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Thanks to Data Science
we now have a simple
solution to this problem.
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5. Correlation and Regression models

5.1. Introduction — correlation

Pearson’s correlation coefficient Cov(X,Y)

0,0
X7y
» It measures the degree of linear dependence/relationship

> It is the normalized version of covariance P =

» Bounded and defined in the interval from -1to 1
v" 1 = perfect (hon-random) positive linear relationship
v'-1 = perfect (non-random) negative linear relationship
v" 0 = two variables are not correlated
for normal data => variable are independent

» Free of units
» Quantifies the degree of linear relation
» Does not separates the response from the explanatory



5. Correlation and Regression models

5.1. Introduction — correlation

Pearson’s correlation coefficient

Cov(X,Y)

0,0,

» Population correlation o=

»Sample estimator

X X))

Ji(xi SREY -V

> cor(salary$salbeqg, salaryS$Ssalnow)
[1] 0.8801175 4

F =




5. Correlation and Regression models

5.1. Introduction — correlation

Pearson’s correlation in R
»If X & Y independent = Correlation =0
» Correlation =0 = no linear dependence
but not necessarily independence
» Correlation=0 & X -Y normal = independence



5. Correlation and Regression models

5.1. Introduction — correlation

Pearson’s correlation & independence

»If X & Y independent = Correlation =0
> zl<-rnorm(1000) > Zl<-rgamma(1000,1,1)

> cor(zl,zZ2) > cor(zl,z2)
[1] 0.01802764 [1] D0.008463119

» Correlation =0 = no linear dependence

but not necessarily independence

> zl<-rnorm(1000) > zl<-rgamma (1000,1,1)
> cor(zl,zl~2) > cor(zl,z1"2)

[1] 0.02178¢643 [1] 0.591%3777



5. Correlation and Regression models

5.1. Introduction — correlation

Normal data Gamma data

30




5. Correlation and Regression models

5.1. Introduction — correlation

Pearson’s correlation & linear functions
> If Y is a linear function of X = Correlation=1 or -1

> ¥<-rnorm(1000)
> y<— 5H-2*X

> Ccor (X,V)

[1] -1

> X<-rnorm(1000)

> y<— 3+5*X

> cor(x,vy)

[1] 1



5. Correlation and Regression models

5.1. Introduction — correlation

Perfect positive relationship Perfect negative relationship
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5. Correlation and Regression models

5.1. Introduction — correlation
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5. Correlation and Regression models

5.1. Introduction — correlation

Correlation matrix [using the observed data]

R is a pxp matrix with elements

R« = Cor(X;,X,) — sample correlation between X; and X,
Rj;=1
(the correlation of each variable with itself is one)

> cor(sal.num)

id salbeqg time age salnow edlevel work
id Il.DDODDDDD -0.43118072 -0.012067260 0.10598470 -0.41863174 -0.33421423 0.018759273
salbeg -0.43118072Z || 1.00000000( =0 010979783475 -0,01104036 0.88011747 0.633159565 0.045147858
time -0.012086726 -0.01575347| _1.000000000) 0.05162975 0.084059227 0.04737878 0.002962074
age 0.10598470 -0.01104036 0.051629754| 1.00000000 |=0 14507039 -(0,28084182 0.804397166
salnow -0.41863174 0.88011747 0.08405%22¢7 -0.14551032 ] 1.00000000 || 0.660558591 --0.097455333
edlevel -0.33421423 0.63319565 0.047378777 -0.28084182 0.660558%91 | 1.00000000 02593087836
work 0.01875%27 0.0451478¢ 0.002%e2074 0.80435%717 -0.09745533 -0.25235784 |1.000000000

Each element of the diagonal is 1
since each variable is fully

correlated with itself (it is the

identity function)

11




5. Correlation and Regression models

5.1. Introduction — correlation

Example 5-1 [salary]

Assess the possible linear relationships between starting and
current salary

> xl<-salaryS$salbeg Hy: p=0

> X2<-salarySsalnow ] . ]

> cor(x1,%x2) i.e. there is no linear

[1] 0.8801175 relationship between the

> cor.test(xl,x2) current and the starting salary

Pearson's product-moment correlation

data: =x1 and xZ
t = 40.2755, df = 4?2,lp—value < 2.2e-16
alternative hypothesis: true correlaticon 1s not equal to 0

95 percent confidence interval:

0.8580696 0.89892¢67

sample estimates:

cor

0.8801175 12




5. Correlation and Regression models

5.1. Introduction — correlation

plot(x1,x2, xlab="Starting Salary', ylab="'Current Salary', cex.axis=1.5)

Current Salary
30000 40000 50000

20000

r=0.88

10000

5000 10000 15000 20000 25000 30000

Starting Salary
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5. Correlation and Regression models

5.1. Introduction — correlation

plot(x1,x2, xlab="Starting Salary', ylab="'Current Salary', cex.axis=1.5)
abline(Im(x2~x1))

Current Salary
20000 30000 40000 50000

10000

5000 10000 15000 20000 25000 30000

Starting Salary
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5. Correlation and Regression models

5.1. Introduction — correlation

Further comments (1)

The coefficient assumes that both Xand Y are random
variables

It can be used as a measure of linearity
The hypothesis test assumes normality or large sample

Alternatively, non-parametric correlation measures can be
used

If the relationship is strong but non-linear then the Pearson
correlation coefficient will show how well this is
approximated by a linear function

15



5. Correlation and Regression models

5.1. Introduction — correlation

Further comments (2)
According with Chatfield & Collins (1980, p. 40-41)

The test is conservatory i.e. small values of r will give
significant relationship (of some kind) especially for large
samples

Empirical rule:
— strong linear dependence for |r|>0.70
— Medium linear dependence for 0.4<|r|<0.70

— Weak linear dependence for |r|< 0.4

The coefficient is not estimated reliably for small samples
(n<12) 16



5. Correlation and Regression models

5.1. Introduction — correlation

Example 5-1 [salary]

Assess the possible linear relationships between age and the

id? It seams that there is significant
> xl<-salary$id negative linear dependence between
> x2<-salarySage the the age and the id!!!

Tt o {v‘l == "3y

|[1] 0.1059847 | Does this makes sense?

> cor.test(xl,x2) Is the value of the coefficient large?

