_{1}=X\) \& \(X_{2}=X+1\) then
- \(\mu_{1}=\beta_{0}+\beta_{1} X_{1}=\beta_{0}+\beta_{1} X\)
- \(\mu_{2}=\beta_{0}+\beta_{1} X_{2}=\beta_{0}+\beta_{1}(X+1)\)
- \(\Delta \mu=\mu_{2}-\mu_{1}=\beta_{0}+\beta_{1}(X+1)-\beta_{0}-\beta_{1} X=\beta_{1}\)

\section*{5. Correlation and Regression models}
5.2.3. A simple example in \(R\)

Example 5-3: Interpretation of the results
Parameter \(\beta_{0}=0.118\) (the intercept)
\(\checkmark\) Can be removed from the equation without changing much the fit/predictions? YES
\(P=0.748>0.05\) i.e. we do not reject the null \(\left(\mathrm{H}_{0}\right)=>\) Therefore the constant/intercept can be assumed to be equal to zero and be removed from the model

\section*{5. Correlation and Regression models}
5.2.3. A simple example in \(R\)

\section*{Example 5-3: Interpretation of the results}

Parameter \(\beta_{0}=0.118\) (the intercept)
\(\checkmark\) INTERPRETATION:
\(>\) When the distance is zero then the delivery time is 0.118 days (2.8 山்pعऽ)
\(>\) It shows the delivery time when the cargo destination is very close
\(>B E\) CAREFUL this value is outside the range of \(X\) since the smallest destination is 215 miles away
```

> range(cargo\$distance)
[1] 215 1350

```
\(\checkmark\) Shall we remove it? Possibly YES.
The logic here says that we should remove this term from the model

\section*{5. Correlation and Regression models \\ 5.2.3. A simple example in \(R\)}

\section*{Example 5-3: Interpretation of the results Predictive performance and goodness of fit}
\(\checkmark \mathrm{R}=\mathrm{r}=0.95 \& \mathrm{R}^{2}=0.89\);
\(>\) High correlation between the two variables
\(>\) Well fitted model and accurate predictions
\(>89 \%\) of the variance is explained by the model which means that if we know the distance we can accurately predict the delivery time

\section*{5. Correlation and Regression models}
5.2.3. A simple example in \(R\)

\section*{Example 5-3: Interpretation of the results}

Standardized coefficient \(\mathrm{b}_{1}=0.949\)
\(\checkmark\) If the distance increases by a standard deviation (i.e. 380 miles) then the delivery time is expected to increase by 0.95 standard deviations of \(Y\) (that is, by \(0.949 * 1.435=1.36\) days).
\[
\begin{aligned}
& >\text { sapply }(\text { cargo }[,-1], \text { sd) } \\
& \text { distance delivery } \\
& 379.745529 \quad 1.434689
\end{aligned}
\]

\section*{5. Correlation and Regression models \\ 5.2.4. Checking for model assumptions}

ASSUMPTIONS (to be checked):
- Normality of errors (and of \(Y_{i}\) )
- Homoscedasticity of errors (and \(Y_{i}\) )
- Independence of errors (and of \(Y_{i}\) )
- Linearity between X \& Y
- We work with the residuals \(\mathrm{e}_{\mathrm{i}}\)

\section*{5. Correlation and Regression models 5.2.4. Checking for model assumptions}

Types of residuals:
- (Unstandardised) Residuals \(\quad e_{i}=y_{i}-\widehat{y}_{i}\)
- Standardized residuals
\[
\mathrm{SPSS}_{\pi} e_{i}^{*}=\frac{y_{i}-\widehat{y}_{i}}{\widehat{\sigma}^{2}}
\]
\[
\begin{gathered}
\mathrm{R}-\text { Wikipedia } \\
\underset{\text { SPSS }}{\text { Wikipedia }} e_{i}^{*}=\frac{y_{i}-\hat{y}_{i}}{s \cdot e \cdot\left(y_{i}-\hat{y}_{i}\right)}=\frac{y_{i}-\hat{y}_{i}}{\hat{\sigma} \sqrt{1-h_{i i}}} h_{i j} \text { is the diagonal elements of the }
\end{gathered}
\]
- Studentized residuals (internally studentized)
\[
\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}_{89}^{T}
\]

