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4. Hypothesis Tests & Pairwise
associations

In this module we will examine

• Exploratory data analysis 

• Testing for normality

• General principles for hypothesis testing

• Standard errors and p-values

• Hypothesis tests for one sample (mean, variance, kurtosis, 
skewness)

• Association between one quantitative and one qualitative 
variable

• Association between two categorical variables

• Association between two ordinals

• Correlation between two quantitative variables 2



4.2. Testing for normality
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o QQ plots

o PDF plots

o CDF Plots

o Testing for symmetry & skewness

o Testing for kurtosis

o Kolmogorov-Smirnov test

o Shapiro-Wilks test

o Other tests

R files/lecture02/code_to_run/eda_plots.txt


4.2. Testing for normality

Salary dataset from Norusis 

This is a data file containing information on 474 employees 
hired by a Midwestern bank between 1969 and 1971. 

It was created for an Equal Employment Opportunity (EEO) 
court case involving wage discrimination.

4



4.2. Testing for normality

Salary dataset from Norusis 
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ID Employee code 

SALBEG Beginning salary 

SEX Gender of employee   (0=Female; 1=Male)  

TIME Job Seniority (months) 

AGE Age of Employee (years and fraction)

SALNOW Current salary 

EDLEVEL Educational Level (years) 

WORK Work Experience (years x 100)

JOBCAT Employment category (1 Clerical, 2 Office trainee, 3 Security 

officer, 4 College trainee, 5 Exempt employee, 6 MBA trainee 7 

Technical)

MINORITY Minority Classification (0=White; 1=Nonwhite)
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4.2. Testing for normality

Dataset salary from Norusis 

library(foreign)
salary<-read.spss('salary.sav', to.data.frame=T)
names(salary)

head(salary)

sapply(salary, class)

sal.num <- salary[,which(sapply(salary, class)=="numeric")] 



4.2. Testing for normality
QQ-plots
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y<-sal.num[,-1]
p<-ncol(y)
par(mfrow=c(2,3))
for (i in 1:p){

qqnorm(y[,i])
qqline(y[,i])

}

R files/lecture02/code_to_run/eda_plots.txt
R files/lecture02/code_to_run/eda_plots.txt


4.2. Testing for normality
QQ-plots
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R files/lecture02/code_to_run/eda_plots.txt


4.2. Testing for normality
QQ-plots
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sapply(y,min)

y[,6] <- y[,6]+0.5
y<-log(y)
p<-ncol(y)
par(mfrow=c(2,3))
for (i in 1:p){

qqnorm(y[,i])
qqline(y[,i])

}

R files/lecture02/code_to_run/eda_plots.txt
R files/lecture02/code_to_run/eda_plots.txt


4.2. Testing for normality
QQ-plots
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R files/lecture02/code_to_run/eda_plots.txt


4.2. Testing for normality
QQ-plots
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R files/lecture02/code_to_run/eda_plots.txt


4.2. Testing for normality
Density plots
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y<-sal.num[,-1]
p<-ncol(y)
par(mfrow=c(2,3))
for (i in 1:p){

hist(y[,i], main=names(y)[i], probability=TRUE)
lines(density(y[,i]), col=2)
index <- seq( min(y[,i]), max(y[,i]), 
length.out=100)
ynorm <- dnorm( index, mean=mean(y[,i]), 
sd(y[,i]) )
lines( index, ynorm, col=3, lty=3, lwd=3 )

}

R files/lecture02/code_to_run/eda_plots.txt
R files/lecture02/code_to_run/eda_plots.txt


4.2. Testing for normality
Density plots
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R files/lecture02/code_to_run/eda_plots.txt


4.2. Testing for normality
Kolmogorov-Smirnov test
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The KS test quantifies a 
distance between the 
empirical distribution 
function of the sample and 
the cumulative distribution 
function of the reference 
distribution. In the special 
case of testing for normality 
of the distribution, samples 
are standardized and 
compared with a standard 
normal distribution.

R files/lecture02/code_to_run/eda_plots.txt


4.2. Testing for normality
Kolmogorov-Smirnov test
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R files/lecture02/code_to_run/eda_plots.txt


4.2. Testing for normality
Lilliefors Kolmogorov-Smirnov test
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• Modification of the Kolmogorov-Smirnov test
• Less conservative

R files/lecture02/code_to_run/eda_plots.txt


4.2. Testing for normality
Lilliefors Kolmogorov-Smirnov test
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R files/lecture02/code_to_run/eda_plots.txt


4.3. General principles for hypothesis 
testing

Hypothesis tests: 

• Use a null hypothesis expressed with an equality concerning a set of 
parameters H0: θ=θ0

• The alternative hypothesis is usually the complementary statement e.g. 
H1: θθ0

• We use a Statistic which usually measures the distance between the 
observed data and the null hypothesis

• We use the distribution under the null hypothesis to find thresholds for 
rejecting the null

• So the reasoning is that if the Statistic is large i.e. the distance between 
the observed data and the null hypothesis is large, then something went 
wrong with our reasoning and probably this is the original hypothesis

• We do reject the null hypothesis

• We do not accept the alternative 19



4.3. Standard errors & p values

What is a p-value?