Pearson's product-moment correlation

data: x1 and x2

t = 2.3156, df = 4?2,!p—value = 0.02101 |
alternative hypothesiI: 1s not equal to 0

95 percent confidence interval:
0.01607248 0.19419663
sample estimates:
cor
0.1059847 17




5. Correlation and Regression models

5.1. Introduction — correlation
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5. Correlation and Regression models

5.1. Introduction — correlation

Example 5-1 [salary]

To assess the possible linear relationships between starting

and current salary

library(sjPlot)
sjt.corr(x, corMethod = "pearson", showPValues = TRUE,
pvaluesAsNumbers = FALSE, fadeNS = TRUE, digits = 3)

salbeg salnow

E -+

salbeg 0.880

4

salnow 0.88

Computed correlation used pearson-method with pairwise-deletion.

* 0.01<p-value<0.05
** 0,001<p-value<0.01

*** p-value <0.001
19



5. Correlation and Regression models

5.1. Introduction — correlation

Example 5-1 [salary]
To assess the possible linear relationships between starting

and current salary

library(sjPlot)
sjt.corr(x, corMethod = "pearson", showPValues = TRUE,
pvaluesAsNumbers = FALSE, fadeNS = TRUE, digits = 3)

salbeg salnow
salbeg 0.880
B (0.000)
salnow 0.880 e e aiven i brack
(0.000) P-value is given in brackets.
The current salary is highl
Computed correlation used pearson-method with pairwise-deletion. . ... oted to the étartir?g y

salary

20



5. Correlation and Regression models

5.1. Introduction — correlation

Example 5-1 [salary]

To assess the possible linear relationships between starting
and current salary

ied salbeg  time age  salmow edlevel work
sjt.corr(sal.num, g 0431 0012 0106 -0419 -0.334
CorMethod — "pearson", (0.000) (1 A (0.021) (0.000)  (0.000)

showPValues = TRUE, otbee 0431 0020 0011 0880 0633 45
clelehls = TNIE, SOl = o et 0 oo 0ol
triangle = "both") wres (0K 0e (U075

0.106 0011 52 0.146 -0281 0.804

9 0.021) (0.811) (0.262 (0.001) (0.000) (0.000)

oy 0419 0880 34 -0.146 0.661 -0.097

SATOW0.000)  (0.000) (0.067) (0.001) (0.000) (0.034)

Non significant oy 0334 0633 0047 0281 0661 0252

eAevel 0.000) (0.000) (0.303) (0.000) (0.000) (0.000)

correlations are faded
- 1¢ 45 3 0804 0097 0252
with grey color work o 654) (0.327) (0.049) (0.000) (0.034) (0.000)

Computed correlation used pearson-method with pairwise-deletion.




5. Correlation and Regression models

5.1. Introduction — correlation

Example 5-1 [salary]

To assess the possible linear relationships between starting

and current salary

sjt.corr(sal.num,
corMethod = "pearson”,
showPValues = TRUE,
pvaluesAsNumbers = TRUE,
fadeNS = TRUE, digits = 3,
triangle = “lower")

Non significant
correlations are faded
with grey color

id salbeg  time age  salmow edlevel work
id
i -0.4351
SACE 0.000)
time .

0.106
ge w.021)
salnow 0419 0880 54 20146

(0.000)  ¢0.000)  0.0a7)  ¢0.001)
dlevel 0334 0633 47 0281 0.661
edievel 0.000) (0.000) (0.303) (0.000) (0.000)

45 3 0804  -0097 -0252

work -

0.040) 0.000) 0.034) ¢0.000)

Computed correlation used pearson-method with pairwise-deletion.




5. Correlation and Regression models

5.1. Introduction — correlation

Back to correlation matrices

> cor(sal.num)

id 1.
salbeg -0.
time -0.
age a.
salnow -0.
edlevel -0.
work 0.

id
00000000
43118072
01206726
10558470
41863174
33421423
01875927

salbeqg

.43118072
.00000000
.01975347
.0110403¢6
.88011747
.63315565
.0451478¢

time

012067260
.019753475
.000000000
.0516259754
.0840522¢67
.047378777
002562074

age

.10558470
.01104036
.05162975
.00000000
.1459103%2
.2808418%2
.80435717

salnow
LA1863174 -0
.88011747 0O
.08408227 0
.145%1032 -0
L00000000 O
.66055891 1
09745533 -0,

edlevel

. 33421423
.63319565
.04737878
.28084182
. 66055891
.00000000

25235784

e T e T s O s Y s |

work

.018755%273
.045147858
.002962074
.8043971¢66
.087455333
.252357836
.000000000

23



5. Correlation and Regression models

5.1. Introduction — correlation

How to tide up and make correlation matrices readable
Keep only correlation measures (no p-values)
Keep only one or two decimals
Eliminate irrelevant variables (e.g. id)
Group correlated variables
Uses symbols or colors for high or significant correlations
If even these changes, it does not makes any sense
— Eliminate numbers and keep only colors or symbols
— Use path diagrams

24



5. Correlation and Regression models

5.1. Introduction — correlation

Correlation matrices
Eliminate decimal numbers & other values

> round(cor(sal.num), 1)
id salbeg time age salnow edlevel work

1d 1.0 -0.4 0.0 0.1 -0.4 -0.3 0.0
salbeg -0.4 1.0 0.0 0.0 0.9 0.6 0.0
time 0.0 0.0 1.0 0.1 0.1 0.0 0.0
age 0.1 g.0 0.1 1.0 -0.1 -0.3 0.8
salnow -0.4 0.9 0.1 -0.1 1.0 0.7 -0.1
edlevel -0.3 0.6 0.0 -0.3 0.7 1.0 -0.3
work 0.0 0.0 0.0 0.8 -0.1 -0.3 1.0

25



5. Correlation and Regression models

5.1. Introduction — correlation

Correlation matrices
Eliminate irrelevant values

> round(cor(sal.num),1) [-1,-1]
salbeg time age salnow edlevel work

salbeg 1.0 0.0 0.0 0.9 0.6 0.0
time 0.0 1.0 0.1 0.1 0.0 0.0
age 0.0 0.1 1.0 -0.1 -0.3 0.8
salnow 0.9 0.1 -0.1 1.0 0.7 -0.1
edlevel O0.e 0.0 -0.3 0.7 1.0 -0.3
work 0.0 0.0 0.8 -0.1 -0.3 1.0

26



5. Correlation and Regression models

5.1. Introduction — correlation

Correlation matrices

Add colors
> temp<-round(cor(sal.num),1)[-1,-1]
> 1ndex<-c(1,4,5,3,2)
> temp[index, index]
salbeg salnow edlevel age time

salbeqg 1.0 0.5 O.e 0.0 0.0
salnow 0.9 1.0 0.7 -0.1 0.1
edlevel 0.6 0.7 1.0 -0.3 0.0
age 0.0 -0.1 -0.3 1.0 0.1

