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4. Hypothesis Tests & Pairwise

associations

In this module we will examine

® Exploratory data analysis

® Testing for normality

® General principles for hypothesis testing
® Standard errors and p-values

® Hypothesis tests for one sample (mean, variance, kurtosis,
skewness)

® Association between one quantitative and one qualitative
variable

® Association between two categorical variables
® Association between two ordinals
® Correlation between two guantitative variables 2



4.2. Testing for normality

QQ plots
PDF plots

CDF Plots

Testing for symmetry & skewness
Testing for kurtosis
Kolmogorov-Smirnov test
Shapiro-Wilks test

Other tests

o O O o O O o O
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4.2. Testing for normality

Salary dataset from Norusis

This is a data file containing information on 474 employees
hired by a Midwestern bank between 1969 and 1971.

It was created for an Equal Employment Opportunity (EEO)
court case involving wage discrimination.




4.2. Testing for normality

Salary dataset from Norusis

ID Employee code

SALBEG Beginning salary

SEX Gender of employee (O=Female; 1=Male)

TIME Job Seniority (months)

AGE Age of Employee (years and fraction)

SALNOW Current salary

EDLEVEL Educational Level (years)

WORK Work Experience (years x 100)

JOBCAT Employment category (1 Clerical, 2 Office trainee, 3 Security
officer, 4 College trainee, 5 Exempt employee, 6 MBA trainee 7
Technical)

MINORITY Minority Classification (0=White; 1=Nonwhite)




4.2. Testing for normality

Dataset salary from Norusis

> names (salary)

[1] llidll llsalbegll IISEKII lltj_-[-nell "EJ.Q'E" llsalanll
[7] "edlevel™ "work" "Jobcat" "minority" "sexrace"
> |
id salbeqg sex time age salnow edlevel WOork

"numeric" "numeric™ "factor™ "numeric”™ "numeric™ "numeric" "numeric™ "numeric®

jobcat minority sexrace
"factor" "factor"™ "factor"



4.2. Testing for normality

QQ-plots
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4.2. Testing for normality

QQ-plots

salbeg time age salnow edlevel work
3600 03 23 ©300 8 0
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4.2. Testing for normality

Density plots

12
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4.2. Testing for normality

Density plots
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4.2. Testing for normality

Kolmogorov-Smirnov test

The KS test quantifies a
distance between the
empirical distribution
function of the sample and
the cumulative distribution
function of the reference
distribution. In the special
case of testing for normality
of the distribution, samples
are standardized and
compared with a standard
normal distribution.

> for(i in l:length(y)){
+ print(ks.test(y[,1], y='pnorm'))
+ ]

One-sample Kolmogorov-Smirnov test

data: [, 1]

D=1, pvalue < 2.2e-16

alternative hypothesis: two-sided
One-sample Kolmogorov-Smirnov test

data: vyl[, 1l

D=1, pvalue < 2.2e-16

alternative hypothesis: two-sided
One-sample Kolmogorov-Smirnov test

data: yl[, 1]

D=1, p-value < 2.2e-1l6¢

alternative hypothesis: two-sided
One-sample Kolmogorov-Smirnov test

data: vyl[, 1l

D=1, p-value < 2.2e-1l¢

alternative hypothesis: two-sided
One-sample Kolmogorov-Smirnov test

data: [, 1]

D=1, pvalue < 2.2e-16
alternative hypothesis: two-sided

14
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4.2. Testing for normality

Kolmogorov-Smirnov test

> lapply(v,ks.test, y='pnorm')
Ssalbeqg

One-sample Kolmogorov-Smirnov test
data: X[[1L]]

0D=1, p-value < 2.2e-16
alternative hypothesis: two-sided

Stime
One-sample Kolmogorov-Smirnov test
data: X[[2ZL]]

0D=1, p-value < 2.2e-16
alternative hypothesis: two-sided

Sage
One-sample Kolmogorov-Smirnov test
data: X[[3L]]

0D=1, p-value < 2.2e-16
alternative hypothesis: two-sided

Ssalnow
One-sample EKolmogorov-Smirnov test
data: X[[4L]]
ODb=1, p-value < 2.2e-1¢
alternative hypothesis: two-sided

Sedlevel

One-sample EKolmogorov-Smirnov test

| 16
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4.2. Testing for normality

Lilliefors Kolmogorov-Smirnov test

 Modification of the Kolmogorov-Smirnov test
* Less conservative

> library('nortest')

> sapply(y,1lillie.test)
salbeg
statistic 0.2518788
p.value T7.444205%e-85
method "Lilliefors (Kolmogorov-Smirnov) normality test"
data.name "X[[1L]]1"
age
statistic 0.189B205
p.value 3.475671e-47
method "Lilliefors (Kolmogorov-Smirnov) normality test”
data.names "X[[3L]1]1"
edlevel
statistic 0.21009%17
p.value 2.845403e-58
method "Lilliefors (Kolmogorov-Smirnov) normality test"
data.name "X[[5L]]"
= lamliviv.1i111e . test)

time
0.08255521
3.377654e-08
"Lilliefors
IIX[ [2L] ] ”
salnow
0.2078544
5.44553e-57
"TLilliefors
llx[ [4L] ] "
work
0.1845442
1.70913¢6e-44
"Lilliefors
IIX[ [6L] ] ”

(Kolmogorov-Smirnow)

normality test"

(Eolmogorov-Smirnov) normality test"

(Kolmogorov-Smirnov) normality test”

17
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4.2. Testing for normality

Lilliefors Kolmogorov-Smirnov test

> lapplv(y,lillie.test)
Ssalbeg

Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[1L]]
D = 0.251%, p-value < 2.2e-1%6
Stime

Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[2L]]
D = 0.082&, p-value = 3.378e-08
Sage

Lilliefors (Kolmogorov-Smirnov) normality test

data: X[[3L]]
D= 0.18%8, p-value < 2.2e-1%

Ssalnow
Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[4L]]
D= 0.207%, p-value < 2.2e-1¢
Sedlevel
Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[5L]]
D = 0.2101, p-value < 2.2e-1¢
Swork
Lilliefors (Kolmogorov-Smirnov) normality test

data: X[[&L]]
D = 0.1845, p-value < 2.2e-1¢

18
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4.3. General principles for hypothesis

testing

Hypothesis tests:

® Use a null hypothesis expressed with an equality concerning a set of
parameters H,: 6=0,

® The alternative hypothesis is usually the complementary statement e.g.
H,: 6£6,

® We use a Statistic which usually measures the distance between the
observed data and the null hypothesis

® We use the distribution under the null hypothesis to find thresholds for
rejecting the null

® So the reasoning is that if the Statistic is large i.e. the distance between
the observed data and the null hypothesis is large, then something went
wrong with our reasoning and probably this is the original hypothesis

® We do reject the null hypothesis
® We do not accept the alternative



4.3. Standard errors & p values

What is a p-value?
The P -Value Interpretation Table

Less than 0.01 Strong evidence against Null Hypothesis, Very
statistically significant

Some evidence against Null Hypothesis, statistically
significant

0.01 to 0.05

Greater than 0.05 Insufficient evidence against Null Hypothesis

0.05 < p < 0.10 Not significant at a=5%
Significant at a=10%
Often reported as marginal significant result
20



4.3. Standard errors & p values

What is a p-value? P vnl“E < 0-05?

21



4.3. Standard errors & p values

What is a p-value?

https://www.youtube.com/watch?time continue=17&v=9jW9G
8MQO4PQ

22


https://www.youtube.com/watch?time_continue=17&v=9jW9G8MO4PQ

4.3. Standard errors & p values

What is a p-value?

It is not the probability that the null hypothesis is not correct!