20

0.05 < p < 0.10  Not significant at α=5%

Significant at α=10%

Often reported as marginal significant result



4.3. Standard errors & p values

What is a p-value?
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4.3. Standard errors & p values

What is a p-value?

https://www.youtube.com/watch?time_continue=17&v=9jW9G
8MO4PQ
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https://www.youtube.com/watch?time_continue=17&v=9jW9G8MO4PQ


4.3. Standard errors & p values

What is a p-value?

• It is not the probability that the null hypothesis is not correct!

• It is the probability to observe a dataset with the same or more 
distant statistic than the one already observed if the null is true

• Hence if the p-value is small it means that not a lot of datasets 
are worse than the one you observed under the null 

• So either the null is wrong and should be rejected or we are 
unlucky

• How much unlucky? The probability to reject the null when it is 
true is equal to α (usually equal to 5% or 1%)

23



4.3. Standard errors & p values

What is a standard error?

• Standard deviation or standard error

• Is it equal to s/n1/2 ?

• What about estimators? 

24



4.3. Standard errors & p values

What is a standard error?

• Estimators are functions of random variables (before observing 
the data)

• Estimates are the specific observed value for a specific sample

• Estimators are random variables. Therefore:

– for each sample we have different value (estimate)

– They have a mean

– They have a variance 

Standard error of an estimator is simply the standard deviation of an 
estimator

It is called error because it measures how close we are in the true 
value (i.e. the mean in the unbiased estimators)

25



4.3. Standard errors & p values

What is a standard error?

Good estimators

• They are unbiased 

(i.e. if we consider a lot of samples, the mean of the 
estimates will be equal to the true value)

• They have small standard error 

(i.e. the estimates are close to the mean/true value)

26



4.4. Hypothesis tests for a single 
continuous variable

Hypothesis test for the mean

• H0: μ=μ0 vs H1: μμ0

• Z-test for normal data with known variance

• T-test for normal data with unknown variance

• Assumption: Normality or large sample n>30 or >50

Hypothesis test for the median

• H0: M= M0 vs H1: M M0

• Wilcoxon sign rank test

27



4.4. Hypothesis tests for a single 
continuous variable

Hypothesis test for the median

• H0: M= M0 vs H1: M M0

• Wilcoxon sign rank test

28

Source: Hollander, Wolfe & Chicken (2014). Nonparametric Statistical 
Methods. Wiley & sons. 



Έλεγχοι για ένα δείγμα

(1 ποσοτική μεταβλητή)

Είναι η μεταβλητή μας κανονική;

(Έλεγχος Κανονικότητας)

[SW αν n50 - KS+SW αν n>50]

Έλεγχος για τη μέση τιμή

t-test για ένα δείγμα

Ναι

Είναι το δείγμα μεγάλο 
(n>50)

Όχι

Έλεγχος για τη διάμεσο

Wilcoxon test για ένα δείγμα

Όχι

Είναι ο μέσος κατάλληλο μέτρο 
περιγραφής της κεντρικής θέσης;

Ναι (?)

Ναι

Όχι

4.4. Hypothesis tests for a single 
continuous variable



4.4. Hypothesis tests for a single 
continuous variable

Hypothesis test for the mean
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4.4. Hypothesis tests for a single 
continuous variable

Hypothesis test for the mean
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4.4. Hypothesis tests for a single 
continuous variable
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4.4. Hypothesis tests for a single 
continuous variable

Hypothesis test for the mean
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4.4. Hypothesis tests for a single 
continuous variable
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4.4. Hypothesis tests for a single 
continuous variable
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4.4. Hypothesis tests for a single 
continuous variable

36



• Examples 
– Grades in 2 different courses 

– Cholesterol measurements before and after a treatment

– Sales before and after a marketing policy

– Treatment effects in left and right hand of a patient

– Behavior study of twins under different environmental conditions

• Examines the association between: 
– Grades + course 

– Cholesterol + treatment

– Sales + marketing policy

– Disease + treatment

– Behavior + environmental conditions

4.5. Hypothesis tests for two 
dependent samples

37



• We are interest to test for difference between the two dependent values 
– measurements 

• We eliminate correlation by using the difference of each pair: Δi=X1i – X2i

• We test if the mean of the difference is zero or not

• Hence we implement a one-sample t-test for the difference

Η0: μΔ = 0 vs Η1: μΔ  0 .

• This is the paired t-test or the dependent samples t-test 

• ASSUMPTION
– The difference should follow the normal distribution or the sample size to be 

large (n>50)

• If normality assumption is rejected then we use the non-parametric test

Η0: ΜΔ = 0 vs Η1: ΜΔ  0

4.5. Hypothesis tests for two 
dependent samples

38



Έλεγχοι για 2 εξαρτημένα δείγματα

(2 ποσοτικές μεταβλητές στην R)

Είναι η διαφορά τους κανονική;

(Έλεγχος Κανονικότητας)

[SW αν n50 - KS+SW αν n>50]

Έλεγχος για μηδενική 
μέση διαφορά 

t-test ανά ζεύγη

Ναι

Είναι το δείγμα μεγάλο 
(n>50)

Όχι

Έλεγχος για μηδενική 
διάμεσο διαφορά

Wilcoxon test ανά ζεύγη

Όχι
Είναι ο μέσος κατάλληλο μέτρο 
περιγραφής της κεντρικής θέσης 
της διαφοράς;

Ναι (?)