0.0 0.1 0.0 0.1 1.0

time
|

27



5. Correlation and Regression models

5.1. Introduction — correlation

Correlation matrices

Re-arrange the matrix according to the correlations
> temp<-round(cor(sal.num),1)[-1,-1]
> 1ndex<-c(1,4,5,3,2)
> temp[index, index]
salbeg salnow edlevel age time

salbeqg 1.0 0.9 0.e¢ 0.0 0.0
salnow 0.9 1.0 o.7 -0.1 0.1
edlevel 0.6 0.7 1.0 -0.3 0.0
age 0.0 -0.1 -0.3 1.0 0.1

0.0 0.1 0.0 0.1 1.0

time
|

28



5. Correlation and Regression models

5.1. Introduction — correlation

Path diagram

Starting
Salary ﬁ Current Salary Time

Educational
level

Age

29



5. Correlation and Regression models

5.1. Introduction — correlation

Fancy plots using sjPlot

x<-sal.num
libray(sjPlot); sjp.corr(x, corMethod = "pearson")

1.000***
age
work
time
edlevel

salnow

salbeg 1.000***

&)
® ¢
£
g L JURGRCRE

salbeg



5. Correlation and Regression models

5.1. Introduction — correlation

Fancy plots using corrplot

library(corrplot)
corrplot(cor(sal.num))

salbeg
time
age
salnow
edlevel
work

salbeg

time

age

salnow

edlevel

work




5. Correlation and Regression models

5.1. Introduction — correlation

Fancy plots using corrplot

library(corrplot)
corrplot(cor(sal.num),
method= "square")

0.8
0.6

- 0.4

- 0.2

r-0.2

r-0.4




5. Correlation and Regression models

5.1. Introduction — correlation

Fancy plots using corrplot

salnow
edlevel

library(corrplot)
corrplot(cor(sal.num),

1
method= " ellipse ") id /
0.8

0.6

salbeg
time
age
work

salbeg

- 0.4
time
r 0.2

age

r-0.2
salnow

r-0.4

edlevel

\

work




5. Correlation and Regression models

5.1. Introduction — correlation

Fancy plots using corrplot

o = [
= (b} o >
library(corrplot) - < 2 g s < §
corrplot(cor(sal.num), .
method= " number") id 1
0.8
salbeg 1 0.88 | 0.63 06
- 0.4
time 1
r 0.2
age 1 0.8 -0
r-0.2
salnow 0.88 1 0.66
r-0.4
edlevel 0.63 0.66 1 -0.6
-0.8

work 0.8 1



5. Correlation and Regression models

5.1. Introduction — correlation

Fancy plots using corrplot

library(corrplot)
corrplot(cor(sal.num),
method= " shade")

salbeg
time
age
salnow
edlevel
work

salbeg

time

age

salnow

edlevel

work



5. Correlation and Regression models

5.1. Introduction — correlation

Fancy plots using corrplot

library(corrplot)
corrplot(cor(sal.num),
method= " color")

salbeg
time
age
salnow
edlevel
work

salbeg

time

age

salnow

edlevel

work



5. Correlation and Regression models

5.1. Introduction — correlation

Fancy plots using corrplot
library(corrplot)
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5. Correlation and Regression models

5.1. Introduction — correlation

Example 5-2 [world95]

We would like to assess the correlation between the population
and the density

> cor.test (world955popul,world%55density)

Pearson's product-moment correlation

data: worldS5S5popul and worldS55densit
t = -0.1894, df = 107, |p-value = 0.8501
alternative hypothesis: True correlaclion 1s not equal to 0

95 percent confidence interval: Non-significant linear

-0.2057032 0.1703786 relationship between the

sample estimates: population and the density.
cor ‘

-0.018309597

Also the coefficient is very
small indicating minor or no
linear relationship 38




5. Correlation and Regression models

5.1. Introduction — correlation
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5. Correlation and Regression models

5.1. Introduction — correlation
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5. Correlation and Regression models

5.1. Introduction — correlation

Example 5-2 [world95]

We would like to assess the correlation between the population
and the density

But by definition

DENSITY = POPULATION/AREA (in sq meters)
=a+b * POPULATION
with a=0 and b=1/AREA !!!!
So why r=0 instead of r=1???7

41



5. Correlation and Regression models

5.1. Introduction — the simple linear model

Let us assume that we have two quantitative variables
X: explanatory or independent variable
Y: response or dependent variable

If we believe that X influences (or affects) in a some way the response
Y then it is sensible to assume that a function h(x) exists such that:

y = h(z)
[perfect/deterministic relationship]

Since we mainly study random phenomena/experiments then it is
sensible to add a random (unpredicted) component (i.e. error term)

y = h(z)+e¢
e ~ Distribution(6)
42



5. Correlation and Regression models

5.1. Introduction — the simple linear model

Two quantitative variables
X: explanatory or independent variable

Y: response or dependent variable
Regression model assumes
linear relationship (function) between X and Y

hiz) = o+ bz
e ~ N(0,0%)
So the regression model is now givenby ¢y = Gy + b1z + ¢
e ~ N(0,0°%

Normal errors

43



5. Correlation and Regression models

5.1. Introduction — the simple linear model

Two quantitative variables
X: explanatory or independent variable
Y: response or dependent variable
Regression model

y = fo+0ix+e
e ~ N(0,0%)

WHY LINEAR?

WHY NORMAL?

WHY ZERO MEAN OF ERRORS?
WHAT 62 means?

44



5. Correlation and Regression models

5.1. Introduction — the simple linear model

More general approach [GLM]
(and more appropriate in terms of modeling)
X: explanatory or independent variable
Y: response or dependent variable Y~ Distribution(6)

9(0) = h(z)

v’ Distribution(08): stochastic (random) component
v h(x): deterministic (non random) component

v g(0): link function between stochastic and deterministic
component

v Usually h(x) <> linear function of X <> also called linear predictor

45



5. Correlation and Regression models

5.1. Introduction — the simple linear model

More general approach [GLM]

(and more appropriate in terms of modeling)
X: explanatory or independent variable
Y: response or dependent variable

Y ~ Normal( , 02 ) [07=(p,07%)]
U= Bo+B, X [8(6)=u]

46



5. Correlation and Regression models

5.2. The simple linear regression model

Two ways to write a regression model:

Using the error term representation

y = fo+0ix+e
e ~ N(0,0°%

or equivalently

Using the stochastic response (GLM type) representation

Y ~ N(p,0%)
p = [o+ b

47



5. Correlation and Regression models

5.2. The simple linear regression model

The two ways to write a regression model when data are
introduced.
We need to introduce an indicator for the study unit/observation :
Representing by Y, X. (for i=1,2, ..., n) the pairs of the response
& explanatory values for each study unit <i>
Using the error term representation Y; = [y + 0iz; + ¢€;
e; ~ N(0,0%)
or equivalently
Using the stochastic response (GLM type) representation
Y; ~ N(w,o°)

