ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

OIKONOMIKO
MANENIETHMIO
AOHNAON

M.Sc. Program in Computer Science
Department of Informatics

Design and Analysis of Algorithms
Linear and Integer Programming

Flows, Matching, Vertex Cover, Set Cover
Vangelis Markakis

markakis@gmail.com




Linear Programming



Linear Programming

Nothing to do with programming!

A particular way of formulating certain optimization problems
with linear constraints

One of the most useful tools in Algorithms and Operations
Research

Extremely useful also in the design of approximation
algorithms



Linear Programming

Example:
e Afarmer possesses a land of 10 km?

e He wants to plant the land with wheat, or barley or a combination of
them

e The farmer has a limited amount of fertilizer, say 16 kgs
e And a limited amount of pesticide, say 18 kgs
e Each square km of wheat requires 1kg of fertilizer and 2 kgs of pesticide

e Each square km of barley requires 2kg of fertilizer and 1.2 kgs of pesticide

e Revenue to the farmer: 3 (thousand S) from each square km of wheat and
4 (thousand S) from each square km of barley

¢ Find out what the farmer should do



Linear Programming

Formulation as a linear program:

Variables x,, x,

X,: number of square km for wheat
Similarly, x, for barley

Area constraint: x; + x, <10

Constraint for fertilizer: x, + 2x, < 16
Constraint for pesticide: 2x, + 1.2x, < 18

Nonnegativity constraints: x, 2 0, x, 2 0 (cannot plant an area with
negative surface)

Objective function: maximize 3x, + 4x,
Observe that: all constraints are linear, objective function also linear



Linear Programming

Usual writing style:

max 3)61 + 4x2 <€ Objective function
st. x,+x,=<10
X, +2x,=<16
2x,+1.2x, <18

X;,%, =0

constraints

It can be either a minimization or a maximization problem

Feasible space (or region): the set of all pairs (x;, x,) that satisfy the constraints
In the example: the feasible region is a subset of R?

It is always a polyhedron in R", where n = number of variables



Linear Programming

Geometrically:

X,

10
‘/ X4+ 2%, =16

&
Ly}
ta
1]
.....
S
ay
aa
L]

Feasible ""“/2"1 *1.2x,=18
region %

10 X4



Linear Programming

More succinct notation:

(10)
3 X,
max. C'x where ¢ = X = ,b=|16
4 X,
S.t. \18/
Ax<b 1 1)
x20 A=|1 2
\2 1.2/

 We can also add slack variables to bring the constraints to the form
Ax=Db,x20

* Other problems may also not have the non-negativity constraints

* For solving purposes, these issues do not make a difference



Linear Programming

Complexity of linear programs:

Believed to be NP-complete for quite some time

In practice: run simplex and/or its variants

Works extremely well on average, but it has worst case exponential time
[Khachiyan ’81]: the ellipsoid algorithm: the first polynomial time
algorithm, very impractical though

[Karmarkar '84]: a more efficient algorithm, forms the basis of today’s
interior point methods

All you need to know about linear programs for this course: they can be
solved efficiently both in theory and in practice!



Linear Programming

We will see 2 quick applications of LP
1.Flows in networks

2.Matching in bipartite graphs

10



Flows in Networks

(informal) problem statement:

Suppose we want to transport some quantity of a good within a given
network, from some source to a destination

The good can be
— Qil to be transported through a network of oil pipes
— Information through a computer network
- Etc

Constraints: each edge in the network has a capacity, i.e., the
maximum quantity it can carry

* oil pipes have a volume capacity

* Alinkin a computer network has limits on its bandwidth

Goal: find a way to route the good through the network so as to
maximize the total quantity shipped

11



Flows in Networks

More formally:

Consider a graph G = (V, E), with a source node s €V, and a sink nodet &V
Capacity constraints: for every edge e € E, there is a capacity c,

A feasible flow is an assignment of a flow f, to every edge so
that
1. f.<c,
2. For every node other than source and sink:
incoming flow = outgoing flow (preservation of flow)

Goal: find a feasible flow so as to maximize the total
amount of flow coming out of s (or equivalently going into t)

Flow going out of s: E Sou

(s.u)eE

By preservation of flow this equals: E Ju
(u.t)EE 12



Flows in Networks

Example:
e Figure (a): network with capacities

Figure (b): a feasible flow

In fact, the flow in (b) is optimal (7 units)

13



Flows in Networks

Finding a max flow via Linear Programming:
» Suppose we use a variable f , for the flow carried by each edge
e Then, the objective function and all the constraints are linear

Objective function: E fsu
(s.u)EE

Constraints
1.Capacity constraints: f, < c,, for every (u, v) EE

uv —

2.Non-negativity constraints: f >0, for every (u, v) € E

uv —

3.Flow preservation: for every node u # s, t:

Y fu= D S

(wu)EE (u,v)EE

14



Flows in Networks

In the example of Figure (a):
max f +f, +f,

S.t.
11 capacity constraints
11 non-negativity constraints
5 flow preservation constraints

27 constraints in total

Solving this => max flow = 7

Note: There are more efficient algorithms for solving max flow (not covered
here)

* O(|V]| |E|?) [Edmonds, Karp '72]

 O(|V]|? |E|) [Goldberg '87]

 O(|V| |E]| log(]V]|?*/|E|)) [Goldberg, Tarjan '86]

15



Flows in Networks

Certificates of optimality:

Suppose we have not solved the LP, but we have identified a feasible flow
Can we convince ourselves if it is optimal or not?

Definition: Given a graph G = (V, E), an s-t cut is a partition of the
vertices into 2 sets, say L, R, suchthat s& L, tER

Capacity of an s-t cut: sum of capacities of edges crossing the cut in
the direction from Lto R

16



Flows in Networks

capacity of cut=7

Clearly:
max flow < capacity of any s-t cut
(cannot send more flow to t than the capacity of the cut)
Hence:

max flow < capacity of minimum s-t cut
17



Flows in Networks

In fact we have equality:

The max-flow min-cut theorem:
For any graph G = (V, E) with capacities on its edges,
max flow = capacity of minimum s-t cut

In our example, the cut (L, R) shows immediately that the flow of 7 units in
Figure (b) is optimal!

The proof of the max-flow min-cut theorem can be done using the LP
formulation of the problem (in particular using LP-Duality)

18



Matching in Bipartite Graphs

Consider a bipartite graph G = (U, V, E), with |[U| = |V| =n

BOYS GIRLS
Al Alice
Bob Beatrice
Chet Carol
Dan Danielle

Q1: Find a maximum matching in the graph

Or we may be interested in asking:
Q2: Is there a perfect matching in G?

19



Matching in Bipartite Graphs

We will reduce this to a max-flow problem, and hence to Linear

Programming
Al (Alice>
Bob .Beatrice
O e O
TN
(Dan>

e Orient all edges from left to right
* Add a source node s, connect it to all of U
* Add asink nodet, connect allof Vtot
* (Capacities: set them to 1 for all edges
20



Matching in Bipartite Graphs

Hence:

e a maximum matching for bipartite graphs can be computed in polynomial
time

e The graph has a perfect matching if and only if the max flow in the
modified graph equals n

But wait a minute...
What if the max flow assigns a flow of 0.65 to an edge?

Fortunately this can be avoided
Theorem: If all the capacities of a graph are integral, then there is

an integral optimal flow and there are algorithms that compute
such an integral optimal flow

21



Vertex Cover and Set Cover

22



Vertex Cover (VC)

Recall the (optimization) version:

VERTEX COVER (VC):

I: A graph G = (V,E)

Q: Find a cover C C V of maximum size, i.e., asetCCV, s.t. V (u, v) EE,
eitheru& Corv & C (or both)

Weighted version:

WEIGHTED VERTEX COVER (WVC):
I: A graph G =(V,E), and a weight w(u) for every vertex ucv
Q: Find a subset C C V covering all edges of G, s.t. W = 2 w(u) is minimized

ucC

Many different approximation techniques have been “tested” on vertex cover

23



Vertex Cover (VC)

We will focus first on the unweighted version

Natural greedy algorithms: start picking nodes according to some criterion until
all edges are covered

15t approach:

Greedy-any-node

C:=0;

while E = J do

{ choose arbitrarily a vertex u € V;

delete u and its incident edges from G;
Adduto C}

What is the approximation ratio this algorithm ?

24



Vertex Cover (VC)

2"d natural approach: start picking nodes and at each step choose the node
with the maximum degree

Greedy-best-node

C:=0;

while E = J do

{ choose the vertex u € V with the largest degree; (break ties arbitrarily)
delete u and its incident edges from G;
AddutoC}

Theorem: Greedy-best-node is an O(log n)-approximation algorithm

25



Vertex Cover (VC)

 The O(logn) ratio of Greedy-best-node is tight
* Canyou find an example?

Q: Are there constant factor approximation algorithms?