It is the probability to observe a dataset with the same or more
distant statistic than the one already observed if the null is true

Hence if the p-value is small it means that not a lot of datasets
are worse than the one you observed under the null

So either the null is wrong and should be rejected or we are
unlucky

How much unlucky? The probability to reject the null when it is
true is equal to a (usually equal to 5% or 1%)

23



4.3. Standard errors & p values

What is a standard error?
® Standard deviation or standard error
® |sitequal tos/n?2?

® \What about estimators?

24



4.3. Standard errors & p values

What is a standard error?

® Estimators are functions of random variables (before observing
the data)

® Estimates are the specific observed value for a specific sample

® Estimators are random variables. Therefore:

— for each sample we have different value (estimate)
— They have a mean

— They have a variance

Standard error of an estimator is simply the standard deviation of an
estimator

It is called error because it measures how close we are in the true

value (i.e. the mean in the unbiased estimators)
25



4.3. Standard errors & p values

What is a standard error?
Good estimators

® They are unbiased

(i.e. if we consider a lot of samples, the mean of the
estimates will be equal to the true value)

® They have small standard error

(i.e. the estimates are close to the mean/true value)

26



4.4. Hypothesis tests for a single

continuous variable

Hypothesis test for the mean

® Hy: u=Hg vs Hyt pp

® 7-test for normal data with known variance

® T-test for normal data with unknown variance

® Assumption: Normality or large sample n>30 or >50
Hypothesis test for the median

® H,: M=M,vs H;: M= M,

® Wilcoxon sign rank test

27



4.4. Hypothesis tests for a single

continuous variable

Hypothesis test for the median
® Hy: M=M,vs Hi: M= M,
® Wilcoxon sign rank test

Assumptions. There is no requirement that the individual X; and ¥; be independent,
only that the pairs (X, Y;),..., (X,.Y,), and therefore the resulting differences
Zi,..., Z,, be mutually independent. Indeed, in most applications, the individual
X; and Y; are dependent. For paired replicates data, the symmetry part of Assump-
tion A2 is often inherently satisfied. In particular, if each X; and ¥;,i = 1
arise from populations differing only in location (i.e., the only treatment “‘effect”
is a change in location), then the (Z; — #)’s come from populations that are
symmetric about zero. (This is, in fact, true under more general conditions.)

Source: Hollander, Wolfe & Chicken (2014). Nonparametric Statistical
Methods. Wiley & sons.

28



4.4. Hypothesis tests for a single

continuous variable

'EAgyxol yia €va deiyua
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4.4. Hypothesis tests for a single

continuous variable

Hypothesis test for the mean

> xl<-rnorm(100)
> t.test(xl)

One Sample t-test

data: xl
t = 1.7548, df = 99, p-value = 0.0B238
alternative hypothesis: true mean is not equal to 0
85 percent confidence interval:
-0.01965387 0.32103009
sample estimates:
mean of x
0.1506681

> temp<-t.test (xl)

> names (temp)

[1] "statistic" "parameter" "p.value" "conf.int" "estimate"
[6] "null.value" "alternative" "method" "data.name"

> tempSp.val

[1] ©0.08238023

> tempSestim

mean of x

0.1506681 30



4.4. Hypothesis tests for a single

continuous variable

Hypothesis test for the mean

> shapiro.test (x1)
Shapiro-Wilk normality test

data: =zl
W = 0.5%54, p-value = 0.5844

> library('nortest"')
> lillie.test (x1)

Lilliefors (Kolmogorov-Smirnov) normality test

data: xl1
D = 0.0485, p-value = 0.78515

> ks.test(xl, 'pnorm')
One-sample Kolmogorov-Smirnov test
data: 1

D = 0.1238, p-value = 0.08332
alternative hypothesis: two-sided

31



4.4. Hypothesis tests for a single

continuous variable

y<—-salary
logdiff<-log(ySsalnow/ySsalbeqg)

$ks.test (logdiff, "pnorm')
library('nortest')
> lillie.test (logdiff)

WOoWOW NN

Lilliefors (Kolmogorov-Smirnov) normality test

data: logdiff
D = 0.0543, p-value = 0.001931

> shapiro.test(logdiff)
Shapiro-Wilk normality test

data: logdiff
W= 0.9779%, p-value = 1.343e-06

=

> mean (logdiff)

[1] 0.6873881

> median (logdiff)

[1] 0.6751261 32



4.4. Hypothesis tests for a single

continuous variable

Hypothesis test for the mean
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4.4. Hypothesis tests for a single

continuous variable

> t.test(logdiff, mu=0)

One Sample t-test

data: logdiff
t = 81.3521, df = 473, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
0.6707848 0.7039913
sample estimates:
mean of x
0.6873881

>
> t.test(logdiff, mu=0.7)

One Sample t-test

data: logdiff
t = -1.4926, df = 473, p-value = 0.1362
alternative hypothesis: true mean 1s not equal to 0.7
95 percent confidence interval:
0.6707848 0.7039%913
sample estimates:
mean of x
0.6873881

> | 34



4.4. Hypothesis tests for a single

continuous variable

y<—=zalary
diff<- ySsalnow - ySsalbeg

fks.test (diff, "ponorm")
library('nortest"')
lillie.test (diff)

WO N

Lilliefors (Eolmogorov—Smirnov) normality test

data: diff
D= 0.186, p-valus < 2.Ze-16

> shapiro.test (diff)
Shapiro-Wilk normality test

data: diff
W = 0.7817, p-value < 2.Z2e-16%

=

> mean (diff)

[1] &5&1l.352

> median (diff)

[1] 5700

=

> wilcox.test (diff, mu=0)

Wilcoxon signed rank test with continuity correction
data: diff

v = 112575, p-wvalue < 2.2e-16 35
alternative hypothesis: true location is not equal to 0O



4.4. Hypothesis tests for a single

continuous variable

> wilcox.test (diff, mu=&000)

Wilcoxon signed rank test with continuity correction

data: diff
V = 56813.5, p-value = 0.5075
alternative hypothesis: true location is not equal to 6000

>
> L.test(diff, mu=e000)

One Sample t-test

data: diff
t = 4.8386, df = 473, p-value = 1.773e-06
alternative hypothesis: true mean 1s not equal to €000
95 percent confidence interval:
6570.963 7351.822
sample estimates:
mean of x
6961.392

> | 36



4.5. Hypothesis tests for two

dependent samples

® Examples
— Grades in 2 different courses
— Cholesterol measurements before and after a treatment
— Sales before and after a marketing policy
— Treatment effects in left and right hand of a patient
— Behavior study of twins under different environmental conditions

® Examines the association between:
— Grades + course
— Cholesterol + treatment
— Sales + marketing policy
— Disease + treatment
— Behavior + environmental conditions

37



4.5. Hypothesis tests for two

dependent samples

We are interest to test for difference between the two dependent values
— measurements

We eliminate correlation by using the difference of each pair: A=X;,— X,
We test if the mean of the difference is zero or not
Hence we implement a one-sample t-test for the difference
Ho: Mp =0Vvs Hi n,, # 0.
This is the paired t-test or the dependent samples t-test

ASSUMPTION

— The difference should follow the normal distribution or the sample size to be
large (n>50)

If normality assumption is rejected then we use the non-parametric test
Hy: My =0vsH;: M, #0

38



4.5. Hypothesis tests for two

dependent samples
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4.6. Hypothesis tests for two samples m-..

on
Testing for the association between a continuous and a categorical variable AUEB

Hypothesis test for the equality of the means between two
independent samples/groups

® Two variables:
— One continuous
— One binary-categorical specifying the groups
® Ho: My=Hy Vs Hyt iy,
® T-test for normal data with unknown variance