= o+ Pz

48



5. Correlation and Regression models

5.2. The simple linear regression model

Terminology and estimators

,30,,31: Sample estimators/estimates of

Bo and B,
y. : Expected value according to the §. = B, + B
model or fitted value for <i> study unit/

observation/subject i P
&=Yi—Vi=VY,— b — bX

e : Regression residual
(estimate of €,) ~
~2 . )
0" :Estimator/estimate of the error 52 — 1 Z o
variance n—2¢« z
1=1

49



5. Correlation and Regression models

5.2. The simple linear regression model

Terminology and estimators
R? . Coefficient of determination
v’ This is a goodness of fit measure
v’ Takes values from 0 to 1

v’ Interpretation: % of variability
explained by the model

v' In simple regression R2=r2

R.q> :Adjusted coefficient of

determination
v’ Takes values fromOto 1

v’ Interpretation: % of variance
explained by the model

v’ More useful in multiple regression

» . (n=2)6°
(n-D)sy
A2
2 O
Radj _1—¥




5. Correlation and Regression models

5.2. The simple linear regression model

Terminology and estimators
Sample estimators of model coefficients B, & B,

XY XY Y (X, = X))
181: i:%] — i=1 .
SXi-nX? Y% -X)

Z<Y -V’ Z(x -X)(Y, -Y)

=2r

x _X)? \/Z(Y _Y)? Z(x _X)? s,

ﬂo:Y_ 51




5. Correlation and Regression models

5.2.1. Model assumptions (summary)

ASSUMPTIONS (to be checked):
Independence of errors (and of Y,)
Normality of errors (and of Y,)
Homoscedasticity of errors (and Y;)
Linearity between X & Y

We work with the residuals e,

We will discuss in more detail about regression diagnostics
and residual analysis later on in this presentation

52



5. Correlation and Regression models

5.2.2. Model interpretation

We use a regression model to

— Describe and understand the association between the two
variables

— To predict future values of Y
— Both
When we are interested in the relationship between X & Y:
Primary test: H,: B;=0Ovs. H,;: B;#0
Test of secondary importance: H,: ,=0 vs. H;: B,#0

In case that we are interested in prediction:
we need to know if we can use the fitted model for prediction
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5. Correlation and Regression models

5.2.2. Parameter interpretation

Testing for the relationship between X &Y

Ho: B;=0vs. H: B,;#0
v’ Equivalent to testing for the correlation between X & Y
v" It provides the slope of the fitted line

v We are interested in the interpretation of CAUSAL relationships
between variables (i.e. characteristics or phenomena).

Interpretation: It tests how much we expect that Y will increase
if X increases by one unit

v' The value of B, is affected by the scale and the units of
measurement of both X & Y.

v The correlation measures (p & r) and the corresponding tests

(for p or B1) are not affected by linear changes. -,



5. Correlation and Regression models

5.2.2. Parameter interpretation

Testing for the relationship between X &Y

Secondary hypothesis test: Hy: B,=0 vs. H;: B, # 0
v’ Intercept of the fitted line
v" It provides the point where the fitted line intersects with the
vertical axis YY’ i.e. the value of Y when X=0
Interpretation: Is the expected value of Y when X=0.

v' Many times this value does not have direct interpretation (since
this value is not possible or outside the observed range

v’ Sometimes we constraint B,=0 due to logic or an assumed
theory

v’ Other times it is convenient to consider instead of X, the
centered version X’=X — X. Then

B, remains the same
B, gives the expected value of Y when X is equal to the sample mean 35



5. Correlation and Regression models

5.2.2. Parameter interpretation

Deciding whether we can use the fitted model for

prediction
We can predict the expected value of Y for each X
The error variance 0% & R? quantify the precision of the
prediction

v R2>0.7 <>good predictions

v R2>0.9 <> very good predictions




5. Correlation and Regression models

5.2.2. Parameter interpretation

Predicting outside the observed values

[Extrapolation — a trip to the unknown?]

BECAREFUL: predictions are reliable and acceptable only for
values of X that we have observed (and hence we have some
information about it)

We cannot predict something that we have not any
information about it and therefore we have not studied it

Sometimes we are forced to make predictions outside the
observed range of X (extrapolation)

» This predictions should be used only as a rough yardstick

» We assume the same (linear) relationship is valid also for
these unobserved values of X
57



5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3 [data frame cargo]

The head of the logistics department of a large company is
interested to estimate the delivery time and therefore the
corresponding cost of each cargo depending on the distance

For this reason, we randomly selected 10 cargo deliveries and
recorded the distance in miles and the days until the delivery

Construct a model that can assist the manager in his aim

Cargo delivery 1 2 3 4 5 6 7 8 9 10
Distance in Miles 825 | 215 | 1070 | 550 | 480 | 920 | 1350 | 325 | 670 | 1215
Delivery time in days 3.5 1.0 4.0 2.0 1.0 | 3.0 | 4.5 1.5 | 3.0 | 5.0
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5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3 id distance|delivery
Study Unit: cargo 1 |1 825 3.5
Sample size: n=10 cargos 2 |2 213 -

. 3 (3 1070 4
Characteristics: p=3
L, _ 4 |4 550 2
Cargo id 5 |5 480 1
v’ Distance 6 |6 920 3
v Delivery time T |7 1350 2.9
5 |8 325 1.5
L by
Which is X & which is Y- 5 1o 0 -
10 |10 1215 5
11
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5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3

Analysis in steps
Analysis of each variable separately
Visualization using a scatter-plot
Correlation measures
Regression model
Testing for the assumptions (residual analysis)
Revise model if necessary
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5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3: Visualization

SCATTERPLOT
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5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3: Visualization
SCATTERPLOT

cargo$delivery
3
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5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3: Testing for normality of the original
variables

> }?p;g:y(no:test] N > lillie.test (cargosdelivery)
> lillie.test (cargosdistance)

o . . Lilliefors (Kolmogorov-Smirnov) normality test
Lilliefors (Kolmogorov-Smirnov) normality test

data: cargoasSdelivery

data: Cargqes D = 0.1416] p-value = 0.8243
D= 0.1117, jp-value = 0.9769

> shapiro.test(cargosSdelivery)

> shapiro.test(cargoSdistance)