Ναι

Όχι

Error-bar διαφοράς

Απόρριψη Η0

Box-plot διαφοράς

Απόρριψη Η0

4.5. Hypothesis tests for two 
dependent samples



4.6. Hypothesis tests for two samples
Testing for the association between a continuous and a categorical variable

Hypothesis test for the equality of the means between two 
independent samples/groups

• Two variables: 

– One continuous

– One binary-categorical specifying the groups

• H0: μ1=μ2 vs H1: μ1μ2

• T-test for normal data with unknown variance

• Assumption: Normality or large sample for each group n>30 or 
>50

• Different degrees of freedom for equal and unequal variances

40



4.6. Hypothesis tests for two samples
Testing for the association between a continuous and a categorical variable

Hypothesis test for the equality of the medians between two 
independent samples/groups

• Two variables: 

– One continuous

– One binary-categorical specifying the groups

• H0: M1=M2 vs H1: M1M2

• Wilcoxon rank-sum test (or Mann-Whitney)

• No assumptions

• Can be used when the normality assumption is not valid or the 
mean cannot be used as representative of the “usual” 
observation

41



• Measurements of the same variable in two groups of different 
individuals/research units

• For example: 2 groups of randomly selected patients

– 1st group receives placebo (virtual of fake treatment) 

– 2nd group receives new treatment

• Response: Cholesterol

• We study the association/relationship between a quantitative 
and a binary qualitative (treatment) variable

• In R data frame => 2 columns = 1 numeric (cholesterol) and a 
factor with two levels (treatment)

4.6. Hypothesis tests for two samples
Testing for the association between a continuous and a categorical variable

42



4.6. Hypothesis tests for two samples
Testing for the association between a continuous and a categorical variable

• Examples
– Performance/Grades in the same course in two subsequent years

– Cholesterol for two groups of patients receiving different treatment

– Sales in two different groups of shops in which different business strategy 
was implemented

– Study of the psychological scales of two groups of individuals tested under 
different conditions of stress. 

• Examines the association between
– Performance/Grades + year

– Cholesterol + treatment

– Sales + business strategy 

– Psychological state + stress conditions

43



4.6. Hypothesis tests for two samples
Testing for the association between a continuous and a categorical variable

• We are interested to test for differences on the values of the quantitative 
variable for the two groups (are the means of the medians equal?)

• Testing for the equality of means: 

Η0: μ1 = μ2 vs Η1: μ1  μ2 .

• This is the independent samples t-test 

• In practice, it examines the relationship between the binary and the 
numeric variable since if the means on average are the same then the 
state of the binary does not influence the (conditional?) mean

• The hypothesis test can be re-written as

Η0: E(Y|X=1) = E(Y|X=2) vs Η1: E(Y|X=1)  E(Y|X=2) .

Y is the numeric variable, X is the factor

44



4.6. Hypothesis tests for two samples
Testing for the association between a continuous and a categorical variable

• We are interested to test for differences on the values of the quantitative 
variable for the two groups (are the means of the medians equal?)

• Testing for the equality of means: 

Η0: μ1 = μ2 vs Η1: μ1  μ2 .

• This is the independent samples t-test 

BASIC ASSUMPTION:

– Normality in each group or the size to be high (n1, n2>50)

• If the previous assumption is not valid then we use a non-parametric test 
(the WILCOXON SUM-RANKED TEST)

Η0: Μ1 = Μ2 vs Η1: Μ1  Μ2

45



4.6. Hypothesis tests for two samples
Testing for the association between a continuous and a categorical variable

Example 4-5 [dataset1.dat]

• The education manager  of a company wants  to evaluate the 
efficiency of two different teaching methods of the employees. 

• For this reason, he selects randomly  24 employees and divides 
them in two groups of equal size. 

• Every group is educated in a new software by a different 
teaching method

• 2 employees of the 2nd group did not completed the seminar

• In the end, all employees were tested in a common examination 
and graded with a scale from 0 to 100. 

46



Example 4-5 [dataset1.dat]

Group Α 70 93 82 90 77 86 79 84 98 73 81 85

Group Β 89 78 94 83 88 80 91 92 87 97

◼ AIM: To identify which method is more efficient in order 
to follow it in the next seminars. 

4.6. Hypothesis tests for two samples
Testing for the association between a continuous and a categorical variable

47



Example 4-5 [dataset1.dat]
• Study unit: 

– employee

– Sample size n=22 employees (rows)

• Characteristics – variables: 
– Performance – Grades (numeric) +

teaching method (binary factor)

– p=2 (columns)

• Size of each group
– n1=12

– n2=10

4.6. Hypothesis tests for two samples
Testing for the association between a continuous and a categorical variable

48



Example 4-5 [dataset1.dat]
• Study unit: 

– employee

– Sample size n=22 employees (rows)

• Characteristics – variables: 
– Performance – Grades (numeric) +

teaching method (binary factor)

– p=2 (columns)

• Size of each group
– n1=12

– n2=10

4.6. Hypothesis tests for two samples
Testing for the association between a continuous and a categorical variable

49

dataset1 <- edit(dataset1)