® Assumption: Normality or large sample for each group n>30 or
>50

® Different degrees of freedom for equal and unequal variances

40



4.6. Hypothesis tests for two samples m...

on
Testing for the association between a continuous and a categorical variable AUEB

Hypothesis test for the equality of the medians between two
independent samples/groups

® Two variables:

— One continuous

— One binary-categorical specifying the groups
® H,: M;=M, vs H;: M;=M,
® Wilcoxon rank-sum test (or Mann-Whitney)
® No assumptions

® (Can be used when the normality assumption is not valid or the
mean cannot be used as representative of the “usual”
observation

41



4.6. Hypothesis tests for two samples .a....

on
Testing for the association between a continuous and a categorical variable AUEB

® Measurements of the same variable in two groups of different
individuals/research units

® For example: 2 groups of randomly selected patients
— 1st group receives placebo (virtual of fake treatment)
— 2"d group receives new treatment

® Response: Cholesterol

® \We study the association/relationship between a quantitative
and a binary qualitative (treatment) variable

® |In R data frame => 2 columns = 1 numeric (cholesterol) and a
factor with two levels (treatment)

42



4.6. Hypothesis tests for two samples .a....

on
Testing for the association between a continuous and a categorical variable AUEB

® Examples
— Performance/Grades in the same course in two subsequent years
— Cholesterol for two groups of patients receiving different treatment

— Sales in two different groups of shops in which different business strategy
was implemented

— Study of the psychological scales of two groups of individuals tested under
different conditions of stress.
® Examines the association between
— Performance/Grades + year
— Cholesterol + treatment
— Sales + business strategy
— Psychological state + stress conditions

43



4.6. Hypothesis tests for two samples .a....

on
Testing for the association between a continuous and a categorical variable AUEB

® We are interested to test for differences on the values of the quantitative
variable for the two groups (are the means of the medians equal?)

® Testing for the equality of means:
Hot My =My VSHitly # 1,
® Thisis the independent samples t-test

® |n practice, it examines the relationship between the binary and the
numeric variable since if the means on average are the same then the
state of the binary does not influence the (conditional?) mean

® The hypothesis test can be re-written as
Ho: E(Y|X=1) = E(Y|X=2) vs H: E(Y|X=1) # E(Y|X=2).
Y is the numeric variable, X is the factor

44



4.6. Hypothesis tests for two samples .a....

on
Testing for the association between a continuous and a categorical variable AUEB

® We are interested to test for differences on the values of the quantitative
variable for the two groups (are the means of the medians equal?)

® Testing for the equality of means:

Hot My =My VS Hitly # 1,
® Thisis the independent samples t-test

BASIC ASSUMPTION:
— Normality in each group or the size to be high (n,, n,>50)

® |f the previous assumption is not valid then we use a non-parametric test
(the WILCOXON SUM-RANKED TEST)

Hy: My =M, vsH;: My # M,
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4.6. Hypothesis tests for two samples m-..

on
Testing for the association between a continuous and a categorical variable AUEB

Example 4-5 [datasetl.dat]

® The education manager of a company wants to evaluate the
efficiency of two different teaching methods of the employees.

® For this reason, he selects randomly 24 employees and divides
them in two groups of equal size.

® Every group is educated in a new software by a different
teaching method

® 2 employees of the 2" group did not completed the seminar

® |nthe end, all employees were tested in a common examination
and graded with a scale from 0 to 100.
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4.6. Hypothesis tests for two samples

. . . . . . OnA
Testing for the association between a continuous and a categorical variable  AUER

Example 4-5 [datasetl.dat]

Group A 70 93 82 90 77 86 79 84 98 73 81 85
Group B 89 78 94 83 83 80 91 92 87 97

= AIM: To identify which method is more efficient in order
to follow it in the next seminars.
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4.6. Hypothesis tests for two samples .a....

on
Testing for the association between a continuous and a categorical variable AUEB

Example 4-5 [datasetl.dat] IR R Console = | L= [
e Study unit: e |
— employee ; o
— Sample size n=22 employees (rows) . .
® Characteristics — variables: % %
g8 B4

— Performance — Grades (numeric) +
teaching method (binary factor)

— p=2 (columns)

® Size of each group
— n;=12
— n,=10

=

98
73
B1
85
B9
78
94
B3
B8
80
91
82
B7
87

[ N R Y e e ]
[ R R ST T o BRSNSy BT S FU T 0 T S R
e B ww i we B v v I e v o v e O = B =T = T = = s = B = = B = i =

-~




4.6. Hypothesis tests for two samples .a....

on
Testing for the association between a continuous and a categorical variable AUEB

Example 4-5 [datasetl.dat] =
grades |metho var
® Study unit: 1
— employee 82

80
17
Bo
79
64
98
73
81
B5
B9
78
54
B3
BB
80
91
82
g7
87

— Sample size n=22 employees (rows)

® Characteristics — variables:

— Performance — Grades (numeric) +
teaching method (binary factor)

— p=2 (columns)

® Size of each group
— n;=12
— n,=10

CO | =] | oy | LN | e | Lo | B[ =

o

=
=

=
[

=
o

=
L

[
.

=
L

=
=]

[
=1

=
=)

=
o

[
(o]

[
[y

(ual (ws T w el = e e e B v v s R = B = = R B B S B S = R I = =

[
b2



R%20files/lecture02/code_to_run/eda_plots.txt

4.6. Hypothesis tests for two samples ?ﬁ.

: . . : : OrnA
Testing for the association between a continuous and a categorical variable  AUER

structure (list (grades = c(70, %3, 82, %0, 77, Be, 7%, 84, 88,
73, 81, 85, B89, 78, 94, 83, 88, 80, 91, 92, 87, 97), method = structure(c (1L,
i., 1., 1., 1i., 1., 1., 1., 1., 1., 1., 1., 2., 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L), .Label = ci("m", "B"), class = "factor")),

"method"), row.names = c(NA, 22L), class = "data.frame")
> |

.Names = c("grades",


R%20files/lecture02/code_to_run/eda_plots.txt

4.6. Hypothesis tests for two samples .a....

on
Testing for the association between a continuous and a categorical variable AUEB

Steps for implementing hypothesis tests in two
independent samples

1. We test for normality in each group

2. We implement the appropriate test

a) If normality is not rejected
i.  We test for the equality of variances (homoscedasticity)
ii. We select the appropriate t-test (with equal or unequal variances)
iii. If there are differences we visualize them using ERROR BARS

b) If normality is rejected
i. Weimplement the WILCOXON rank-sum test
ii. If differences are traced then we visualize them using BOX PLOTS
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4.6. Hypothesis tests for two samples £

OnA

Testing for the association between a continuous and a categorical variable  AUER

Example 4-5 [datasetl.dat]
1. We test for the normality in each group

> library(nortest)

> by( datasetlSgrades, datasetlSmethod, lillie.test)

datasetlfmethod: R

Lilliefors

data: dd[x, ]

D= 0.1125, p-value #F

(Kolmogorov-Smirnov) normality test

> by( datasetlSgrades,

datasetlSmethod: &

datasetlSmethod, shapiro.test)

Shapiro-Wilk normality test

data: dd[=, ]
W = 0.9893, p-value S

datasetlSmethod: B
Lilliefors

data: ddlx, ]

D= 0.1412, p-value +

(Kolmogorov-Smirnov) normality test

0.8278

datasetlSmethod: B

Shapiro-Wilk normality test

data: dd[=, ]
W = 0.9697, p-value =S

0.8876

> |

All p-values>0.5 => we do not reject normality in either of
the two groups
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4.6. Hypothesis tests for two samples &

