#### OIKONOMIKO ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ



ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

# M.Sc. Program in Computer Science Department of Informatics

Design and Analysis of Algorithms

Linear and Integer Programming

Flows, Matching, Vertex Cover, Set Cover

Vangelis Markakis

markakis@gmail.com

- Nothing to do with programming!
- A particular way of formulating certain optimization problems with linear constraints
- One of the most useful tools in Algorithms and Operations Research
- Extremely useful also in the design of approximation algorithms

#### Example:

- A farmer possesses a land of 10 km<sup>2</sup>
- He wants to plant the land with wheat, or barley or a combination of them
- The farmer has a limited amount of fertilizer, say 16 kgs
- And a limited amount of pesticide, say 18 kgs
- Each square km of wheat requires 1kg of fertilizer and 2 kgs of pesticide
- Each square km of barley requires 2kg of fertilizer and 1.2 kgs of pesticide
- Revenue to the farmer: 3 (thousand \$) from each square km of wheat and
   4 (thousand \$) from each square km of barley
- Find out what the farmer should do

#### Formulation as a linear program:

- Variables x<sub>1</sub>, x<sub>2</sub>
- x<sub>1</sub>: number of square km for wheat
- Similarly, x<sub>2</sub> for barley
- Area constraint:  $x_1 + x_2 \le 10$
- Constraint for fertilizer:  $x_1 + 2x_2 \le 16$
- Constraint for pesticide:  $2x_1 + 1.2x_2 \le 18$
- Nonnegativity constraints:  $x_1 \ge 0$ ,  $x_2 \ge 0$  (cannot plant an area with negative surface)
- Objective function: maximize 3x<sub>1</sub> + 4x<sub>2</sub>
- Observe that: all constraints are linear, objective function also linear

#### Usual writing style:



- It can be either a minimization or a maximization problem
- Feasible space (or region): the set of all pairs  $(x_1, x_2)$  that satisfy the constraints
- In the example: the feasible region is a subset of R<sup>2</sup>
- It is always a polyhedron in  $R^n$ , where n = number of variables

#### Geometrically:



More succinct notation:

max. 
$$c^Tx$$
 
$$where \ c = \begin{pmatrix} 3 \\ 4 \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, b = \begin{pmatrix} 10 \\ 16 \\ 18 \end{pmatrix}$$
 s.t. 
$$Ax \le b$$
 
$$x \ge 0$$
 
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 2 & 1.2 \end{pmatrix}$$

- We can also add slack variables to bring the constraints to the form  $Ax = b, x \ge 0$
- Other problems may also not have the non-negativity constraints
- For solving purposes, these issues do not make a difference

#### Complexity of linear programs:

- Believed to be NP-complete for quite some time
- In practice: run simplex and/or its variants
- Works extremely well on average, but it has worst case exponential time
- [Khachiyan '81]: the ellipsoid algorithm: the first polynomial time algorithm, very impractical though
- [Karmarkar '84]: a more efficient algorithm, forms the basis of today's interior point methods
- All you need to know about linear programs for this course: they can be solved efficiently both in theory and in practice!

We will see 2 quick applications of LP

1.Flows in networks

2. Matching in bipartite graphs

(informal) problem statement:

Suppose we want to transport some quantity of a good within a given network, from some source to a destination

The good can be

- Oil to be transported through a network of oil pipes
- Information through a computer network
- Etc

Constraints: each edge in the network has a *capacity*, i.e., the maximum quantity it can carry

- oil pipes have a volume capacity
- A link in a computer network has limits on its bandwidth

Goal: find a way to route the good through the network so as to maximize the total quantity shipped

#### More formally:

Consider a graph G = (V, E), with a source node  $s \in V$ , and a sink node  $t \in V$ Capacity constraints: for every edge  $e \in E$ , there is a capacity  $c_e$ 

A feasible flow is an assignment of a flow  $f_e$  to every edge so that

- 1.  $f_e \le c_e$
- For every node other than source and sink: incoming flow = outgoing flow (preservation of flow)

Goal: find a feasible flow so as to maximize the total amount of flow coming out of s (or equivalently going into t)

Flow going out of s: 
$$\sum_{(s,u)\in E} f_{su}$$

By preservation of flow this equals: 
$$\sum_{(u,t)\in F} f_{ut}$$

#### Example:

- Figure (a): network with capacities
- Figure (b): a feasible flow
- In fact, the flow in (b) is optimal (7 units)





Finding a max flow via Linear Programming:

- Suppose we use a variable f<sub>uv</sub> for the flow carried by each edge
- Then, the objective function and all the constraints are linear

Objective function: 
$$\sum_{(s,u)\in E} f_{su}$$

#### **Constraints**

- 1. Capacity constraints:  $f_{uv} \le c_{uv}$ , for every  $(u, v) \in E$
- 2.Non-negativity constraints:  $f_{uv}$  ≥ 0, for every  $(u, v) \in E$
- 3.Flow preservation: for every node  $u \neq s$ , t:

$$\sum_{(w,u)\in E} f_{wu} = \sum_{(u,v)\in E} f_{uv}$$

In the example of Figure (a):

max 
$$f_{sa} + f_{sb} + f_{sc}$$

s.t.