R%20files/lecture02/code_to_run/eda_plots.txt


4.6. Hypothesis tests for two samples
Testing for the association between a continuous and a categorical variable

50

groupA <- c(70 ,93 ,82 ,90 ,77 ,86 ,79 ,84 ,98 ,73 ,81 ,85)
groupB <-c(89 ,78 ,94 ,83 ,88 ,80 ,91 ,92 ,87 ,97)
n1<-length(groupA)
n2<-length(groupB)

dataset1 <- data.frame( grades=c(groupA, groupB), 
method=factor( rep(1:2, c(n1,n2)), labels=c('A','B') ) ) 

dataset1 <- edit(dataset1)

dput(dataset1, 'dataset1.dat')
dput(dataset1)

R%20files/lecture02/code_to_run/eda_plots.txt


Steps for implementing hypothesis tests in two 
independent samples 

1. We test for normality in each group

2. We implement the appropriate test 

a) If normality is not rejected 
i. We test for the equality of variances (homoscedasticity)

ii. We select the appropriate t-test (with equal or unequal variances)

iii. If there are differences we visualize them using ERROR BARS 

b) If normality is rejected
i. We implement the WILCOXON rank-sum test 

ii. If differences are traced then we visualize them using BOX PLOTS

4.6. Hypothesis tests for two samples
Testing for the association between a continuous and a categorical variable

51



Example 4-5 [dataset1.dat]
1. We test for the normality in each group 

Δεν απορρίπτουμε την υπόθεση της 
κανονικότητας για καμία από τις 2 ομάδες

4.6. Hypothesis tests for two samples
Testing for the association between a continuous and a categorical variable

52

All p-values>0.5 => we do not reject normality in either of 
the two groups 



Example 4-5 [dataset1.dat]

2. α) independent samples t-test  

i. Checking for the equality of variances

P-value=0.41>0.05 => we do not reject Η0 => 
we can assume equal variances

H0: σ1
2=σ2

2

4.6. Hypothesis tests for two samples
Testing for the association between a continuous and a categorical variable

53

var.test(x$A, x$B)
var.test(x[[1]], x[[2]])
var.test( grades~method, data=dataset1 )



Example 4-5 [dataset1.dat]

2. α) independent samples t-test  

ii. Using the t-test for equal variances

H0: σ1
2=σ2

2

4.6. Hypothesis tests for two samples
Testing for the association between a continuous and a categorical variable

t.test(x$A, x$B, var.equal=T)
t.test(x[[1]], x[[2]], var.equal=T)
t.test( grades~method, data=dataset1 , 

var.equal=T)

P-value=0.14>0.05 => we do not reject 
the Η0 => no differences between the 
performance of the employees with 
different training



Example 4-5
[dataset1.dat]

2. α) Independent 
samples t-test 

iii. Visualization using 

error bars

4.6. Hypothesis tests for two samples
Testing for the association between a continuous and a categorical variable
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library(Hmisc)
myerrorbar( dataset1$grades,   

dataset1$method )



4.6. Hypothesis tests for two samples
Testing for the association between a continuous and a categorical variable
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myerrorbar<-function(x,y, horizontal=F){
a<-0.05
sdata <- split(x,y)
means <- sapply( sdata,mean )
sds <- sapply( split(x,y), sd )
ns <- table(y)
LB <- means + qnorm( a/2 ) * sds /sqrt(ns)
UB <- means + qnorm( 1-a/2 ) * sds /sqrt(ns)
nlev <- nlevels(y)
if (horizontal) { errbar( levels(y), means, UB, LB ) 

} else {
errbar( 1:nlev, means, UB, LB, 

xlim=c(0,nlev+1), axes=F, xlab='' ) 
axis(2)
axis(1, at=0:(nlev+1), labels=c('',levels(y),''))
}

}



Έλεγχοι για 2 ανεξάρτητα δείγματα
(1 ποσοτική + 1 δίτιμη μεταβλητή)

Είναι η ποσοτική μεταβλητή κανονική 
σε κάθε ομάδα;

(Έλεγχος Κανονικότητας)

[SW αν n1, n250 - KS+SW αν n1, n2 >50]

Έλεγχος για μηδενική 
διαφορά μέσων με 
άνισες διακυμάνσεις

Ναι

Είναι τα δείγματα μεγάλα; 
(n1 & n2 >50)

Όχι

Έλεγχος για μηδενική 
διαφορά διαμέσων  

Όχι
Είναι ο μέσος κατάλληλο μέτρο 
περιγραφής της κεντρικής θέσης 
και για τις 2 ομάδες;

Ναι

Ναι

Όχι

Error-bar ανά ομάδα

Box-plot ανά ομάδα

Απόρριψη Η0

Είναι ίσες οι 
διακυμάνσεις;

Έλεγχος για μηδενική 
διαφορά μέσων με 
ίσες διακυμάνσεις

Ναι

Όχι

Απόρριψη Η0

Απόρριψη Η0

4.6. Hypothesis tests for two samples
Testing for the association between a continuous and a categorical variable

57



• Introduction to analysis of variance (ANOVA)

• Assumptions

• Multiple comparisons 

• Non parametric hypothesis test

• The link between t-test and ANOVA

4.7. Hypothesis tests for multiple samples
Testing for the association between a continuous and a categorical variable

58



• Let us assume that we have measurement of the same 
quantitative variable in κ(>2) groups of different individuals

• For example 3 groups of patients are randomly selected

– 1η group with virtual/placebo treatment

– 2η group receives a standard treatment

– 3η group received a new treatment

• We examine for a possible relationship between a 
quantitative and a categorical variable