. . . . . . OrnA
Testing for the association between a continuous and a categorical variable  AUER

Example 4-5 [datasetl.dat] var.test(x$A, x$B)

] var.test(x[[1]], x[[21])
2. a) independent samples t-test  vartest( grades~method, data=dataset1 )

I. Checking for the equality of variances

> var.test( grades~method, data=datasetl )

F test to compare two VAariances

data: grades by method

F=1.7534, num df = 11, denom df = 9, p-value =\0.407%

alternative hypothesis: true ratio of wariances D equal to 1
85 percent confidence interwval:
0.4483574 ©£.2932011

sample estimates:

ratio of variances
1.754007

|, P-value=0.41>0.05 => we do not reject H, =>
we can assume equal variances
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4.6. Hypothesis tests for two samples .a....

on
Testing for the association between a continuous and a categorical variable AUEB

_ t.test(x$A, x$B, var.equal=T)
Example 4-5 [datasetl.dat] ttet LT, [[2]]. varequal=T)

2. a) independent samples t-test  ttest( grades~method, data=dataset1 ,
var.equal=T)

ll. Using the t-test for equal variances

> t.test( grades~method, data=datasetl , wvar.equal=T)
Two Sample t-test

data: grades by method
t = -1.5282, df = 20, p-value @
alternative hypothesis: true dils =”1n means 1s not egual to 0
85 percent confidence interval:

-11.19427¢ 1.727609

sample estimates: l
mean 1n group A mean 1n group B _
83.16667 87.90000 P-value=0.14>0.05 => we do not reject

the H, => no differences between the
performance of the employees with
different training



4.6. Hypothesis tests for two samples .a....

on
Testing for the association between a continuous and a categorical variable AUEB

Example 4-5 AR e
[datasetl.dat]

2. o) Independent
samples t-test

80
|

88
|

I, Visualization using
error bars o

means

84

library(Hmisc)
myerrorbar( datasetl$grades,
dataset1$method )

82
|




4.6. Hypothesis tests for two samples aai.

. . .. . . . OrnA
Testing for the association between a continuous and a categorical variable  AUER

myerrorbar<-function(x,y, horizontal=F){
a<-0.05
sdata <- split(x,y)
means <- sapply( sdata,mean )
sds <- sapply( split(x,y), sd )
ns <- table(y)
LB <- means + gnorm( a/2 ) * sds /sqrt(ns)
UB <- means + gnorm( 1-a/2 ) * sds /sqrt(ns)
nlev <- nlevels(y)
if (horizontal) { errbar( levels(y), means, UB, LB )
} else {
errbar( 1:nlev, means, UB, LB,
xlim=c(0,nlev+1), axes=F, xlab="")
axis(2)
axis(1, at=0:(nlev+1), labels=c(",levels(y),"))
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4.6. Hypothesis tests for two samples m-..

on
Testing for the association between a continuous and a categorical variable AUEB

'EAeyxol yia 2 ave€apTtnTa dsiypaTa
(1 noooTikn + 1 diTIPN PETABANTN)

!

Eival n noooTikn HETABANTH KAVOVIKN
Nai | o€ kG0 opada; [0)%

(EAeyxog KavovikoTnTacg) l
[SW av ny, n,<50 - KS+SW av n,, n, >50]

Nal | Eival Ta Seiypata peydAa;
(n; & n, >50)

v v

Nal [ Eivan ioeg ol Nal Eival 0 p€ooc kaTaAnAo PETPO 'Oy '
dlaKupavoeig; NEPIYPAPNC TNC KEVTPIKAC BE0NC Oxi
Oy Kal yia TIG 2 OMAdEC;
"EAEYXOG yia HNdevIKN Y - . v
B1a(popa pEowV pe 'EAeyxog yia pndeviki) | AOPPWN o | peyyoq yia pndevinn
i0EC SIAKUPAVOEIG diapopa pecwv pe Siapopa diapéocwv
- avIoEG OIAKUHAVOEIG
Anoppiyn H, -

Anéppiyn H, Box-plot ava opada

57
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4.7. Hypothesis tests for multiple samples m..

. . . . . . OnA
Testing for the association between a continuous and a categorical variable  AUER

® |Introduction to analysis of variance (ANOVA)
® Assumptions

® Multiple comparisons

® Non parametric hypothesis test

® The link between t-test and ANOVA
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4.7. Hypothesis tests for multiple samples .au..

4.7.1. Analysis of variance XUE%

® |et us assume that we have measurement of the same
quantitative variable in k(>2) groups of different individuals
® For example 3 groups of patients are randomly selected
— 1n group with virtual/placebo treatment
— 2n group receives a standard treatment
— 3n group received a new treatment

® \We examine for a possible relationship between a
guantitative and a categorical variable

® |n R data frame => 2 columns = 1 numeric and a factor with 3
levels (or k levels in a more general setup)
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4.7. Hypothesis tests for multiple samples m..

. . . . . . OnA
Testing for the association between a continuous and a categorical variable  AUER

® |Introduction to analysis of variance (ANOVA)
® Assumptions

® Multiple comparisons

® Non parametric hypothesis test

® The link between t-test and ANOVA
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4.7. Hypothesis tests for multiple samples .au..

4.7.1. Analysis of variance XUE%

® |et us assume that we have measurement of the same
quantitative variable in k(>2) groups of different individuals
® For example 3 groups of patients are randomly selected
— 1n group with virtual/placebo treatment
— 2n group receives a standard treatment
— 3n group received a new treatment

® \We examine for a possible relationship between a
guantitative and a categorical variable

® |n R data frame => 2 columns = 1 numeric and a factor with 3
levels (or k levels in a more general setup)
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4.7. Hypothesis tests for multiple samples m..

4.7.1. Analysis of variance XUE%

® Examples

— Grades/student performance in 4 different academic years

— Sales in 3 different groups of sale points with different
business strategies

® Examines the association
— Grades/performance + year
— Sales + strategy
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4.7. Hypothesis tests for multiple samples .au..

4.7.1. Analysis of variance XUE%

® We are interested to test for the differences between the quantitative variable
and the groups i.e. are the means or the medians equal across groups

® We test for
Ho: By = My = = L VS
Hy: e # 1y for some k#je{1,2, ... K}.

® This hypothesis test is called analysis of variance (ANOVA: Analysis of
Variance)

® ASSUMPTIONS:
v’ Residuals’ normality or the sample size to be large (n>50)
v’ Equal variances

® |f the above hypotheses are rejected then we may use a non-parametric
method (KRUSKAL-WALLIS TEST)

Ho: My =M, = ... = M Vs
Hi: M, # M; for some i #j=1,2, ... k.
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4.7. Hypothesis tests for multiple samples m..

) : nAa
4.7.1. Analysis of variance gUEB

® |et us assume Y quantitative variable and X categorical with k levels.

® n;:isthe sample size of group j, j=1,2,...,k

K

® n= : total sample size
n an p
j=1

® Y;is the i-th observation of group j

o Yj is the sample mean of Y for group j

° eij — Yij _Yj is the residual values of i observation of group j
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4.7. Hypothesis tests for multiple samples .4.._

4.7.1. Analysis of variance XUE%

Sum of squares

Kk Nj .
e TSS = ZZ(Yij —Y)? is the total sum of squares (variance of Y?)

j=1 =1

P .
e RSS= ZZ(YU' —Yj)zit the residual sum of squares and expresses the

j=1 =1
variabilityJ within groups [within groups sum of squares]

* BSS =TSS —RSS = ZK: n, (Y_J —Y )? is the between groups sum of squares

measuring the variance 5fthe samples means of different groups

— We use the test Statistic:
- _BSS/(k-1) _
RSS/(n—x) "
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4.7. Hypothesis tests for multiple samples .4.._

4.7.1. Analysis of variance XUE%

® So we compare variances for testing for the equality of means.
WHY???