11 capacity constraints

11 non-negativity constraints

5 flow preservation constraints

27 constraints in total

Solving this => max flow = 7

Note: There are more efficient algorithms for solving max flow (not covered here)

- O(|V| |E|<sup>2</sup>) [Edmonds, Karp '72]
- O(|V|<sup>2</sup> |E|) [Goldberg '87]
- O(|V||E||log(|V|<sup>2</sup>/|E|)) [Goldberg, Tarjan '86]

Certificates of optimality:

Suppose we have not solved the LP, but we have identified a feasible flow Can we convince ourselves if it is optimal or not?

Definition: Given a graph G = (V, E), an s-t cut is a partition of the vertices into 2 sets, say L, R, such that  $s \in L$ ,  $t \in R$ 

Capacity of an s-t cut: sum of capacities of edges crossing the cut in the direction from L to R



Clearly:

max flow ≤ capacity of any s-t cut (cannot send more flow to t than the capacity of the cut)

Hence:

max flow ≤ capacity of minimum s-t cut

In fact we have equality:

The max-flow min-cut theorem:

For any graph G = (V, E) with capacities on its edges, max flow = capacity of minimum s-t cut

In our example, the cut (L, R) shows immediately that the flow of 7 units in Figure (b) is optimal!

The proof of the max-flow min-cut theorem can be done using the LP formulation of the problem (in particular using LP-Duality)

# **Matching in Bipartite Graphs**

Consider a bipartite graph G = (U, V, E), with |U| = |V| = n

BOYS

Al

Bob

Chet

Dan

GIRLS

Alice

Beatrice

Carol

Danielle

Q1: Find a maximum matching in the graph

Or we may be interested in asking:

Q2: Is there a perfect matching in G?

# **Matching in Bipartite Graphs**

We will reduce this to a max-flow problem, and hence to Linear Programming



- Orient all edges from left to right
- Add a source node s, connect it to all of U
- Add a sink node t, connect all of V to t
- Capacities: set them to 1 for all edges

# **Matching in Bipartite Graphs**

#### Hence:

- a maximum matching for bipartite graphs can be computed in polynomial time
- The graph has a perfect matching if and only if the max flow in the modified graph equals n

But wait a minute...

What if the max flow assigns a flow of 0.65 to an edge?

Fortunately this can be avoided

Theorem: If all the capacities of a graph are integral, then there is an integral optimal flow and there are algorithms that compute such an integral optimal flow

### **Vertex Cover and Set Cover**

Recall the (optimization) version:

#### **VERTEX COVER (VC):**

I: A graph G = (V,E)

Q: Find a cover  $C \subseteq V$  of maximum size, i.e., a set  $C \subseteq V$ , s.t.  $\forall$  (u, v)  $\in$  E, either  $u \in C$  or  $v \in C$  (or both)

Weighted version:

#### **WEIGHTED VERTEX COVER (WVC):**

I: A graph G = (V,E), and a weight w(u) for every vertex  $u \in V$ 

Q: Find a subset  $C \subseteq V$  covering all edges of G, s.t.  $W = \sum_{u \in C} w(u)$  is minimized

Many different approximation techniques have been "tested" on vertex cover

We will focus first on the unweighted version

Natural greedy algorithms: start picking nodes according to some criterion until all edges are covered

```
1st approach:
Greedy-any-node
C := Ø;
while E ≠ Ø do
{ choose arbitrarily a vertex u ∈ V;
 delete u and its incident edges from G;
 Add u to C }
```

What is the approximation ratio this algorithm?

2<sup>nd</sup> natural approach: start picking nodes and at each step choose the node with the maximum degree

```
Greedy-best-node

C := \emptyset;

while E \neq \emptyset do

{ choose the vertex u \in V with the largest degree; (break ties arbitrarily)
```

delete u and its incident edges from G;

Add u to C }

Theorem: Greedy-best-node is an O(log n)-approximation algorithm

- The O(logn) ratio of Greedy-best-node is tight
- Can you find an example?

Q: Are there constant factor approximation algorithms?