26



Vertex Cover (VC)

A different approach:
e Again we will resort to matching
e Let M be any matching in the graph

e QObservation: OPT > |M|

— The optimal solution needs at least one vertex to cover each of the matched
edges

e But we cannot just pick any matching, since it may not be a cover

Matching-based VC

C=;

Find a maximal matching M;

For every (u, v) € M, add bothuandvto C
Output C

Theorem: Matching-based VC is a 2-approximation algorithm

27



Vertex Cover (VC)

Theorem: Matching-based VC is a 2-approximation algorithm

Proof:

Claim: The solution returned by the algorithm is a vertex cover
e Suppose not

e Then there is an uncovered edge (u, v)

e But then we could add this edge to the matching M

e Contradiction with the fact that M is a maximal matching

Cost of the solution: |C| =2 |[M]| £ 2 OPT (by the observation)
Hence a 2-approximation

s it easy to find a maximal matching?
Triviall Keep adding edges until it is not feasible to add more

28



Vertex Cover (VC)

A way to implement the maximal matching based algorithm

Greedy-any-edge

C:=;

while E = & do

{ choose arbitrarily an edge (u,v) €E;

delete u and v and their incident edges from G;
Adduandv to C; }

The edges selected by the algorithm form a maximal matching (no 2 edges
share a common vertex)

Note: In contrast to greedy-any-node, greedy-any-edge achieves a
constant factor approximation

29



Vertex Cover (VC)

Tightness of the 2-approximation

Example:

G

C=2n

OPT =n

30



Vertex Cover (VC)

Greedy-any-edge is almost the best known for VC
Is there a better approximation algorithm ?

We know a lower bound of 1.36 on the approximation factor for VC,
l.e.,

Unless P=NP, VC cannot be approximated with a ratio smaller than 1.36

1 36 ? 2-0(/+/logn)

BEST KNOWN BEST KNOWN
LOWER BOUND APPROXIMATION RATIO

Big open problem!!

31



Weighted Vertex Cover (WVC)

The algorithms we have seen so far do not apply to the weighted case

A maximal matching does not guarantee anything about the total weight
of the solution returned

Can we have constant approximations here as well?

For this, we will resort to techniques from Linear and Integer
Programming

32



Integer Programming Formulations

Modeling a problem as an Integer Program (IP) (also referred to as Integer
Linear Program):

Same as with Linear Programs but (maybe some of) the variables take
integer values

Assign a binary variable x; to candidate items that can be included in a

solution | 1, ifitemiisina solution
Interpretation: X; = -
0, otherwise

Examples:
Weighted Vertex Cover 0-1 KNAPSACK
min 2, w(u) x, max 2. VX
s.t. s.t.
X, +x,21 V(u v)EE W, x, < W
x,€{0,1} VYueV x.€{0,1} Vie{l,..,n}

33



Linear Programming Relaxations

 We cannot hope to solve the integer programs
* Integer Programming is NP-hard
 But we can relax the integrality constraints to get an LP

LP relaxations:

Weighted Vertex Cover 0-1 KNAPSACK
min 2, w(u) x, max 2. VX
s.t. s.t.
X, +x,21 V(u v)EE W, x, S W
x,€[0,1] VueVv x.€[0,1] Viell,..,n}

Main observation:
e For minimization problems: LP-OPT < IP-OPT = OPT
* For maximization problems: LP-OPT > IP-OPT = OPT
* Inthe LP, we are optimizing over a larger space of
possible solutions



Linear Programming Relaxations

Solving the LP, we get a fractional solution

But what can we do with it? It is after all not a valid solution for our original
problem

E.g., what is the meaning of having x, = 0.8 for a vertex cover instance?

LP-rounding: the process of constructing an integral solution to the original
problem, given an optimal fractional solution of the corresponding LP

The process is problem-specific, but there are some general guidelines

A natural first idea: objects with a high fractional value may be preferred
(e.g., if inthe LP, x, = 0.8, it may be beneficial to include vertex u in an
integral solution)

35



Linear Programming Relaxations

General scheme for LP rounding:

Write down an IP for the problem we want to solve

Convert IP to LP

Solve LP in O(poly) time to obtain a fractional solution

Find a way to convert the fractional solution to an integral one

 The constructed solution should not lose much in the objective
function from LP-OPT

5. Prove that the integral solution has a good approximation

B wnN e

guarantee
 Exploit the main observation to derive bounds with respect to
OPT

36



LP Rounding for WVC

1. First solve:

min 2, w(u) x,

s.t.
x,+x,21 V(u,v)EE
x,€1[0,1] VueVv

2. Let {x,},cy be the optimal fractional solution

3. Rounding: Include in the cover all vertices v, for which x, 2 %
Rationale: Vertices with a high fractional value are more likely to be
important for the cover. We also stay “close” in value to LP-OPT

Theorem: The LP rounding algorithm achieves a 2-approximation for
the Weighted Vertex Cover problem