® BE CAREFULL: Rejection of H, implies only that some mean differ. The
test does not provide any information concerning which means differ.

— We implement multiple pairwise comparisons
— We visualize differences using error-bars
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4.7. Hypothesis tests for multiple samples ..._

4.7.1. Analysis of variance gUEAB

Example 4-7:

® |Let us reconsider example 4-6 with the different training methods.

® Now we consider 15 employees divided in 3 different groups of training
® The data are given in the following table:

Training Grade/performance

method
A 86 79 81 70 84
B 90 76 88 82 89
C 82 68 73 71 81
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4.7. Hypothesis tests for multiple samples .5._

4.7.1. Analysis of variance gSEI'E\s

Example 4-7: > exd.]
® Unit of study: the employee grades  method
_ 1 86 Method A
® Sample size: n=15 2 79 Method A
® Characteristics p=2 3 81 Method A
o 4 70 Method A
— Training method 5 34 Method A
— Grade/performance 6 S0 Method B
] 76 Method B
grades<-c(86,79,81,70,84,90,76,88,82,89,82, g 88 Method B
68,73, 71,81) 9 82 Method B
method<-rep(1:3,rep(5,3)) | | 10 89 Method B
method <-factor(method, Iabels=LpEa_|s_’1c_e|zE(Rl\g([e§|:1§]cl) ,) 11 87 Method C
' 12 68 Method C
ex4.7<-data.frame( grades=grades, 13 73 Method C
method=method ) 14 11 Method C
rm(grades) 15 81 Method C

rm(method) 68



4.7. Hypothesis tests for multiple samples

4.7.1. Analysis of variance

Example 4-7:

® Unit of study: the employee
® Sample size: n=15

® Characteristics p=2

— Training method
— Grade/performance

ex4.7<-edit(ex4.7)

grades |method |wvar3
1 |86 Method A
2 |79 Method A
3 |81 Method A
4 170 Method A
5 |84 Method A
& |90 Method B
7 |76 Method B
8 |88 Method B
9 |82 Method B
10 |89 Method B
11 |82 Method C
12 |68 Method C
13 |73 Method C
14 |71 Method C
15 |81 Method C

=
(a0

L
1




4.7. Hypothesis tests for multiple samples .a.._

4.7.1. Analysis of variance gUEI'E\s

Example 4-7: ANOVA using aov functionin R

Numeric variable
I ‘ > Data frame

anoval <- aov( grades~method, data=ex4.7 )

factor

also see

anova2 <- oneway.test( grades~method, data=ex4.7 )
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4.7. Hypothesis tests for multiple samples

4.7.1. Analysis of variance

Example 4-7: ANOVA RESULTS IN R

> anoval
Call:
aov (formula = grades ~ method, data = exd.7)

Terms:

method Residuals
Sum of Sgquares 250 448
Deg. of Freedom 2 12

Residual standard error: €.110101
Estimated effects may be unbalanced
> names (anoval)

[1] "coefficients™ "residuals" "effects"

[4] "rank" "fitted.values" "assign"

[7] "qgr" "df .residual"” "contrasts”

[10] "xlevels™ "call™ "terms"

[13]1 "model™ 71



4.7. Hypothesis tests for multiple samples

4.7.1. Analysis of variance

Example 4-7: Anova table using the summary function in R

Aev anoppinTeTain Hy __
yia a=5%
> summary (anoval)
Df Sum Sq Mean Sg F value Pr(=F)
method Z 250 125.00 3.348 |0.0695

Fesiduals 12 448 37.33

Signif. codes: 0 Y***/ (,001 “**' 0.01 **' 0.05 " 0.1 " 1
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4.7. Hypothesis tests for multiple samples .4...

4.7.1. Analysis of variance gUEAB

Example 4-7: ANOVA RESULTS IN R
> names (anoval)

[1] "coefficients"™ "residuals"™ "effects"
[4] "rank" "fitted.values" "assign"
[7] "qgr™ "df.residual"” "contrasts”®
[10] "xlevels™ "call™ "terms"
[13] "model™

73



4.7. Hypothesis tests for multiple samples .5._

4.7.1. Analysis of variance gSEI'E\s

Example 4-7: ANOVA RESULTS IN R
e coefficients model coefficients

o fitted.values the fitted mean values.

in one-way anova fitted values = the group mean
e residuals the residuals: observed value — fitted value
o dfresidual the residual degrees of freedom.

o call the exact expression used to generate this object

e contrasts The parametrization (constraints) used

o Xlevels the levels of the factors used

e Yy the response used (only if y=TRUE)

e X the model matrix used (only if x=TRUE)

e model the model frame used (only if model=TRUE — default value)
e rank rank of data/design matrix X => i.e. the number of

parameters => in one-way anova the number of groups ’*



4.7. Hypothesis tests for multiple samples

4.7.1. Analysis of variance

Example 4-7: ANOVA RESULTS IN R

> anovalsSfitted.values
& 7 8 9 10 11 12 13 14 15

d4l1oVa COe

{Intercept}
g0

a residuals
1 2 3 4 5 [ ] 8 5 10 11 12 13 14 15
6 -1 1 —-10 4 5 -9 3 -3 4 7T -0 -2 -4 G

methodMethod B methodMethod C
5 -5

> anovalScall
aov (formula = grades ~ method, data = exd.’)
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4.7. Hypothesis tests for multiple samples

4.7.2. Checking for the assumptions of ANOVA

Example 4-7: Checking the assumptions of anova

1)  Normality of the residuals

> library(nortest)
> lillie.test(anovalSresiduals)

Lilliefors (Kolmogorov-Smirnov) normality test
data: anovalSresiduals
D = 0.1687, Jp—value = 0.2595
> shapiro.test(anovalSresiduals)

Shapiro-Wilk normality test

data: anovalSresiduals
W = 0.91%¢6,}p-value = 0.185%7
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4.7. Hypothesis tests for multiple samples

4.7.2. Checking for the assumptions of ANOVA

Example 4-7: Checking the assumptions of anova
1) Normality of the residuals

Normal Q-Q Plot

|
ggnorm(anovals$residuals)
gqline(anoval$residuals)

Sample Quantiles

-10




4.7. Hypothesis tests for multiple samples .a.._

4.7.2. Checking for the assumptions of ANOVA XUE%

Example 4-7: Checking the assumptions of anova
2) Homogeneity of variances

Hy:0.2=0,%=....= 0,2 vs  Hj:o%# o> for some jk £{1,2,...,k}

There are many ways of testing data for homogeneity of variance. Three methods
are shown here.

° Bartlett's test - If the data is normally distributed, this is the best test to use. It
is sensitive to data which is not non-normally distribution; it is more likely to
return a "false positive" when the data is non-normal.

° Levene's test - this is more robust to departures from normality than Bartlett's
test. It is in the car package.