. . , Shapiro-Wilk normality test
Shapiro-Wilk normality test

data: car deliyery

data: CargCidkidad w = 0.937, [p-value = 0.5203
W= 0.9701, fjp—value = 0.8815




5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3: Testing for normality of the original

variables
QQ plot for Distance QQ plot for Delivery time
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5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3: Monitoring correlation

> cor.test(cargoSdistance, cargoSdelivery )
Pearson's product-moment correlation

data: cargo$distance and cargoSdeliver
t = B8.5086, df = 8] p-value = 2.795e-05
alternative hypothesis: true correlation is not egual to 0
85 percent confidence interwval:
0.7932921 0.9881624
sample estimates:

cor
0.5485428




5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3: Fitting the regression model

Response Explanatory

> 1m| |deliveryr~distance, data=cargo )

call- Linear model
Im(formula = delivery ~ distance, data = cargo)
Coefficients: W
(Intercept) distance
0118129 0.003505 | > Y=0.12+0.0036 X + &

> res ex53 <-1m( delivery~distance, data=cargo )
> names (res ex33)

[1] "coefficients"™ "residuals"™ "effects" "rank"
[5] "fitted.wvalues" "assign" "gqr" "df.residual"™
[B8] "xlevels" "call"™ "terms" "model"™

> |



5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3: Summarizing the regression model

> summary (res ex5>3)

Call:
Im(formula = delivery ~ distance, data = cargo)

Residuals:
Min 10 Median 30 Max
-0.83899 -0.33483 0.07842 0.37228 0.52594

Coefficients:

Estimate Std. Error t wvalue Pr(>|t])
(Intercept) 0.1181291 0.3551477 0.333 0.748
distance 0.0035851 0.0004214 B8.509 2.79%e-05 **xx*

Signif. codes: 0 Y%*%x7 (_ Q01 ‘%% Q.01 ‘** 0.05 *." 0.1 * " 1

Residual standard errcor: 0.48 on & degrees of freedom
Multiple R-sguared: 0.9005, Adjusted R-sguared: 0.8881
F-statistic: 72.4 on 1 and 8 DF, p-wvalue: 2.7855e-05



5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3: Summarizing the regression model

> summary (res ex5>3)

Call:
Im(formula = delivery ~ distance, data = cargo) Summary Statistics
I > .
Residuals: fOI‘ I‘ESIdua|S
Min 10 Median 30 Max

-0.8368595 -0.33463 0.07842Z 0.37228 0.52554

Coefficients:

Estimate Std. Error t wvalue Pr(>|t])
(Intercept) 0.1181291 0.3551477 0.333 0.748
distance 0.0035851 0.0004214 B8.509 2.79%e-05 **xx*

Signif. codes: 0 Y%*%x7 (_ Q01 ‘%% Q.01 ‘** 0.05 *." 0.1 * " 1

Residual standard errcor: 0.48 on & degrees of freedom
Multiple R-sguared: 0.9005, Adjusted R-sguared: 0.8881
F-statistic: 72.4 on 1 and 8 DF, p-wvalue: 2.7855e-05



5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3: Summarizing the regression model

> summary (res ex5>3)

Chi]EJf_c;rmula = delivery ~ distance, data = cargo) Summary table for
Residur?lls: | ” regreSSiOn
—D.BEE;I; —D.334é§ DME?JB_EE D.ETEEE D.EEI;Z}; CoefﬁCIents
Coefficients:

Estimate Std. Error t value Pr(>|t]) Model:

(Intercept) 0.118129%1 0.3551477  0.333 0.748
distance 0.0035851 0.0004214 8.509 2.79e-05 **x* Y=0.12+0.0036 X + €

Signif. codes: 0 “x*x’ 0_001 “**’/ Q.01 ‘** 0.05 ‘.’ 0 .
J P-value for testing whether

Residual standard errcor: 0.48 on & degrees of freedom parameters are zero

Multiple R-squared: 0.9%005, Adjusted R-squared: 0.Intercept = Not significant
F-statistic: 72.4 on 1 and 8 DF, p-value: 2.75%5e-05 Slope = Significant effect of

distance on delivery



5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3: Summarizing the regression model

Parameter estimates of the model

— Days of Delivery = 0.118 + 0.00359 Miles+ ¢,
e~NORMAL(O, 0.482)

Coefficients:

Estimate| Std. Error t wvalue Pr(>|t]|)
(Intercept) |0.11812%1| 0.3551477 0.333 0.748
distance 0.0035851| 0.0004214 8.509 2.7%e-05 **x*




5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3: Summarizing the regression model

Standard errors of the estimates

. =\Var(j,) =0355,6, =Var(4,) =0.000421

Coefficients:

Estimate Std. Error t wvalue Pr(>|t]|)
(Intercept) 0.11812%1  0.3551477 0.333 0.748
distance 0.0035851  0.0004214 5.508 2.75%e-05 #**x%



5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3: Summarizing the regression model

— Test functions t=—
A A O-A
0.118 0.00359 .
=P 08 _haas i A - 8.527
f 6. 0.355 A&, 0.000421
Bo b
Coefficients:
Estimate Std. Error t|value Pr(>|t]|)
(Intercept) 0.118129%91 0.3551477 0.333 0.748
distance 0.0035851 0.0004214 8.00% E.7%e-05 **%*%




5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3: Summarizing the regression model

_, P-values for testing the hypothesis that each coefficient is zero

Coefficients:

Estimate Std. Error t wvalue
(Intercept) 0.11812%1 0.3551477 0.333
distance 0.0035851 0.0004214 5.5065

Pr(>ltl)
0.748
2. 7% e-05 **x*




5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3: Summarizing the regression model

Standardized coefficients (or beta coefficients)

v'The are the regression coefficients when we standardize all variables
v'We can use the command scale within the formula in Im in R

v'The beta coefficient of B, is always zero (0)

v Interpretation of b:: How many standard deviations of Y we expect Y to
change when X increases by one standard deviation (of X)

> :es_exEEbeta

Call:
Im(formula = scale(delivery) ~ scale(distance), data = cargo)

Coefficients:
(Intercept) scale(distance)
=-7.022e-17 51485%e-01

> round(res ex>3pbetaScoef, 3)
(Intercept) pcale(distance)
0.000 0.549



5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3: Summarizing the regression model

Standardized coefficients (or beta
coefficients)

v'In simple linear regression the beta > round(cor (cargo[,-1]),3)
coefficient is equal to the Pearson’s correlation distance delivery
coefficient distance 1—560 0.949
» res ex53beta delivery 0.949 1.000
Call:
Im(formula = scale(delivery) ~ scale(distance), data = cdrgo)
Coefficients:
(Intercept) scale(distance)
-7.022e-17 G.485%=-01