• In R data frame => 2 columns = 1 numeric and a factor with 3 
levels (or k levels in a more general setup)

59

4.7. Hypothesis tests for multiple samples
4.7.1. Analysis of variance



• Introduction to analysis of variance (ANOVA)

• Assumptions

• Multiple comparisons 

• Non parametric hypothesis test

• The link between t-test and ANOVA

4.7. Hypothesis tests for multiple samples
Testing for the association between a continuous and a categorical variable

60



• Let us assume that we have measurement of the same 
quantitative variable in κ(>2) groups of different individuals

• For example 3 groups of patients are randomly selected

– 1η group with virtual/placebo treatment

– 2η group receives a standard treatment

– 3η group received a new treatment

• We examine for a possible relationship between a 
quantitative and a categorical variable

• In R data frame => 2 columns = 1 numeric and a factor with 3 
levels (or k levels in a more general setup)

61

4.7. Hypothesis tests for multiple samples
4.7.1. Analysis of variance



• Examples

– Grades/student performance in 4 different academic years

– Sales in 3 different groups of sale points with different 
business strategies

• Examines the association

– Grades/performance + year

– Sales + strategy

62

4.7. Hypothesis tests for multiple samples
4.7.1. Analysis of variance



• We are interested to test for the differences between the quantitative variable 
and the groups i.e. are the means or the medians equal across groups

• We test for

Η0: μ1 = μ2 =... = μκ vs

Η1: μk  μj for some k  j{1,2, … K}.

• This hypothesis test is called analysis of variance (ANOVA: Analysis of 
Variance)

• ASSUMPTIONS:

✓ Residuals’ normality or the sample size to be large (n>50)

✓ Equal variances 

• If the above hypotheses are rejected then we may use a non-parametric 
method (KRUSKAL-WALLIS TEST)

Η0: Μ1 = Μ2 = … = ΜK vs 

Η1: Μi  Μj for some i  j=1,2, … κ.

63

4.7. Hypothesis tests for multiple samples
4.7.1. Analysis of variance



• Let us assume Υ quantitative variable and Χ categorical with κ levels. 

• nj : is the sample size of group j, j=1,2,…,κ

• : total sample size

• Υij is the i-th observation of group j 

• is the sample mean of Y for group j

• is the residual values of i observation of group j
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4.7. Hypothesis tests for multiple samples
4.7.1. Analysis of variance



Sum of squares

• is the total sum of squares (variance of Υ?) 

• it the residual sum of squares and expresses the 

variability within groups [within groups sum of squares]

• is the between groups sum of squares 

measuring the variance of the samples means of different groups

– We use the test Statistic:
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4.7. Hypothesis tests for multiple samples
4.7.1. Analysis of variance



• So we compare variances for testing for the equality of means. 

WHY??? 

• BE CAREFULL: Rejection of Η0 implies only that some mean differ. The 
test does not provide any information concerning which means differ. 

– We implement multiple pairwise comparisons

– We visualize differences using error-bars

66

4.7. Hypothesis tests for multiple samples
4.7.1. Analysis of variance



Example 4-7:

• Let us reconsider example 4-6 with the different training methods. 

• Now we consider 15 employees divided in 3 different groups of training

• The data are given in the following table:

Training 
method

Grade/performance

A 86 79 81 70 84

B 90 76 88 82 89

C 82 68 73 71 81

67

4.7. Hypothesis tests for multiple samples
4.7.1. Analysis of variance



Example 4-7:

• Unit of study: the employee

• Sample size: n=15

• Characteristics p=2

– Training method

– Grade/performance

68

4.7. Hypothesis tests for multiple samples
4.7.1. Analysis of variance

grades<-c(86,79,81,70,84,90,76,88,82,89,82, 
68,73, 71,81)

method<-rep(1:3,rep(5,3))
method<-factor(method, labels=paste('Method', 

LETTERS[1:3]) )

ex4.7<-data.frame( grades=grades, 
method=method )

rm(grades)
rm(method)



Example 4-7:

• Unit of study: the employee

• Sample size: n=15

• Characteristics p=2

– Training method

– Grade/performance
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4.7. Hypothesis tests for multiple samples
4.7.1. Analysis of variance

ex4.7<-edit(ex4.7)



anova1 <- aov( grades~method, data=ex4.7 )

Example 4-7: ANOVA using aov function in R

Numeric variable

factor
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4.7. Hypothesis tests for multiple samples
4.7.1. Analysis of variance

Numeric variable
Data frame

anova2 <- oneway.test( grades~method, data=ex4.7 )

also see



Example 4-7: ANOVA RESULTS IN R
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4.7. Hypothesis tests for multiple samples
4.7.1. Analysis of variance



Example 4-7: Anova table using the summary function in R

Δεν απορρίπτεται η Η0

για α=5%
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4.7. Hypothesis tests for multiple samples
4.7.1. Analysis of variance



Example 4-7: ANOVA RESULTS IN R
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4.7. Hypothesis tests for multiple samples
4.7.1. Analysis of variance



Example 4-7: ANOVA RESULTS IN R
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4.7. Hypothesis tests for multiple samples
4.7.1. Analysis of variance

• coefficients model coefficients

• fitted.values the fitted mean values.

in one-way anova fitted values = the group mean

• residuals the residuals: observed value – fitted value

• df.residual the residual degrees of freedom.