° Fligner-Killeen test - this is a non-parametric test which is very robust against

departures from normality. -



4.7. Hypothesis tests for multiple samples

4.7.2. Checking for the assumptions of ANOVA

Example 4-7: Checking the assumptions of anova

2) Homogeneity of variances
> bartlett.test (grades~method, data=exd.7)

Bartlett test of homogeneity of variances

data: grades by method
Bartlett's K-sgquared = 0.0108, df = 2, p-value = 0.994¢

> fligner.test (grades~method, data=ex4.7)
Fligner-Killeen test of homogeneity of variances

data: grades by method

Fligner-Killeen:med chi-squared = 0.0247, df = 2, p—value = 0.9877

> library(car)

> leveneTest (grades~method, data=exd.7)

Levene's Test fqg -y of Variance (center = median)
Df F valus

Pr (>F)
group 2 0.031% 0.9688

12
~ 79




4.8. Two categorical variables

® Testing for the equility of proportions/probabilities in
independent groups/samples
v’ Testing for the independence between binaries => comparison
of success probabilities/proportions for two groups

— t-test for the difference of proportions

— t-test for the log-ratio of proportions (relative risk)
— t-test for the log-odds ratio

— Testing for independence in 2x2 contingency tables

v’ Testing for independence in IxJ contingency tables
® Equality of proportions in dependent samples/paired values

v’ Testing for the equality of marginal proportions using the

McNemar test for 2x2 contingency tables
80



4.8. Two categorical variables

4.8.1. Testing for the association between two categorical variables
(independent samples)

Example 4-11: Masticha shop customer satisfaction survey

The effect of gender on the knowledge for products
v" Alcoholic drinks
v’ Bakery products
v’ Desserts and sweets
v Cosmetics

81



4.8. Two categorical variables

4.8.1. Testing for the association between two categorical variables
(independent samples)

Example 4-11: Masticha shop customer satisfaction survey

The effect of gender on the knowledge for alcoholic drinks

® \We are interest to test whether there is difference between males and

females concerning the knowledge of the existence of some products
—

® We would like to test for the equality of proportions of males or
females that were informed for the existence of a type of product (for

example alcoholic drinks) =
® Hym &

®* H,: “Independence between gender and knowledge of a product” vs

Vs Hy:mt

males — T[females males e T[females

® H,: “there is association between gender and product knowledge”

82



4.8. Two categorical variables

4.8.1. Testing for the association between two categorical variables
(independent samples)

Example 4-11: Masticha shop customer satisfaction survey

> tabl<-table(masticha.all$gender, masticha.all$a4 drinks )
> tabl

OXI NAI

rA\VeTeleln 727
Tuva il Ko 8 62

> prop.table(tabl)

OXI NAT
Bvdpog 0.06730765 0.25961538
I'uvvaixa 0.07692308 0.59615385

> prop.table(tabl, 1)

Total table proportions

OXT NAT .
AvSpac 0.2058824 0.7941176 Row proportions
Tuvaixa 0.1142857 0.8857143

> prop.table(tabl, 2)

OXT NAT Column proportions
vopog 0.4666667 0.3033708

Tuvaixa 0.5333333 0.6966292 83



4.8. Two categorical variables

4.8.1. Testing for the association between two categorical variables
(independent samples)

Example 4-11: Masticha shop customer satisfaction survey
> round (100*prop.table(tabl,1),1)

OXI | NAI
Avopoac 20.6(79.4
Tuvoirke 11.4 [BB.6
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4.8. Two categorical variables

4.8.1. Testing for the association between two categorical variables
(independent samples)

Example 4-11: Masticha shop customer satisfaction survey

> prop.test( tabl )

2-sample test for equality of proportions with continuity correction

-0.08525954 0.26845282
sample estimates:

prop 1 prop 2
0.2058824 0.1142857

Warning message:
In prop.test(tabl) : Chi-sguared approximation may be lncorrect

prop.test implements the Pearson’s chi-square statistics for
independence 35



4.8. Two categorical variables

4.8.1. Testing for the association between two categorical variables
(independent samples)

Example 4-11: Masticha shop customer satisfaction survey
> chisqg.test (tabl)

Pearson's Chi-squared test with Yates' continuity correction

Warning message:
In chisg.test(tabl) : Chi-squared approximation may be incorrect

-~ |

Same also for chisq.test
86



4.8. Two categorical variables

4.8.1. Testing for the association between two categorical variables
(independent samples)

Example 4-11: Masticha shop customer satisfaction survey

> Xtabs (~gender+ad4 drinks,data=masticha.all)
a4 drinks
gender OXI NAI
Do poC 7T 27
ruvo ko g8 62
> summary (xtabs (~gender+ad4 drinks,data=masticha.all))
Call: xtabs(formula = ~gender + a4 drinks, data = masticha.all)
Number of cases in table: 104
Number of factors: 2
Test for independence of all factors:
Chisq = 1.5556, df = 1, p-value =
Chi-squared approximation may be incorrect
> chisqg.test( tabl, correct=rF )

Pearson's Chi-squared test

data: tabl
¥-squared = 1.5556, df =1, p-value = 0.2123

Warning message:
In chisg.test(tabl, correct = F)
Chi-squared approximation may be incorrect 87



4.8. Two categorical variables

4.8.1. Testing for the association between two categorical variables
(independent samples)

Example 4-11: Masticha shop customer satisfaction survey
> chisq.test (tabl)

Pearson's Chi-squared test with Yates' continuity correction

data: tabl

¥-squared = 0.902, df = 1,jp-value = 0.3423

Warning message:
In chisg.test(tabl) : Chi-sguared approximation may be incorrect
> chisqg.test (tabl, correct=FALSE, simulate.p.value = TRUE)

Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)

data: tabl
¥X-squared = 1.5556, df = NA,jp-value = 0.2279

chisg.test is more flexible than prop.test

If small expected values (<5) arize then use similate.p.value to obtain
a Monte Carlo estimate of the p-values which is more accurate

Otherwise use the Fisher’s exact test 88



4.8. Two categorical variables

4.8.1. Testing for the association between two categorical variables
(independent samples)

Example 4-11: Masticha shop customer satisfaction survey

= zhisq.tes%{tabl, cbrrect=FALSE, simulate.p.value = TRUE)
Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)

tabl

data:
¥-squared = 1.5556, df = NA,jp-value = 0.2459

> fisher.test(tabl)

Fisher's Exact Test for Count Data

S paiml=15: Crue odds ratio 1s not equal to 1
95 percent confidence interwval:

0.5551755 7.0295991 MC estimated p-value and the
sample estimates: . ’
odds ratio Fisher’s exact p-value are very
1.954795 close as expected and more

accurate than approximate p-
value in chi-sq test 89



4.8. Two categorical variables

4.8.1. Testing for the association between two categorical variables
(independent samples)

Example 4-11: Masticha shop customer satisfaction survey

Total Cbservations in Table: 104

masticha.allSa4 drinks

masticha.allSgender OXI | NAT

|
|
|
|
|
|
|
|
.435 |
|
|
|
|
|
|
|

CrossTable(masticha.all$gender, masticha.all$a4_drinks) 20



4.8. Two categorical variables

4.8.1. Testing for the association between two categorical variables
(independent samples)

Example 4-11: Masticha shop customer satisfaction survey

Total Observations in Table: 104

masticha.all$ad4 drinks

masticha.all$gender OXI | NAT

CrossTable(masticha.all$gender, masticha.all$a4_drinks, digits=1, format="'SPSS") o1



4.8. Two categorical variables

4.8.1. Testing for the association between two categorical variables
(independent samples)

Example 4-11: Masticha shop customer satisfaction survey

CrossTable(masticha.all$gender,masticha.all$a4_drinks,

Cell Contents digits=1, format='SPSS', expected=FALSE,
: ““““““““““ ;;;;;‘: prop.r=TRUE, prop.c=F, prop.t=F,
| Row Percent | prop.chisq=F, chisq = T, fisher=T,

[ | mcnemar=FALSE)
Total Observations in Table: 104

masticha.all$ad4 drinks

masticha.allSgender OXI | NAI | Row Total |

|

|
| |
~vopog | K |
| 20.6% |
———————————————————— | ———————
Tuvoilxo | g8 |
| 11.4% |
———————————————————— | ~=——mm |
Column Total | 15 |
| |