> round(res exs3betascoef, 3)
(Intercept) |scale(distance)
0.000 0.546



5. Correlation and Regression models

5.2.3. A simple example in R

Why the standardized coefficient is equal to the
correlation

S(st) 5 S(st) 5 A(st) _ Szy _
o Zy _ﬁl Zx =0 1 S r'ZXZy - r-ZXZy
z

X

Zn:(zx,i _Z_x)(zy,i _Z_y) Zn:Zx,iZy,i

rzxzy




5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3: Summarizing the regression model

> Summary (res exa3)

Call:
Im(formula = delivery ~ distance, data = cargo) Residual Standard
Residuals: deV|at|On
Min 10 Median 30 Max _
-0.B83858% -0.33483 0.07842—t=afritm—tt0ld > 0_0'48

v'It measures the

Estimate Std.| Error t wvalue Pr(>|t]) pI‘ECiSiOH Of the

(Intercept) 0.118125%1 0.3p51477 0.333 0.748 model predictions
distance 0.0035851 0.0po04214 £.509 2.78e-05 ***

Coefficients:

Signif. codes: 0 ‘*xxx7 (_ P01 “**x* Q.01 **" 0.05 *." 0.1 " 1
Full Model:

-8881 ¥y=0.12+0.0036 X + €
e~N( 0, 0,482)

Residual standard errcor: 0.48 on & degrees of freedom




5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3: Summarizing the regression model

R2= % of variability explained by the model

v'It uses the biased estimates of variance

v'It is used as a measure of goodness of fit

v'Increases with every covariate we add (even if it is rubbish)

v'Therefore it should not be used as a variable or model selection criterion

v'We can only compare models with the same number of covariate and same

response
v'In simple linear regression R2=r?2
distance U.003508501 g.udo4214 B.008 Z2./8%e—-0o **x%

- Coefficients of
Signif. codes: 0 “**xr 0 001 “**/ 0.01 **’ 0.05 *.” 0.1 * * determination

DoociAns]l ctrormdosred ooy I =] HEEEEEE ot radom ] 90% Ofthe Var/ab///tyl:s

Multiple R-squared: 0.9005, Adjusted R-squared: 0.8881 e){p/a/ned only US/_ng the
S = .- N SO g S a0 R N~ E0 L8 S R P R 6 Eo T W N B B 1= Vb distance as covariate




5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3: Summarizing the regression model

R.q?= % of variance explained by the model adjusted for the number of covariates
v'It considers the number of covariates

v'It uses the unbiased variance estimators

v'It is used as a measure of goodness of fit

v'It does not increases always (adding very bad covariates will decrease R, )

v'It can be used as a variable or model selection criterion

v'In simple linear regression it does not differ a lot from R2.

(Intercept) 0.118125%1 0.3551477 0.333 0.748
distance 0.0035851 0.0004214 £.509 2.78e-05 ***

Signif. codes: 0 “¥**x7 (0,001 ‘“**’ (0.01 ‘*’ 0.05 *.” 0.1 *° Jcoeﬁ-'icients Of

Dﬂiﬂﬂa‘l s ancard mic o T I = L/ = risg_ga&i ot ftraadom determination
Multiple R-sguared: 0.9005, Adjusted R-sqguared: 0.8881 0 .y e
LF—:u TSrTITTITT Te.2 oIl L Qi © DE, [ VvVallUe: 2. 9e-U0 88% of the Vaﬂab///ty /5

explained only using the
distance as covariate



5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3: Summarizing the regression model

ANOVA table details for regression models
v'In simple regression it tests for: H,: ;=0 vs. H;: B,#0

v'Be careful: in multiple regression the assumption involves all covariate
effects!

v'Generally tests how much the current model differs from the constant
(or null) model (thatis, y=B,+€)

Coefficients:

Estimate Std. Error t wvalue Pr(>|t])
(Intercept) 0.11812%1 0.3551477 0.333 0.748

distance 0.0035851 0.0004214  8.509 2.79e-05 **x* Anova table details

Signif. codes: 0 “k*x’ 0.001 “**/ 0.01 ‘¥’ 0.05 ‘.’ 0.1 v r Ve reject the null _
» hypothesis, so the model is
Residual standard error: 0.48] on 8 degrees of freedom different from the constant
Multiple R-sguared: 0.8005, ARdjusted R-squared: 0.8881 the delivery is significant

F-statistic: 72.4 on 1 and 8 DF, p-wvalue: 2.755e-05 for the model




5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3: ANOVA table for the regression model

ANOVA table details for regression models
v'In simple regression it tests for: H,: ;=0 vs. H;: B,#0

v'Be careful: in multiple regression the assumption involves all covariate
effects!

v'Generally tests how much the current model differs from the constant
(or null) model (thatis, y=B,+€)

> anova(res ex33)

Analysis of Variance Table We reject the null hypothesis, so the
model is different from the constant the
Response: delivery aelivery is significant for the mode/
Df Sum Sq Mean Sq F wvalue Pr (>F)

distance 1 16.6816 1l6.681le 7T2.396 2.785e-05 ***
Residuals 8 1.8434 0.2304

Signif. codes: 0 “**%*’ (_001 “**x" (Q_01 **’ 0.05 *." 0.1 * " 1



5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3: Interpretation of the resuilts

Parameter 3;=0.00359 (the slope)
v" Is there a linear effect? YES

P=0.000<0.05 i.e. we reject the null (Hy,)=> Therefore the
distance influences the delivery time

v Of what direction is the relationship? POSITIVE

B,>0 which implies positive relationship => the longer the
distance, the more delayed is the delivery

v" How much the distance influences the delivery?

Each extra mile of distance increases the expected
time by 0.00359 days (approximately 5 minutes)

With every extra 100 miles, the expected delivery increases
by 0.359 days (approximately 8.6 hours)



5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3: Interpretation of the resuilts
Why this interpretation?
Parameter (3,

= Let us assume two different explanatory
values X;=X & X,=X+1 then

= M= Bo+By Xy= BBy X
= M= BotBy Xy = BotBy (X+1)
o Ap=p,-p =B +B;y (X+1)-By-B; X=p4




5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3: Interpretation of the resuilts

Parameter 3,=0.118 (the intercept)

v Can be removed from the equation without changing
much the fit/predictions? YES

P=0.748>0.05 i.e. we do not reject the null (H,)=>
Therefore the constant/intercept can be assumed to be
equal to zero and be removed from the model



5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3: Interpretation of the resuilts

Parameter 3,=0.118 (the intercept)

v INTERPRETATION:

When the distance is zero then the delivery time is 0.118
days (2.8 wpec)

It shows the delivery time when the cargo destination is very
close

BE CAREFUL this value is outside the range of X since the

smallest destination is 215 miles away N
> range (cargoSdistance)

[1] 215 1350

v" Shall we remove it? Possibly YES.