#### A different approach:

- Again we will resort to matching
- Let M be any matching in the graph
- Observation: OPT ≥ |M|
  - The optimal solution needs at least one vertex to cover each of the matched edges
- But we cannot just pick any matching, since it may not be a cover

#### Matching-based VC

```
C \neq \emptyset;
Find a maximal matching M;
For every (u, v) \subseteq M, add both u and v to C
Output C
```

Theorem: Matching-based VC is a 2-approximation algorithm

Theorem: Matching-based VC is a 2-approximation algorithm

#### Proof:

Claim: The solution returned by the algorithm is a vertex cover

- Suppose not
- Then there is an uncovered edge (u, v)
- But then we could add this edge to the matching M
- Contradiction with the fact that M is a maximal matching

Cost of the solution:  $|C| = 2 |M| \le 2 \text{ OPT (by the observation)}$ Hence a 2-approximation

Is it easy to find a maximal matching?

Trivial! Keep adding edges until it is not feasible to add more

A way to implement the maximal matching based algorithm

#### **Greedy-any-edge**

```
C := Ø;
while E ≠ Ø do
{ choose arbitrarily an edge (u,v) ∈ E;
  delete u and v and their incident edges from G;
  Add u and v to C; }
```

The edges selected by the algorithm form a maximal matching (no 2 edges share a common vertex)

Note: In contrast to greedy-any-node, greedy-any-edge achieves a constant factor approximation

#### Tightness of the 2-approximation

#### Example:



Greedy-any-edge is almost the best known for VC

Is there a better approximation algorithm?

We know a lower bound of 1.36 on the approximation factor for VC, i.e.,

Unless P=NP, VC cannot be approximated with a ratio smaller than 1.36



Big open problem!!

## Weighted Vertex Cover (WVC)

- The algorithms we have seen so far do not apply to the weighted case
- A maximal matching does not guarantee anything about the total weight of the solution returned
- Can we have constant approximations here as well?
- For this, we will resort to techniques from Linear and Integer Programming

### **Integer Programming Formulations**

- Modeling a problem as an Integer Program (IP) (also referred to as Integer Linear Program):
- Same as with Linear Programs but (maybe some of) the variables take integer values
- Assign a binary variable x<sub>i</sub> to candidate items that can be included in a solution
- Interpretation:  $x_i = \begin{cases} 1, & \text{if item } i \text{ is in a solution} \\ 0, & \text{otherwise} \end{cases}$

#### **Examples:**

#### Weighted Vertex Cover

min 
$$\Sigma_u$$
 w(u)  $x_u$   
s.t. 
$$x_u + x_v \ge 1 \quad \forall (u, v) \in E$$
$$x_u \in \{0,1\} \quad \forall u \in V$$

#### 0-1 KNAPSACK

$$\begin{aligned} \text{max} \quad & \Sigma_i \, v_i \, x_i \\ \text{s.t.} \\ & \Sigma_i \, w_i \, x_i \leq W \\ & x_i \in \{0,1\} \quad \forall \ i \in \{1,...,n\} \end{aligned}$$

## **Linear Programming Relaxations**

- We cannot hope to solve the integer programs
- Integer Programming is NP-hard
- But we can relax the integrality constraints to get an LP

#### LP relaxations:

```
\begin{array}{lll} \underline{\text{Weighted Vertex Cover}} & \underline{\text{O-1 KNAPSACK}} \\ \min & \Sigma_u \text{ w(u) } x_u & \max & \Sigma_i \text{ v}_i \text{ x}_i \\ \text{s.t.} & \text{s.t.} & \\ & x_u + x_v \geq 1 & \forall \text{ (u, v)} \in E & \sum_i w_i \text{ x}_i \leq W \\ & x_u \in [0,1] & \forall \text{ u} \in V & x_i \in [0,1] & \forall \text{ i} \in \{1,...,n\} \end{array}
```

#### Main observation:

- For minimization problems: LP-OPT ≤ IP-OPT = OPT
- For maximization problems: LP-OPT ≥ IP-OPT = OPT
  - In the LP, we are optimizing over a larger space of possible solutions

### **Linear Programming Relaxations**

- Solving the LP, we get a fractional solution
- But what can we do with it? It is after all not a valid solution for our original problem
- E.g., what is the meaning of having  $x_{ij} = 0.8$  for a vertex cover instance?
- LP-rounding: the process of constructing an integral solution to the original problem, given an optimal fractional solution of the corresponding LP
- The process is problem-specific, but there are some general guidelines
- A natural first idea: objects with a high fractional value may be preferred (e.g., if in the LP,  $x_u = 0.8$ , it may be beneficial to include vertex u in an integral solution)

### **Linear Programming Relaxations**

#### General scheme for LP rounding:

- 1. Write down an IP for the problem we want to solve
- Convert IP to LP
- 3. Solve LP in O(poly) time to obtain a fractional solution
- 4. Find a way to convert the fractional solution to an integral one
  - The constructed solution should not lose much in the objective function from LP-OPT
- 5. Prove that the integral solution has a good approximation guarantee
  - Exploit the main observation to derive bounds with respect to OPT