92



4.8. Two categorical variables

4.8.1. Testing for the association between two categorical variables
(independent samples)

Example 4-11: Masticha shop customer satisfaction survey

CrossTable(masticha.all$gender,masticha.all$a4_drinks,
digits=1, format="SPSS', expected=FALSE,
prop.r=TRUE, prop.c=F, prop.t=F,
prop.chisq=F, chisq = T, fisher=T,
mcnemar=FALSE)

Statistics for RAll Table Factors

Pearson's Chi-squared test

Chi~2 = 1.555565 d.t. = 1 p = 0.2123158

Pearson's Chi-sqguared test with Yates' continuity correction

Chi~2 = 0.9019683 d.ft. = 1 p = 0.3422545



4.8. Two categorical variables

4.8.1. Testing for the association between two categorical variables
(independent samples)

Example 4-11: Masticha shop customer satisfaction survey

Fisher's Exact Test for Count Data fisher=T

Sample estimate odds ratio: 1.994795

Alternative hypothesis: true odds ratio is not equal to 1
p = 0.2415254
95% confidence interval: 0.5551755 7.0295%%

Alternative hypothesis: true odds ratio is less than 1
p = 0.9360206
95% confidence interval: 0 5.864602

Alternative hypothesis: true odds ratio is greater than 1

p = 0.1704272
95% confidence interval: 0.6695709 Inf
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4.8. Two categorical variables

4.8.1. Testing for the association between two categorical variables
(independent samples)

Example 4-11: Masticha shop customer satisfaction survey

Warning for the validity of chi-square test. Expected
values should be > 5 in order to accurately calculate

the (approximate) p-value

Minimum expected frequency: 4.9%03846
Cells with Expected Frequency < 5: 1 of 4 (25%)

Warning messages:

1: In chisg.test(t, correct = TRUE, ...)
Chi-sguared approximation may be lncorrect

2: In chisg.test(t, correct = FALSE, ...)
Chi-squared approximation may be 1ncorrect



4.8. Two categorical variables

4.8.1. Testing for the association between two categorical variables
(independent samples)

Example 4-11: Masticha shop customer satisfaction survey

library(sjPlot)
sjt.xtab(masticha.all$gender, masticha.all$a4_drinks)
var.col
Var.row OXI  NAI Toral
Avopoc 7 27 34
Tovoixo g8 62 70
Total 15 2O 104

Fisher's p=0.242 - df=1 - $=0.122

observed values - expected values - % within var.row - % within var.col - % of total

96



4.8. Two categorical variables

4.8.1. Testing for the association between two categorical variables
(independent samples)

Example 4-11: Masticha shop customer satisfaction survey

sjt.xtab(masticha.all$gender, masticha.all$a4_drinks, show.cell.prc= FALSE,
show.row.prc= TRUE, show.col.prc = FALSE, show.exp= FALSE,
var.labels = c('"®UA0', 'Tvwon 'Ynap&nc MoTtwv oTto Kataotnua'),
encoding = “UTF-8")

Ivaan Yraplne Hotwv oro Karaotjuo.

Doso OX1 NAI Total
Aviopag 7 27 34
20.6 % \ 100.0 %
INovaixa Q 52 70
11.4 % 100.0 %
Total 15 89 104
14.4 % 85.6 % 100.0 %

Fisher's p=0.242 - df=1 - $=0.122 7



4.8. Two categorical variables

4.8.1. Testing for the association between two categorical variables
(independent samples)

sjp.xtab(masticha.all$gender, masticha.all$a4_drinks)

69 7%
(n=62) B67.3%
(n=70)

53.3%
(n=8)

46.7%
(n=T)

Oxl
NAI
Total

32.7%
30.3% (n=34)

(n=27)




4.8. Two categorical variables

4.8.1. Testing for the association between two categorical variables
(independent samples)

Example 4-11: Masticha shop customer satisfaction survey

library(MASS) Likelihood ratio test for
loglm( ~ 1+2, tabl) independence

> library (MASS)

> loglm( ~ 1+2Z, tabl)

Call:

loglm(formula = ~1 + 2, data = tabl)

Statistics:

¥r2 df P(> X~2)
Likelihood Ratio 1.486339 1 0.2227854
Pearson 1.555565 1 0.2123158
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4.8. Two categorical variables

4.8.1. Testing for the association between two categorical variables
(independent samples)

Assumptions for tests
® Pearson’s x% independence test

— Good approximation when expected values > 5

— [Less strict assumption according to Cochran (1954, Biometrics): 80% of
expected values > 5 and all of them >1]

® Y’ test with Yates correction

— Only for 2x2 tables [approximates better the Fisher Exact test]
® Likelihood ratio test of independence

— Bad approximation for n/lJ < 5 (Agresti, 1990, p. 49)
® Fisher’s exact test

— Itis the best since it is based on the exact distribution

® Monte Carlo estimates of p-values — it should be used when the 2
approximation is not valid and/or the Fisher exact test cannot be obtained100



4.8. Two categorical variables

4.8.1. Testing for the association between two categorical variables
(independent samples)

Example 4-11: Masticha shop customer satisfaction survey

index<-6:9

pvalues<-matrix(nrow=4,ncol=3)

for (i in 1:4){
var<-index(i]
tab <- table( masticha.all$gender, masticha.all[,var] )
pvalues[i,1]<-chisq.test(tab, correct=F)$p.value
pvalues[i,2]<-summary(logim( ~ 1+2, tab))$tests[1,3]
pvalues[i,3]<-fisher.test(tab)$p.value

}

pvalues

colnames(pvalues) <- c('Chisqg’, 'LRT", "Fisher's")

rownames(pvalues) <- c('Alcoholic drinks', 'Bakery products', 'Sweets',
'‘Cosmetics')

round(pvalues,3) 201



4.8. Two categorical variables

4.8.1. Testing for the association between two categorical variables

(independent samples)

Example 4-11: Masticha shop customer satisfaction survey

P-values for the association of the gender with various type of

products

> round (pvalues, 3)

Chisqg

LRlcoholic drinks 0.212 0.

Bakery products
Sweets
Cosmetics

T

0.495 0.
0.492 0.
0.040 0.

LRT Fisher's
223 0.242
496 0.527
485 0.595
035 0.048
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4.8. Two categorical variables

4.8.2. Testing for the equality of proportions in dependent samples

® Here we will consider the corresponding test of the paired t-test
but for categorical variables.

® Hence, we may have the same binary or categorical
measurements in two different time-point on the same study
units (subjects or individuals).

® For binary variables, the resulted table is of 2x2 dimension

® We are interested to test the hypothesis:

® H,: P(success in 1%t time point)=P(success in 2" time point) =

® Hy:m=m,vs.H: T, #1, =

® H,: “There is no time effect in the categorical variable” vs H,:
“there is a time effect on the categorical variable”
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4.8. Two categorical variables

4.8.2. Testing for the equality of proportions in dependent samples

Example 4-13: Prime minister’s approval
® [Agresti, 2002, 2" ed, p. 409; Table 10.1].

® Random sample of 1600 voting-age British citizens

® Two satisfaction/approval surveys with difference of 6
months

® |s the proportion of voters that approve the Prime
minister’s similar?