The logic here says that we should remove this term from
the model



5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3: Interpretation of the resuilts

Predictive performance and goodness of fit

v" R=r=0.95 & R2=0.89;
High correlation between the two variables
Well fitted model and accurate predictions
89% of the variance is explained by the model

which means that if we know the distance we can accurately
predict the delivery time



5. Correlation and Regression models

5.2.3. A simple example in R

Example 5-3: Interpretation of the resuilts
Standardized coefficient b;=0.949

v If the distance increases by a standard deviation
(i.e. 380 miles) then the delivery time is
expected to increase by 0.95 standard deviations
of Y (that is, by 0.949*1.435=1.36 days).

> sapply( cargol[,-1], sd)
distance delivery
379.7455259 1.434685



5. Correlation and Regression models

5.2.4. Checking for model assumptions

ASSUMPTIONS (to be checked):
Normality of errors (and of Y,)
Homoscedasticity of errors (and Y))
Independence of errors (and of Y))
Linearity between X & Y

We work with the residuals e,

88



5. Correlation and Regression models

5.2.4. Checking for model assumptions

Types of residuals:
(Unstandardised) Residuals  €; — Y; — Y;

Standardized residuals

R - Wlklped6 _ yz Y — Q@.

SPSS %) oV1-—
Wikipedig /7,, is the dlagonal elements of the

Studentized residuals hat matrix H

—1
(internally studentized) H=X (XTX) xT )



5. Correlation and Regression models

5.2.4. Checking for model assumptions

Types of residuals:

Standardized residuals
&— Wikipedia  (internally studentized)

. Y=Y Y=Y
el =

SPSS s.e.(yi — i) 61— hy
Wikipedi

h;is the diagonal elements of the

: : hat matrix H
Studentized residuals

—1
(Deleted) Studentized residuals H=X (XTX) X"

( or jack-knife residuals)
(externally studentized)
When using estimating the standard error from the regression model
without using the i-th observation 90



5. Correlation and Regression models

5.2.4. Checking for model assumptions

Types of residuals in R:

(Unstandardized) Residuals  res_ex53$residuals
residuals(res_ex53)
resid(res_ex53)

Standardized residuals rstandard(res_ex53)
library(MASS)

round(stdres(res_ex53),3)
Studentized residuals (Jack-knife residuals)

rstudent(res_ex53)

_ library(MASS)
NOTE: That all “standardized” studres(res_ex53)

residuals will be similar for reasonably large n



5. Correlation and Regression models

5.2.4. Checking for model assumptions

ASSUMPTIONS (to be checked):
Theoretical errors Estimated sample residuals

E() = 0 E(e;) = 0
Var(e;)) = o Var(e;) = o*(1— hi;)
Cov(gi,e;) = 0 Cov(ei ej) = —o°hy;

92



5. Correlation and Regression models

5.2.4. Checking for model assumptions

ASSUMPTIONS (to be checked):
Normality of errors (and of Y)
Use studentized residuals
Homoscedasticity of errors (and Y))

Use standardized or studentized residuals (with expected
variance eq. to 1)

Independence of errors (and of Y)
Use studentized/Jack-knife residuals
(expected correlation eq. to 0)

Linearity between X & Y

(for reasonably large n you can use any of them since they will be93
similar)



5. Correlation and Regression models

5.2.4. Checking for model assumptions

ASSUMPTIONS: The Normality assumption

Consequences of departures from Normality:

The performance of hypothesis tests and confidence intervals can
be compromised.

Though, these procedures are generally robust to small departures
from Normality.
How to cure the problem:
— Use transformations (log or Box-Cox)
— Use non-normal errors
— Use GLM models for non-normal responses

— Use non-parametric regression models
94



5. Correlation and Regression models

5.2.4. Checking for model assumptions

ASSUMPTIONS: The normality assumption

Use un-standardized residuals
— Normality QQ-plots for unstandardized residuals
— Student QQ-plots for studentized residuals
— Lilliefors KS & Shapiro test
— Other normality tests

95



5. Correlation and Regression models

5.2.4. Checking for model assumptions

ASSUMPTIONS : Checking for independence

Error independence cannot be checked easily.

Some diagnostics are the following:

= If the data have meaning in terms of time sequence then this analysis
should be skipped since it is not possible to check for indepdendence

= Time sequence plot (against id or any variable with chronological
meaning)

= Test for non randomness using the runs test

= Tests for auto-correlations
v" Durbin — Watson test (testing for serial correlation of order one)
v" ACF Plots & Tests for autocorrelations
v" AR models

For details see Ryan 1997 p. 46-47 o



5. Correlation and Regression models

5.2.4. Checking for model assumptions

ASSUMPTIONS : Checking for independence

Simple time-sequence plot - Example of independence

rstudent(model)
- 0 1
| |
S
o
—
—_




5. Correlation and Regression models

5.2.4. Checking for model assumptions

ASSUMPTIONS : Checking for independence

Simple time-sequence plot - Examples of dependence

rstudent(model)

-2 -1 0 1 2 0 20 40 60 80 100

X Index 98



5. Correlation and Regression models

5.2.4. Checking for model assumptions

ASSUMPTIONS : Checking for independence

: : _ par( mfrow=c(1,2) )
Simple time-sequence plot lot(res. ex53%res. type="T)

plot(rstandard(res_ex53), type="1")
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5. Correlation and Regression models

5.2.4. Checking for model assumptions

ASSUMPTIONS : Checking for independence

The Durbin-Watson test for serial correlation , _ Xea(er — €-1)?
v 0<D<4 | S €
v" 0<D<2 positive autocorrelation
v' 2<D<4 negative autocorrelation
v' D=2 < no autocorrelation

library(Imtest)

_ i dwtest(res_ex53)
> dwtest (res ex53)

Durbin-Watson test

data: res exad
DW = 0.7533,| p-value = 0.01374 | Uses asymptotic test
alternative hypothesis: true autocorrelation 1s greater than 0
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5. Correlation and Regression models

5.2.4. Checking for model assumptions

ASSUMPTIONS : Checking for independence

The Durbin-Watson test for serial correlation , _ Xea(er — €-1)?