\section*{5. Correlation and Regression models 5.2.4. Checking for model assumptions}

\section*{Types of residuals:}
- Standardized residuals

\(h_{i j}\) is the diagonal elements of the hat matrix H
- Studentized residuals
- (Deleted) Studentized residuals \(\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}\) ( or jack-knife residuals)
(externally studentized)
When using estimating the standard error from the regression model without using the i-th observation

\section*{5. Correlation and Regression models 5.2.4. Checking for model assumptions}

Types of residuals in R:
- (Unstandardized) Residuals
res_ex53\$residuals residuals(res_ex53) resid(res_ex53)
```

rstandard(res_ex53)
library(MASS)
round(stdres(res_ex53),3)

```
- Studentized residuals (Jack-knife residuals) rstudent(res_ex53) library(MASS) studres(res_ex53) residuals will be similar for reasonably large \(n\)

\section*{5. Correlation and Regression models \\ 5.2.4. Checking for model assumptions}

ASSUMPTIONS (to be checked):

Theoretical errors
\[
\begin{aligned}
E\left(\varepsilon_{i}\right) & =0 \\
\operatorname{Var}\left(\varepsilon_{i}\right) & =\sigma^{2}
\end{aligned}
\]
\(\operatorname{Cov}\left(\varepsilon_{i}, \varepsilon_{j}\right)=0\)

Estimated sample residuals
\[
E\left(e_{i}\right)=0
\]
\[
\operatorname{Var}\left(e_{i}\right)=\sigma^{2}\left(1-h_{i i}\right)
\]
\(\operatorname{Cov}\left(e_{i}, e_{j}\right)=-\sigma^{2} h_{i j}\)

\section*{5. Correlation and Regression models \\ 5.2.4. Checking for model assumptions}

ASSUMPTIONS (to be checked):
- Normality of errors (and of \(Y_{i}\) )

Use studentized residuals
- Homoscedasticity of errors (and \(Y_{i}\) )

Use standardized or studentized residuals (with expected variance eq. to 1)
- Independence of errors (and of \(Y_{i}\) )

Use studentized/Jack-knife residuals
(expected correlation eq. to 0 )
- Linearity between X \& Y
(for reasonably large n you can use any of them since they will be \(\mathrm{e}_{93}\) similar)

\section*{5. Correlation and Regression models 5.2.4. Checking for model assumptions}

ASSUMPTIONS: The Normality assumption
Consequences of departures from Normality:
- The performance of hypothesis tests and confidence intervals can be compromised.
- Though, these procedures are generally robust to small departures from Normality.

How to cure the problem:
- Use transformations (log or Box-Cox)
- Use non-normal errors
- Use GLM models for non-normal responses
- Use non-parametric regression models

\section*{5. Correlation and Regression models 5.2.4. Checking for model assumptions}

ASSUMPTIONS: The normality assumption
Use un-standardized residuals
- Normality QQ-plots for unstandardized residuals
- Student QQ-plots for studentized residuals
- Lilliefors KS \& Shapiro test
- Other normality tests

\section*{5. Correlation and Regression models 5.2.4. Checking for model assumptions}

ASSUMPTIONS : Checking for independence
Error independence cannot be checked easily.
Some diagnostics are the following:
- If the data have meaning in terms of time sequence then this analysis should be skipped since it is not possible to check for indepdendence
- Time sequence plot (against id or any variable with chronological meaning)
- Test for non randomness using the runs test
- Tests for auto-correlations
\(\checkmark\) Durbin - Watson test (testing for serial correlation of order one)
\(\checkmark\) ACF Plots \& Tests for autocorrelations
\(\checkmark\) AR models
For details see Ryan 1997 p. 46-47

\section*{5. Correlation and Regression models \\ 5.2.4. Checking for model assumptions}

ASSUMPTIONS : Checking for independence
Simple time-sequence plot - Example of independence