104



4.8. Two categorical variables

4.8.2. Testing for the equality of proportions in dependent samples

Example 4-13: Prime minister’s approval

® H,: “There is no difference in the approval of the Prime minister
within the last 6 months” vs. H,: “There is a difference in the
approval of the Prime minister within the last 6 months” =

® H,: P(Approval|First Survey) = P(Approval|Second Survey) vs.
H,: P(Approval | First Survey) # P(Approval |Second Survey) =

® H,: T, =TT, VS TNG EVOAAQKTIKNG Hy: 1T, # 1T,
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4.8. Two categorical variables

4.8.2. Testing for the equality of proportions in dependent samples

Example 4-13: Prime minister’s approval the last six

months
Second Survey
First Survey Approve Disapprove Total
Approve 794 150 944
Disapprove 86 570 656
Total 880 720 1600
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4.8. Two categorical variables

4.8.2. Testing for the equality of proportions in dependent samples

Example 4-13: Prime minister’s approval
Setting up the data directly as a table

tabex4.13b <- as.table( matrix(c(794, 150, 86, 570),2,2, byrow=TRUE) )
tabex4.13b > dimnames (tabexd.13b)

rownames(tabex4.13b)<-c( ‘Approve', 'Disapprove’ ) .t v
colnames(tabex4.13b)<-c( 'Approve', 'Disapprove’ )

2
tabeX4' 13b H] ] il'}.%p]_::urr::ﬂi.re" "Disapprove"
dimnames(tabex4.13b)

names(dimnames(tabex4.13b)) <- c('First Survey','Second Survey')

dimnameS(ta beX4. 13b) > names (dimnames (tabex4.13b)) <- c('First Survey','Second Survey')
> dimnames (tabexd.13b)

tabex4.13b
[1] "Rpprove" "Disapprove"

> tabex4.13b 5'second Survey’

[1] "Rpprove" "Disapprove"

Second Survey
First Survey RApprove Disapprove
Approve 754 150

Disapprove 86 570 107



4.8. Two categorical variables

4.8.2. Testing for the equality of proportions in dependent samples

Example 4-13: Prime minister’s approval
Using the function Crosstable

library(gmodels)

CrossTable(tabex4.13b, prop.r=T, prop.c=T, prop.t=T, prop.chisq=F,
chisq = T, fisher=T,

mcnemar=TRUE, format='SPSS', digits=1)

108



4.8. Two categorical variables

4.8.2. Testing for the equality of proportions in dependent samples

Example 4-13: Prime minister’s approval
Using the function Crosstable

Total Observations in Table: 1600

Second Survey

First Survey Rpprove | Disapprove | Row Total |

|
Approve 754 | 150
g4.1% | 15.9%
90.2% | 20.8%
49.6% | G.4%
_________________________ | ———
Disapprove 86 | 570
13.1% | B6.9%
9.8% | 79.2%
5.4% | 35.6%
|
|

109




4.8. Two categorical variables

4.8.2. Testing for the equality of proportions in dependent samples

Example 4-13: Prime minister’s approval
Using the function Crosstable

Total Observations in Table: 1600

First Survey

Second Survey

Approve

]
.

| Disapprove

| Row Total |
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4.8. Two categorical variables

4.8.2. Testing for the equality of proportions in dependent samples

Example 4-13: Prime minister’s approval

Using the function Crosstable
Chi square test significant as

Statistics for All Table Factors expected since the two
variables are dependent by
Pearson's Chi-squared test definition

Chi~2 = 788.3197 d.f. = 1

Pearson's Chi-sqguared test with Yats' contipsfie

Chi~2 7685.4536 d.f. = 1

Statistically significant
_ => difference in the
marginal proportions =>
there is a difference in
the approval of the Prime
~ minister

McNemar's Chi-sguared

Chi~2 = 17.35593

McNemar's Chi-squared

Chi~2 = 16.8178 d.f. 111



4.8. Two categorical variables

4.8.2. Testing for the equality of proportions in dependent samples

Example 4-13: Prime minister’s approval
Using the function mcnemar.test

> chisg.test (tabexd.13b)

Pearson's Chi-squared test with Yates' contilnulty correction

data: tabexd.13b Statistically significant

X-squared = 785.4536, df = 1, p-value < 2.2e-16 => difference in the
marginal proportions =>

> mcnemar. test (tabexd.13b) there is difference in the

side effects before and
McNemar's Chi-squared test with continuity . after the treatment

data: tabex4.13b
McNemar's chi-sguared = 16.8178, df = 1,]p-value = 4.115e-01
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4.8. Two categorical variables

4.8.2. Testing for the equality of proportions in dependent samples

Example 4-13: Prime minister’s approval
Changing the table to a data.frame (with counts)

tabex4.13b <- matrix(c(794, 150, 86, 570),2,2, byrow=TRUE) )

rownames(tabex4.13b)<-c( 'Approve’, 'Disapprove’ )
colnames(tabex4.13b)<-c( 'Approve', 'Disapprove’ )
dimnames(tabex4.13b

names(dimnames(tabex4.13b)) <- c('First Survey','Second Survey'

> exd,.13bh - as.data.frame (tabexd.13b)

> exd . 13b

First.Survey Seccond.Survey Freqg
1 Lpprove Lpprove 794
2 Disapprove Lpprove &
3 Lpprove Disapprove 150
4 Disapprove Disapprove 570
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4.8. Two categorical variables

4.8.2. Testing for the equality of proportions in dependent samples

Example 4-13: Prime minister’s approval
Changing the table to a data.frame (fully expanded)

index<-1:nrow(ex4.13b)
dfex4.13b <- ex4.13b[rep(index,ex4.13b$Freq),-3]
head(dfex4.13b)

First.Survey Second.Survey

1 Approve Approve
1.1 Approve Approve
1.2 Approve Rpprove
1.3 Approve Approve
1.4 Approve Rpprove
1.5 Approve Rpprove

table(dfex4.13b)

> table(dfexd.13b)
Second. Survey
First.Survey Approve Disapprove
Approve 754 150
Disapprove Be 570
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4.8. Two categorical variables

4.8.2. Testing for the equality of proportions in dependent samples

Example 4-13: Prime minister’s approval
Changing the table to a data.frame

sjt.xtab(ex4.13b[,1],ex4.13b[,2], weight.by=ex4.13b[,3]
var.labels = names(ex4.13D),
show.cell.prc = T, show.row.prc =T,
encoding = "UTF-8")

OR

sjt.xtab(dfex4.13b[,1],dfex4.13b[,2], var.labels= names(ex4.13b),
show.cell.prc= T, show.row.prc = T,
encoding = “UTF-8")
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4.8. Two categorical variables

4.8.2. Testing for the equality of proportions in dependent samples

Example 4-13: Prime minister’s approval
Using the function Crosstable

Second. Survey

First.Suivey , Total
ALSUITE) Approve Disapprove o

Approve 794 150 944
84.1 % 15.9 % 100.0 %

49.6 % 9.4 % 39 %

Disapprove 86 570 656
13.1 % 86.9 % 100.0 %
5.4 % 35.6 % 41 %
Total 880 720 1600
55 % 45 % 100.0 %
55 % 45 % 100.0 %

116



4.8. Two categorical variables

4.8.2. Testing for the equality of proportions in dependent samples

Example 4-13: Prime minister’s approval
Using the function Crosstable

Second. Survey

First.Suivey , Total
ALSUITE) Approve Disapprove o

Approve 794 150 944
84.1 % 15.9 % 100.0 %
49.6 % 9.4 % 59 %
Disapprove 86 570 656
13.1 % 9% 100.0 %
|5.4 %o 35.6 % 41 %
Total 880 720 1600
55 % 45 % 100.0 %
55 % 45 % 100.0 %

X°=785.454 - df=1 - ©=0.702 - p=0.000

117



4.8. Two categorical variables

4.8.2. Testing for the equality of proportions in dependent samples

The mcnemar.test for more than two levels

In the case of paired values with more than two levels,
mcnemar.test implements the generalization of
McNemar test which does not test the equality of the
marginal distributions but the symmetry of the table
which is a special case of the marginal homogeneity
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