T 2
library(car) 2 t=1€i
durbinWatsonTest(res_ex53)
dwt(res_ex53)
dwt(res_ex53%resid)

> library(car)
> du:binﬂatEDnTest[EEE_EHEEJ
lag RAutocorrelation D-W Statistic|p-value Uses bootstrap
1 0.45885069 0.7533433 0.038
BRlternative hypothesis: rho !'= 0
> dwt (res ex53)
lag Rutocorrelation D-W Statistic|p-value
1 0.485950e9 0.7533433 0.024
Alternative hypothesis: rho !'= 0 101




5. Correlation and Regression models

5.2.4. Checking for model assumptions

ASSUMPTIONS: Homoscedasticity of errors (and Y))
— Plot of covariates vs. residuals
— Plot fitted values vs. residuals
— Plot fitted values vs. squared residuals
— Plot of fitted values vs. squared root residuals
— Checking for equality of variance in quartiles of fitted values

— Score tests for nonconstant error variance (Breusch &

Pagan, 1979 — Cook & Weisberg, 1983)
For more details see
= Fox (2002. 1t edition p. 206-209)
= Draper & Smith (1998, 3 edition, p. 56-59, 62-67)
= Gunst & Mason (1980, p 237) 102



5. Correlation and Regression models

5.2.4. Checking for model assumptions

ASSUMPTIONS: Homoscedasticity of errors

— Fitted values vs. standardized or studentized residuals using
95% quantiles from the correct distributions

o — o —
N_

— © o

S A

rstandard(res_ex53)
3 2 -1 0

I
rstudent(res_ex53)

0

I

fitted(res exb53) fitted(res ex53)



5. Correlation and Regression models

5.2.4. Checking for model assumptions

ASSUMPTIONS: Homoscedasticity of errors

— Fitted values vs. standardized or studentized residuals using
+2 (i.e. 95% quantiles assuming approximate normality)

™M — ™M —
N_ ___________________________________________
— o o

S 20

rstandard(res_ex53)
3 2 -1 0

I
rstudent(res_ex53)

0

I

fitted(res exb3) fitted(res exb53)



5. Correlation and Regression models

5.2.4. Checking for model assumptions

ASSUMPTIONS: Homoscedasticity of errors

— Fitted values vs. standardized or studentized residuals using
95% quantiles from the correct distributions

par( mfrow=c(1,2), cex=1.3, cex.lab=1.3)

n<-nrow(cargo)

p<-2

plot( fitted(res_ex53), rstandard(res_ex53), ylim= range( c(-3,3,
rstandard(res_ex53)) ) )

ub <- sqgrt(gbeta( 0.95, 0.5, 0.5*(n-p-1) )*(n-p-1))

abline( h=c(-ub,0,ub), col=2,lty=2)

plot( fitted(res_ex53), rstudent(res_ex53), ylim= range( c(-3,3,
rstandard(res_ex53)) ) )
ub <-qt( 0.975, (n-p-1) )

abline( h=c(-ub,0,ub), col=2,lty=2) 105



5. Correlation and Regression models

5.2.4. Checking for model assumptions

ASSUMPTIONS: Non-linearity

Consequences of departures from linearity: if linearity fails

The error variance will appear as non-constant even if it is constant
due to the model misspecification

the model is inadequate, especially for prediction.

How to cure the problem:
Transform the response
Transform the covariates
Use polynomial regression or non-parametric regression models
Use non-linear models

106



5. Correlation and Regression models

5.2.4. Checking for model assumptions

ASSUMPTIONS: Non-linearity
Plot of X vs. Y
Plot of residuals vs. covariates
Tukey’s test and residualPlot
Fit polynomial models
Partial residual plots (cr.plot)
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5. Correlation and Regression models

5.2.4. Checking for model assumptions

e There are several types of nonparametric regression. The most
commonly used is the lowess) (or loess) procedure first

. . developed by Cleveland (1979)
ASSU M PTI O NS. N on 'I Inea nty - Lowess (or loess) is an acronym for locally weighted

scatterplot smoothing

- These models fit local polynomial regressions and join them
Plot of X vs. Y toaether

0 — o

x<-cargos$distance
y<-cargo$delivery
plot(x,y)
abline(res_ex53)
lines(lowess(x,y), col=2)

200 400 600 800 1000 1200
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5. Correlation and Regression models
5.2.4. Checking for model assumptions




5. Correlation and Regression models

5.2.4. Checking for model assumptions

ASSUMPTIONS: Non-linearity
Plot of residuals vs. covariates

\ //KC’\

res_ex53%res

-08 -06 -04 -02 0.0 0.2 04

1 2 3 4 5

res_ex53%fit

plot(res_ex534%fit, res_ex53$res)
abline(h=0, Ity=3)
lines(lowess(res_ex534fit,res_ex53%res), col=2) 110



5. Correlation and Regression models

5.2.4. Checking for model assumptions

ASSUMPTIONS: Non-linearity

Plot of residuals vs. covariates

Residuals vs Fitted

0.5

o | \\/O/\

Residuals

-0.5
|

-1.0

1 2 3 4 5

Fitted values
Im(delivery ~ distance)

plot(res_ex53, which=1) 111



5. Correlation and Regression models

5.2.4. Checking for model assumptions

2
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5. Correlation and Regression models

5.2.4. Checking for model assumptions

ASSUMPTIONS: Non-linearity > residualPlots (res ex53)
. Test stat Pr(>|t])
Tukey’s test and residualPlot Tukey test  -0.25  0.803
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5. Correlation and Regression models

5.2.4. Checking for model assumptions

ASSUMPTIONS: Non-linearity > residualPlots (res ex53)
Test stat Pr(>|t
| distance -0.25 0.810

Tukey’s test and residualPlot Tokey test 0.2t 0.0

> summary (lm( delivery~distance+I (distance~2), data=cargo ))

Call:
Im(formula = delivery ~ distance + I(distance~2), data = cargo)

Residuals:
Min 10 Median 30 Max
-0.8527 -0.3224 0.1033 0.3457 0.54¢61

Coefficients:

Estimate Std. Error t wvalue Pr(>|t])
(Intercept) -4.,824e-02 T7.664e-01 -0.0€3 0.952
Aistance 4 12 ]=—03 2 1 ee—073 1 S&3 .105

I(distance~2) -3.465e-07 1.38%e-06 -0.250 0,810

Residual standard error: 0.5109 on 7 degrees of freedom
Multiple R-squared: 0.9014, BAdjusted R-squared: 0.8732
F-statistic: 31.99 on 2 and 7 DF, p-value: 0.0003013 114



5. Correlation and Regression models

5.2.4. Checking for model assumptions

Pearson residuals

Pearson residuals

2 — -3¢
y=0.5x"+N(0,1) y =-3+2log(x) +N(0, 1) y=e > +N(0,0.01)
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