37



Rounding for WVC

Let C be the collection of vertices picked

Claim 1: Cis a valid vertex cover

e We started with a feasible LP solution

e Hence, for every edge (u, v), x, +x,21

e Thuseitherx, 2% o0rx, 2%

e By the way we constructed our solution, either u or v belongs to C
e Hence, every edge is covered

38



Rounding for WVC

Claim2: C achieves a 2-approximation for WVC
Let C be the collection of vertices picked
C corresponds to the integral solution: y, =1 if u € C, y, = 0 otherwise

Note:y,6 <2 x,, foreveryueV

Given this and the main observation:

SOL =Y w(u)=Y wu) yu <Y w(u) -2 -z, =2-LP-OPT <2-OPT

ueC ueV ueV

39



Set Cover

SET COVER (SC):
|: a set U of n elements
a family F=1{S,, S,, ...,S,,} of subsets of U
Q: Find a minimum size subset C C F covering all elements of U, i.e.:

| JS, =U and|C| is minimized

S,EC

Weighted version:

WEIGHTED VERTEX COVER (WSC):
I: a set U of n elements
a family F={S,, S,, ..., S} of subsets of U
a weight w(S;) for each set S,
Q: Find a minimum weight subset C C F covering all elements of U, i.e.,
LJS, =U and W = 52 w(S.) is minimized
=

S,EC




Set Cover vs Vertex Cover

(weighted) vertex cover is a special case of (weighted) set cover
Consider a vertex cover instance on a graph G = (V, E)

Let U = E (need to cover the edges)

One set per vertex, S, ={(u,v) | (uv)EE}, |F| = |V|

In the weighted case, weight of set S, = w(u)

8¢
@

41



Set Cover vs Vertex Cover

e f, =frequency of an elementu & U =# of sets S, that u belongs to
e f=max,c1{f,}="frequency of the most frequent element

e |ff=2(and w(S,) =1) then (W)SC reduces to (W)VC:

— G=(V,E), V=F, E={(u,v) | S,nS,#0}

There are approximation algorithms for WSC,
and hence, for SC, WVC and VC,

of ratios:
— O(log n) (n: the size of the universe U) by a greedy approach
— f, using an LP rounding approach
e Extending the 2-approximation for vertex cover

42



Weighted Set Cover (WSC)

In a similar spirit as for Vertex Cover:

Greedy-best-set

C:=0;
while C= U do C: elements covered before iteration i
{ choose the best set S; S: Set chosen at iteration i

remove S from F;

C:=CUS;}
Q: What does “best set” mean ?
S covers |S-C| new elements

Covering those elements costs w(S)
w(S)

|5-C]|

Every element x € S essentially costs

Best set: the set with the smallest cost-effectiveness

= p(x) = “cost-effectiveness” of S

43



Weighted Set Cover (WSC)

Greedy-best-set (cont.)

Let x; X, ..., X, ..., X, be the order in which the elements of U are covered
5,5, ... S, ... betheorderin which sets are chosen by the algorithm
Suppose set S, covers element x,

. OPT
Claim: p(xk)s
n-k+1
i-1
C= USJ elements covered by iterations 1,2,...,i-1
j=l1

e U-C: uncovered elements before iteration i

e |U-C| 2 n-k+1, since element x, is covered in iteration i

44



Weighted Set Cover (WSC)

e These elements of U-C are covered in the optimal solution by some sets at
a cost of at most OPT

e Among them there must be one set with cost-effectiveness at most
OPT OPT
< =
\U-C| n-k+1
e thesetS, was picked by the algorithm as the set with the best cost-
effectiveness at that moment (and it covered x, )

OPT
n-k+1

thatis p(x,) =

W = Zp(xk) < Z OPT_ OPTZl = OPT-H, = O(logn)OPT
- - n—-k+1 ~f f

45



Rounding for WSC

LP relaxation for Set Cover:

S.t
E x,z1, VYueU
TRZISNY
xg =0, VSeF

Q: How should we round a fractional solution?

46



Rounding for WSC

LP rounding:

* Solve the LP relaxation
* Fractional solution x = {x¢}.; of cost LP-OPT
* Rounding: if x; 2 1/f, then include S in the cover

Theorem: The LP Rounding algorithm achieves an
approximation ratio of f for the WSC problem

47



Rounding for WSC

Proof:
Let C be the collection of sets picked

Claim 1: Cis a valid set cover

Assume not

e Then there exists some u that is not covered

« =>For each set S for which ues, x, < 1/f
e But then:

|
c<—1{S:uES}=
D 145

S:ues

e a contradiction since we found a violated
LP constraint

1, 1
—f=—f=1
ffu ff

48



Rounding for WSC

Proof:
Let C be the collection of sets picked

Claim 2: C achieves an f-approximation

Proof very similar to the proof for WVC

49



