ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ



ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS  
 ΧΟΛΗ ΤΩΝ & ΟΓΙΑΣ
 ΜΕΤΑΠΤΥΧΙΑΚΟ στην

 ΤΗΣ
 ΕΠΙΣΤΗΜΗ ΔΕΔΟΜΕΝΩΝ

 ΟΡΙΑΣ
 ΕΠΙΣΤΗΜΗ ΔΕΔΟΜΕΝΩΝ

 ΝCELS &
 MSc in DATA SCIENCE

 NCES &
 MSc in DATA SCIENCE

## **Elements of Statistics and Probability**

**Exercises using R** 

1. Using the vectors

x < -c(-4, 1, 0, 0, 5, -3, 2) and y < -c(1, 1, -5, 4, 3, -2, 0) implement the following operations:

- i. Create a new vector including the first, second and sixth element of  ${\bf x}$
- ii. Create a new vector that includes the first four elements of  $\mathbf{y}$
- iii. Create a new vector with the negative elements of  $\propto$
- iv. Create a new vector that includes all elements of  $\mathbf{x}$  apart from the third one
- v. Create a new vector with the elements of x satisfying the conditions  $x{<}0~$  and  ${}_{y}{\neq}1$
- vi. Create a new vector with the elements of y satisfying the conditions y < 0 or  $x \le 0$
- vii. Create a new vector with the first two elements of y replicated twice.
- 2. Suppose that the vectors x and y include the grades in the assignment and the written examination of a course for a specific student. Calculate the final score of the student in the following cases:
  - i. The final score is the average of the two grades.
  - ii. If the assignment's grade is 7 or higher the final score is the grade of the written examination, otherwise it is 4. The student also gets a bonus of one credit if the assignment's grade is more than 8.
  - iii. The final score is the minimum of the two grades
  - iv. If the assignment's grade is at least 5 then the final score is the average of the two grades, otherwise the final score is just the grade of the written examination.

3. Let 
$$A = \begin{pmatrix} 1 & 2 & 6 \\ 5 & 2 & 5 \\ 6 & 1 & 3 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix}$ .

i. Define the above tables in R.

ii. What is the appropriate operation in order to get  $C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$  from *A*?



ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS



ΜΕΤΑΠΤΥΧΙΑΚΟ στην ΕΠΙΣΤΗΜΗ ΔΕΔΟΜΕΝΩΝ MSc in DATA SCIENCE

iii. Calculate the following quantity:

$$5A^{-1} + 3(AA^{T})^{-1} - 2BB^{T} + I_{3} + \begin{pmatrix} 5 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

4. The following table includes data about the performance of 20 students:

| Chemistry | Physics | Mathematics | Literature | Sex    | Year |
|-----------|---------|-------------|------------|--------|------|
| 93        | 42      | 98          | 34         | Male   | 1    |
| 71        | 67      | 68          | 33         | Male   | 1    |
| 77        | 59      | 36          | 24         | Male   | 1    |
| 78        | 70      | 92          | 24         | Male   | 1    |
| 77        | 59      | 44          | 31         | Male   | 1    |
| 81        | 50      | 45          | 22         | Male   | 2    |
| 88        | 50      | 58          | 23         | Female | 2    |
| 74        | 51      | 31          | 32         | Female | 2    |
| 67        | 45      | 70          | 31         | Female | 2    |
| 78        | 64      | 46          | 26         | Female | 2    |
| 77        | 49      | 41          | 75         | Male   | 1    |
| 67        | 49      | 46          | 81         | Male   | 1    |
| 63        | 48      | 65          | 87         | Female | 1    |
| 83        | 51      | 62          | 100        | Female | 1    |
| 73        | 56      | 20          | 81         | Female | 1    |
| 70        | 47      | 22          | 100        | Female | 2    |
| 78        | 53      | 92          | 77         | Male   | 2    |
| 95        | 56      | 56          | 89         | Male   | 2    |
| 88        | 49      | 28          | 100        | Male   | 2    |
| 75        | 71      | 94          | 77         | Male   | 2    |

- a) Enter the data into a data frame.
- b) For each gender, compute the average score at each course.
- c) Find the max score at each course.
- d) Find the max score for all courses.
- e) Compute the average score for each student and rank the students according to their mean score. Repeat the above computation and ranking for each year separately.
- f) Who is the best student? Standardize the scores in order to be comparable and compute the average standardized score for each student.
- g) What is the percentage of students who succeeded (score  $\geq$  50) at all courses?
- h) What is the average score and variance for the successful students?