• call the exact expression used to generate this object

• contrasts The parametrization (constraints) used

• xlevels the levels of the factors used

• y the response used (only if y=TRUE)

• x the model matrix used (only if x=TRUE)

• model the model frame used (only if model=TRUE – default value)

• rank rank of data/design matrix X => i.e. the number of 

parameters => in one-way anova the number of groups
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4.7. Hypothesis tests for multiple samples
4.7.1. Analysis of variance

Example 4-7: ANOVA RESULTS IN R



Example 4-7: Checking the assumptions of anova

1) Normality of the residuals
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4.7. Hypothesis tests for multiple samples
4.7.2. Checking for the assumptions of ANOVA



Example 4-7: Checking the assumptions of anova

1) Normality of the residuals
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4.7. Hypothesis tests for multiple samples
4.7.2. Checking for the assumptions of ANOVA

qqnorm(anova1$residuals)
qqline(anova1$residuals)



Example 4-7: Checking the assumptions of anova

2) Homogeneity of variances 

H0: σ1
2= σ2

2= .... = σκ
2 vs H1: σk

2 σj
2 for some j,k {1,2,…,κ}

There are many ways of testing data for homogeneity of variance. Three methods 
are shown here.

• Bartlett's test - If the data is normally distributed, this is the best test to use. It 
is sensitive to data which is not non-normally distribution; it is more likely to 
return a "false positive" when the data is non-normal.

• Levene's test - this is more robust to departures from normality than Bartlett's 
test. It is in the car package.

• Fligner-Killeen test - this is a non-parametric test which is very robust against 
departures from normality. 78

4.7. Hypothesis tests for multiple samples
4.7.2. Checking for the assumptions of ANOVA



Example 4-7: Checking the assumptions of anova

2) Homogeneity of variances 
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4.7. Hypothesis tests for multiple samples
4.7.2. Checking for the assumptions of ANOVA



• Testing for the equility of proportions/probabilities in 
independent groups/samples

✓ Testing for the independence between binaries => comparison 
of success probabilities/proportions for two groups

– t-test for the difference of proportions

– t-test for the log-ratio of proportions (relative risk)

– t-test for the log-odds ratio

– Testing for independence in 2x2 contingency tables

✓ Testing for independence in IxJ contingency tables

• Equality of proportions in dependent samples/paired values

✓ Testing for the equality of marginal proportions using the 
ΜcNemar test for 2x2 contingency tables

4.8. Two categorical variables
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Example 4-11: Masticha shop customer satisfaction survey

The effect of gender on the knowledge for products

✓ Alcoholic drinks

✓ Bakery products 

✓ Desserts and sweets

✓ Cosmetics
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4.8. Two categorical variables
4.8.1. Testing for the association between two categorical variables 
(independent samples) 



Example 4-11: Masticha shop customer satisfaction survey

The effect of gender on the knowledge for alcoholic drinks

• We are interest to test whether there is difference between males and 
females concerning the knowledge of the existence of some products 


• We would like to test for the equality of proportions of males or 
females that were informed for the existence of a type of product (for 
example alcoholic drinks) 

• Η0: πmales = πfemales vs Η1: πmales  πfemales 

• Η0: “Independence between gender and knowledge of a product” vs 

• Η1: “there is association between gender and product knowledge”
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4.8. Two categorical variables
4.8.1. Testing for the association between two categorical variables 
(independent samples)



Example 4-11: Masticha shop customer satisfaction survey
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4.8. Two categorical variables
4.8.1. Testing for the association between two categorical variables 
(independent samples)

Total table proportions

Row proportions

Column proportions



Example 4-11: Masticha shop customer satisfaction survey
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4.8. Two categorical variables
4.8.1. Testing for the association between two categorical variables 
(independent samples)



Example 4-11: Masticha shop customer satisfaction survey
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4.8. Two categorical variables
4.8.1. Testing for the association between two categorical variables 
(independent samples)

prop.test implements the Pearson’s chi-square statistics for 
independence



Example 4-11: Masticha shop customer satisfaction survey
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4.8. Two categorical variables
4.8.1. Testing for the association between two categorical variables 
(independent samples)

Same also for chisq.test



Example 4-11: Masticha shop customer satisfaction survey
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4.8. Two categorical variables
4.8.1. Testing for the association between two categorical variables 
(independent samples)



Example 4-11: Masticha shop customer satisfaction survey
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4.8. Two categorical variables
4.8.1. Testing for the association between two categorical variables 
(independent samples)

chisq.test is more flexible than prop.test

If small expected values (<5) arize then use similate.p.value to obtain 
a Monte Carlo estimate of the p-values which is more accurate

Otherwise use the Fisher’s exact test



Example 4-11: Masticha shop customer satisfaction survey
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4.8. Two categorical variables
4.8.1. Testing for the association between two categorical variables 
(independent samples)

MC estimated p-value and the 
Fisher’s exact p-value are very 
close as expected and more 
accurate than approximate p-
value in chi-sq test



Example 4-11: Masticha shop customer satisfaction survey

90

4.8. Two categorical variables
4.8.1. Testing for the association between two categorical variables 
(independent samples)

CrossTable(masticha.all$gender, masticha.all$a4_drinks)