\section*{5. Correlation and Regression models \\ 5.2.4. Checking for model assumptions}

ASSUMPTIONS : Checking for independence
Simple time-sequence plot - Examples of dependence



\section*{5. Correlation and Regression models \\ 5.2.4. Checking for model assumptions}

ASSUMPTIONS : Checking for independence
Simple time-sequence plot



\section*{5. Correlation and Regression models 5.2.4. Checking for model assumptions}

ASSUMPTIONS : Checking for independence
The Durbin-Watson test for serial correlation
\[
d=\frac{\sum_{t=2}^{T}\left(e_{t}-e_{t-1}\right)^{2}}{\sum_{t=1}^{T} e_{t}^{2}}
\]
\(\checkmark 0<D<4\)
\(\checkmark 0<D<2\) positive autocorrelation
\(\checkmark 2<D<4\) negative autocorrelation
\(\checkmark D=2 \Leftrightarrow\) no autocorrelation
library(Imtest) dwtest(res_ex53)
> dwtest(res_ex53)
    Durbin-Watson test
data: res_ex53
\(D W=0.753 \overline{3}\), p-value \(=0.01374\) Uses asymptotic test
alternative hypothesis: true autocorrelation is greater than 0

\section*{5. Correlation and Regression models 5.2.4. Checking for model assumptions}

ASSUMPTIONS : Checking for independence
The Durbin-Watson test for serial correlation \(\quad d=\frac{\sum_{t=2}^{T}\left(e_{t}-e_{t-1}\right)^{2}}{\sum_{t=1}^{T} e_{t}^{2}}\)
library(car) durbinWatsonTest(res_ex53) dwt(res_ex53) dwt(res_ex53\$resid)
```

> library(car)
> durbinWatsonTest(res ex53)
lag Autocorrelation D-W Statistic
Alternative hypothesis: rho != 0
> dwt(res_ex53)
lag Autocorrrelation D-W Statistic
Alternative hypothesis: rho != 0

```

\section*{5. Correlation and Regression models 5.2.4. Checking for model assumptions}

ASSUMPTIONS: Homoscedasticity of errors (and \(\mathrm{Y}_{\mathrm{i}}\) )
- Plot of covariates vs. residuals
- Plot fitted values vs. residuals
- Plot fitted values vs. squared residuals
- Plot of fitted values vs. squared root residuals
- Checking for equality of variance in quartiles of fitted values
- Score tests for nonconstant error variance (Breusch \& Pagan, 1979 - Cook \& Weisberg, 1983)
For more details see
- Fox (2002. \(1^{\text {st }}\) edition p. 206-209)
- Draper \& Smith (1998, \(3^{\text {rd }}\) edition, p. 56-59, 62-67)
- Gunst \& Mason (1980, p 237)

\section*{5. Correlation and Regression models \\ 5.2.4. Checking for model assumptions}

\section*{ASSUMPTIONS: Homoscedasticity of errors}
- Fitted values vs. standardized or studentized residuals using 95\% quantiles from the correct distributions



\section*{5. Correlation and Regression models \\ 5.2.4. Checking for model assumptions}

\section*{ASSUMPTIONS: Homoscedasticity of errors}
- Fitted values vs. standardized or studentized residuals using \(\pm 2\) (i.e. 95\% quantiles assuming approximate normality)


\section*{5. Correlation and Regression models 5.2.4. Checking for model assumptions}

\section*{ASSUMPTIONS: Homoscedasticity of errors}
- Fitted values vs. standardized or studentized residuals using \(95 \%\) quantiles from the correct distributions
```

par(mfrow=c(1,2), cex=1.3, cex.lab=1.3)
n<-nrow(cargo)
p<-2
plot(fitted(res_ex53), rstandard(res_ex53), ylim= range(c(-3,3,
rstandard(res_ex53))))
ub <- sqrt(qbeta(0.95, 0.5, 0.5*(n-p-1))*(n-p-1))
abline(h=c(-ub,0,ub), col=2,lty=2)
plot(fitted(res_ex53), rstudent(res_ex53), ylim= range(c(-3,3,
rstandard(res_ex53))))
ub <- qt(0.975, (n-p-1))
abline(h=c(-ub,0,ub), col=2,lty=2)

```

\section*{5. Correlation and Regression models 5.2.4. Checking for model assumptions}

\section*{ASSUMPTIONS: Non-linearity}

Consequences of departures from linearity: if linearity fails
- The error variance will appear as non-constant even if it is constant due to the model misspecification
- the model is inadequate, especially for prediction.

How to cure the problem:
- Transform the response
- Transform the covariates
- Use polynomial regression or non-parametric regression models
- Use non-linear models

\section*{5. Correlation and Regression models \\ 5.2.4. Checking for model assumptions}

ASSUMPTIONS: Non-linearity
- Plot of X vs. Y
- Plot of residuals vs. covariates
- Tukey's test and residualPlot
- Fit polynomial models
- Partial residual plots (cr.plot)

\section*{5. Correlation and Regression models 5.2.4. Checking for model assumptions}

\section*{ASSUMPTIONS: Non-linearity}

Plot of X vs. Y
- There are several types of nonparametric regression. The most commonly used is the lowess (or loess) procedure first developed by Cleveland (1979)
- Lowess (or loess) is an acronym for locally weighted scatterplot smoothing
- These models fit local polynomial regressions and join them toaether

\(\mathrm{x}<-\)-cargo\$distance
y <-cargo\$delivery
plot( \(\mathrm{x}, \mathrm{y}\) )
abline(res_ex53)
lines(lowess \((\mathrm{x}, \mathrm{y})\), col \(=2)\)

\section*{5. Correlation and Regression models 5.2.4. Checking for model assumptions}


\section*{5. Correlation and Regression models 5.2.4. Checking for model assumptions}

\section*{ASSUMPTIONS: Non-linearity}
- Plot of residuals vs. covariates


\section*{5. Correlation and Regression models 5.2.4. Checking for model assumptions}

\section*{ASSUMPTIONS: Non-linearity}
- Plot of residuals vs. covariates


\section*{5. Correlation and Regression models 5.2.4. Checking for model assumptions}


\section*{5. Correlation and Regression models \\ 5.2.4. Checking for model assumptions}

ASSUMPTIONS: Non-linearity
Tukey's test and residualPlot
> residualPlots (res_ex53)
Test stat \(\operatorname{Pr}(>|t|)\)
distance \(\quad-0.25 \quad 0.810\)
\(\begin{array}{lll}\text { Tukey test } & -0.25 & 0.803\end{array}\)



\section*{5. Correlation and Regression models 5.2.4. Checking for model assumptions}

\section*{ASSUMPTIONS: Non-linearity}

\section*{Tukey's test and residualPlot}
> residualPlots (res ex53)
Test stat \(\operatorname{Pr}(>|t|)\)
\begin{tabular}{|lll|}
\hline distance & -0.25 & 0.810 \\
\hline Tukey test & -0.25 & 0.803 \\
\hline
\end{tabular}
> summary(lm( delivery~distance+I(distance^2), data=cargo ))
Call:
lm(formula \(=\) delivery \(\sim\) distance + I(distance^2), data \(=\) cargo)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
5227 & -0.3224 & 0.1033 & 0.3457 & 0.5461
\end{tabular}

Coefficients:
Estimate Std. Error t value Pr (>|t|)
(Intercept) \(-4.824 \mathrm{e}-02 \quad 7.664 \mathrm{e}-01 \quad-0.063 \quad 0.952\)
distance \(4.127 \mathrm{e}-03 \quad 2.216 \mathrm{e}-03 \quad 1.863 \quad 0.105\)
\(\begin{array}{lllll}\text { I (distance^2) } & -3.465 e-07 & 1.389 e-06 & -0.250 & 0.810\end{array}\)
```

Residual standard error: 0.5109 on 7 degrees of freedom
Multiple R-squared: 0.9014, Adjusted R-squared: 0.8732
F-statistic: 31.99 on 2 and 7 DF, p-value: 0.0003013

5. Correlation and Regression models 5.2.4. Checking for model assumptions