Example 4-11: Masticha shop customer satisfaction survey
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4.8. Two categorical variables
4.8.1. Testing for the association between two categorical variables 
(independent samples)

CrossTable(masticha.all$gender, masticha.all$a4_drinks, digits=1, format='SPSS')



Example 4-11: Masticha shop customer satisfaction survey
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4.8. Two categorical variables
4.8.1. Testing for the association between two categorical variables 
(independent samples)

CrossTable(masticha.all$gender,masticha.all$a4_drinks, 
digits=1, format='SPSS', expected=FALSE, 
prop.r=TRUE, prop.c=F, prop.t=F, 
prop.chisq=F, chisq = T, fisher=T, 
mcnemar=FALSE)



Example 4-11: Masticha shop customer satisfaction survey
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4.8. Two categorical variables
4.8.1. Testing for the association between two categorical variables 
(independent samples)

CrossTable(masticha.all$gender,masticha.all$a4_drinks, 
digits=1, format='SPSS', expected=FALSE, 
prop.r=TRUE, prop.c=F, prop.t=F, 
prop.chisq=F, chisq = T, fisher=T, 
mcnemar=FALSE)



Example 4-11: Masticha shop customer satisfaction survey
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4.8. Two categorical variables
4.8.1. Testing for the association between two categorical variables 
(independent samples)

fisher=T



Example 4-11: Masticha shop customer satisfaction survey
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4.8. Two categorical variables
4.8.1. Testing for the association between two categorical variables 
(independent samples)

Warning for the validity of chi-square test. Expected 
values should be > 5 in order to accurately calculate 
the (approximate) p-value 



Example 4-11: Masticha shop customer satisfaction survey
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4.8. Two categorical variables
4.8.1. Testing for the association between two categorical variables 
(independent samples)

library(sjPlot)
sjt.xtab(masticha.all$gender, masticha.all$a4_drinks)



Example 4-11: Masticha shop customer satisfaction survey
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4.8. Two categorical variables
4.8.1. Testing for the association between two categorical variables 
(independent samples)

sjt.xtab(masticha.all$gender, masticha.all$a4_drinks, show.cell.prc= FALSE, 
show.row.prc= TRUE, show.col.prc = FALSE,   show.exp= FALSE, 
var.labels = c('Φύλο', 'Γνώση Ύπαρξης Ποτών στο Κατάστημα'), 
encoding = “UTF-8")
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4.8. Two categorical variables
4.8.1. Testing for the association between two categorical variables 
(independent samples)

sjp.xtab(masticha.all$gender, masticha.all$a4_drinks)



Example 4-11: Masticha shop customer satisfaction survey
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4.8. Two categorical variables
4.8.1. Testing for the association between two categorical variables 
(independent samples)

library(MASS)
loglm( ~ 1+2, tab1)

Likelihood ratio test for 
independence



Assumptions for tests

• Pearson’s χ2 independence test
– Good approximation when expected values > 5 

– [Less strict assumption according to Cochran (1954, Biometrics): 80% of 
expected values > 5 and all of them >1]

• χ2 test with Yates correction
– Only for 2x2 tables [approximates better the Fisher Exact test]

• Likelihood ratio test of independence
– Bad approximation for n/IJ < 5 (Agresti, 1990, p. 49)

• Fisher’s exact test
– It is the best since it is based on the exact distribution

• Monte Carlo estimates of p-values – it should be used when the χ2

approximation is not valid and/or the Fisher exact test cannot be obtained100

4.8. Two categorical variables
4.8.1. Testing for the association between two categorical variables 
(independent samples)



Example 4-11: Masticha shop customer satisfaction survey
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4.8. Two categorical variables
4.8.1. Testing for the association between two categorical variables 
(independent samples)

index<-6:9
pvalues<-matrix(nrow=4,ncol=3)
for (i in 1:4){

var<-index[i]
tab <- table( masticha.all$gender, masticha.all[,var] )
pvalues[i,1]<-chisq.test(tab, correct=F)$p.value
pvalues[i,2]<-summary(loglm( ~ 1+2, tab))$tests[1,3]
pvalues[i,3]<-fisher.test(tab)$p.value

}
pvalues
colnames(pvalues) <- c('Chisq', 'LRT', "Fisher's")
rownames(pvalues) <- c('Alcoholic drinks', 'Bakery products', 'Sweets', 

'Cosmetics')
round(pvalues,3)



Example 4-11: Masticha shop customer satisfaction survey

P-values for the association of the gender with various type of 
products
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4.8. Two categorical variables
4.8.1. Testing for the association between two categorical variables 
(independent samples)



• Here we will consider the corresponding test of the paired t-test 
but for categorical variables. 

• Hence, we may have the same binary or categorical 
measurements in two different time-point on the same study 
units (subjects or individuals). 

• For binary variables, the resulted table is of 2x2 dimension

• We are interested to test the hypothesis: 

• Η0: P(success in 1st time point)=P(success in 2nd time point)  

• Η0: πi.=π.i vs. Η1: πi.  π.i 

• Η0: “There is no time effect in the categorical variable” vs Η1: 
“there is a time effect on the categorical variable”
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4.8. Two categorical variables
4.8.2. Testing for the equality of proportions in dependent samples



Example 4-13: Prime minister’s approval 

• [Agresti, 2002, 2nd ed, p. 409; Table 10.1]. 

• Random sample of 1600 voting-age British citizens

• Two satisfaction/approval surveys with difference of 6 
months

• Is the proportion of voters that approve the Prime 
minister’s similar? 
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4.8. Two categorical variables
4.8.2. Testing for the equality of proportions in dependent samples



Example 4-13: Prime minister’s approval 

• Η0: “There is no difference in the approval of the Prime minister 

within the last 6 months” vs. Η1: “There is a difference in the 

approval of the Prime minister within the last 6 months” 

• Η0: P(Approval|First Survey) = P(Approval|Second Survey) vs.

Η1: P(Approval|First Survey)  P(Approval|Second Survey) 

• Η0: π2.=π.2 vs της εναλλακτικής Η1: π2.  π.2 
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4.8. Two categorical variables
4.8.2. Testing for the equality of proportions in dependent samples



Example 4-13: Prime minister’s approval the last six 
months

Second Survey

First Survey Approve Disapprove Total

Approve 794 150 944

Disapprove 86 570 656

Total 880 720 1600
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4.8. Two categorical variables
4.8.2. Testing for the equality of proportions in dependent samples
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4.8. Two categorical variables
4.8.2. Testing for the equality of proportions in dependent samples

Example 4-13: Prime minister’s approval 
Setting up the data directly as a table

tabex4.13b <- as.table( matrix(c(794, 150, 86, 570),2,2, byrow=TRUE) )
tabex4.13b
rownames(tabex4.13b)<-c( 'Approve', 'Disapprove' )
colnames(tabex4.13b)<-c( 'Approve', 'Disapprove' )
tabex4.13b
dimnames(tabex4.13b)
names(dimnames(tabex4.13b)) <- c('First Survey','Second Survey')
dimnames(tabex4.13b)
tabex4.13b
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4.8. Two categorical variables
4.8.2. Testing for the equality of proportions in dependent samples

Example 4-13: Prime minister’s approval 
Using the function Crosstable

library(gmodels)
CrossTable(tabex4.13b, prop.r=T, prop.c=T, prop.t=T, prop.chisq=F, 

chisq = T, fisher=T,  
mcnemar=TRUE, format='SPSS', digits=1)
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4.8. Two categorical variables
4.8.2. Testing for the equality of proportions in dependent samples

Example 4-13: Prime minister’s approval 
Using the function Crosstable
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4.8. Two categorical variables
4.8.2. Testing for the equality of proportions in dependent samples

Example 4-13: Prime minister’s approval 
Using the function Crosstable
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4.8. Two categorical variables
4.8.2. Testing for the equality of proportions in dependent samples

Example 4-13: Prime minister’s approval 
Using the function Crosstable

Chi square test significant as 
expected since the two 
variables are dependent by 
definition

Statistically significant 
=> difference in the 
marginal proportions => 
there is a difference in 
the approval of the Prime 
minister 
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4.8. Two categorical variables
4.8.2. Testing for the equality of proportions in dependent samples

Example 4-13: Prime minister’s approval 
Using the function mcnemar.test

Statistically significant 
=> difference in the 
marginal proportions => 
there is difference in the 
side effects before and 
after the treatment
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4.8. Two categorical variables
4.8.2. Testing for the equality of proportions in dependent samples

Example 4-13: Prime minister’s approval 
Changing the table to a data.frame (with counts)

tabex4.13b <- as.table( matrix(c(794, 150, 86, 570),2,2, byrow=TRUE) )
rownames(tabex4.13b)<-c( 'Approve', 'Disapprove' )
colnames(tabex4.13b)<-c( 'Approve', 'Disapprove' )
dimnames(tabex4.13b)
names(dimnames(tabex4.13b)) <- c('First Survey','Second Survey')



4.8. Two categorical variables
4.8.2. Testing for the equality of proportions in dependent samples

Example 4-13: Prime minister’s approval 
Changing the table to a data.frame (fully expanded)

index<-1:nrow(ex4.13b)
dfex4.13b <- ex4.13b[rep(index,ex4.13b$Freq),-3]
head(dfex4.13b)

table(dfex4.13b)
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4.8. Two categorical variables
4.8.2. Testing for the equality of proportions in dependent samples

Example 4-13: Prime minister’s approval 
Changing the table to a data.frame

sjt.xtab(ex4.13b[,1],ex4.13b[,2], weight.by=ex4.13b[,3], 
var.labels = names(ex4.13b), 
show.cell.prc = T, show.row.prc = T, 
encoding = "UTF-8")

OR

sjt.xtab(dfex4.13b[,1],dfex4.13b[,2], var.labels= names(ex4.13b), 
show.cell.prc= T, show.row.prc = T, 
encoding = “UTF-8")
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4.8. Two categorical variables
4.8.2. Testing for the equality of proportions in dependent samples

Example 4-13: Prime minister’s approval 
Using the function Crosstable
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4.8. Two categorical variables
4.8.2. Testing for the equality of proportions in dependent samples

Example 4-13: Prime minister’s approval 
Using the function Crosstable



The mcnemar.test for more than two levels

In the case of paired values with more than two levels, 
mcnemar.test implements the generalization of 
McNemar test which does not test the equality of the 
marginal distributions but the symmetry of the table 
which is a special case of the marginal homogeneity
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4.8. Two categorical variables
4.8.2. Testing for the equality of proportions in dependent samples