# LP Rounding for WVC

1. First solve:

min 
$$\Sigma_u$$
 w(u)  $x_u$   
s.t. 
$$x_u + x_v \ge 1 \quad \forall (u, v) \in E$$
$$x_u \in [0,1] \quad \forall u \in V$$

- 2. Let  $\{x_v\}_{v \in V}$  be the optimal fractional solution
- 3. Rounding: Include in the cover all vertices v, for which  $x_v \ge \frac{1}{2}$  Rationale: Vertices with a high fractional value are more likely to be important for the cover. We also stay "close" in value to LP-OPT

Theorem: The LP rounding algorithm achieves a 2-approximation for the Weighted Vertex Cover problem

Let C be the collection of vertices picked

#### Claim 1: C is a valid vertex cover

- We started with a feasible LP solution
- Hence, for every edge (u, v), x<sub>u</sub> + x<sub>v</sub> ≥ 1
- Thus either  $x_u \ge \frac{1}{2}$  or  $x_v \ge \frac{1}{2}$
- By the way we constructed our solution, either u or v belongs to C
- Hence, every edge is covered

Claim2: C achieves a 2-approximation for WVC

Let C be the collection of vertices picked

C corresponds to the integral solution:  $y_{ij} = 1$  if  $u \in C$ ,  $y_{ij} = 0$  otherwise

Note:  $y_{ij} \le 2 x_{ij}$ , for every  $u \in V$ 

Given this and the main observation:

$$SOL = \sum_{u \in C} w(u) = \sum_{u \in V} w(u) \cdot y_u \leq \sum_{u \in V} w(u) \cdot 2 \cdot x_u = 2 \cdot \text{LP-OPT } \leq 2 \cdot OPT$$

#### **Set Cover**

#### **SET COVER (SC):**

I: a set U of n elements

a family  $F = \{S_1, S_2, ..., S_m\}$  of subsets of U

Q: Find a minimum size subset  $C \subseteq F$  covering all elements of U, i.e.:

$$\bigcup_{S_i \in C} S_i = U \text{ and } |C| \text{ is minimized}$$

Weighted version:

#### **WEIGHTED VERTEX COVER (WSC):**

I: a set U of n elements

a family  $F = \{S_1, S_2, ..., S_m\}$  of subsets of U

a weight w(S<sub>i</sub>) for each set S<sub>i</sub>

Q: Find a minimum weight subset  $C \subseteq F$  covering all elements of U, i.e.,

$$\bigcup_{S_i \in C} S_i = U \text{ and } W = \sum_{S_i \in C} w(S_i) \text{ is minimized}$$

### **Set Cover vs Vertex Cover**

- (weighted) vertex cover is a special case of (weighted) set cover
- Consider a vertex cover instance on a graph G = (V, E)
- Let U = E (need to cover the edges)
- One set per vertex, S<sub>1</sub> ={(u,v) | (u,v) ∈ E }, |F| = |V|
- In the weighted case, weight of set S<sub>u</sub> = w(u)



### **Set Cover vs Vertex Cover**

- $f_u = \text{frequency of an element } u \in U = \text{\# of sets } S_i \text{ that } u \text{ belongs to}$
- $f = \max_{u \in U} \{ f_u \} =$ frequency of the most frequent element
- If f=2 (and w(S<sub>i</sub>) =1) then (W)SC reduces to (W)VC:
  - G=(V,E), V= F, E= { (u,v) |  $S_{11} \cap S_{22} \neq 0$  }

There are approximation algorithms for WSC, and hence, for SC, WVC and VC, of ratios:

- O(log n) (n: the size of the universe U) by a greedy approach
- f, using an LP rounding approach
  - Extending the 2-approximation for vertex cover

# Weighted Set Cover (WSC)

In a similar spirit as for Vertex Cover:

```
Greedy-best-set
C := \emptyset;
while C \neq U do
                                      C: elements covered before iteration i
                                      S: Set chosen at iteration i
{ choose the best set S;
 remove S from F;
 C := C \cup S ; 
Q: What does "best set" mean?
S covers |S-C| new elements
Covering those elements costs w(S)
Every element x \in S essentially costs \frac{w(S)}{|S-C|} = p(x) = \text{``cost-effectiveness''} of S
```

Best set: the set with the smallest cost-effectiveness

# Weighted Set Cover (WSC)

#### **Greedy-best-set** (cont.)

Let  $x_{1,} x_{2,} ..., x_{k,} ..., x_n$  be the order in which the elements of U are covered  $S_{1,} S_{2,} ... S_{i,} ...$  be the order in which sets are chosen by the algorithm Suppose set  $S_i$  covers element  $x_k$ 

Claim: 
$$p(x_k) \le \frac{OPT}{n-k+1}$$

$$C = \bigcup_{j=1}^{i-1} S_j \quad \text{elements covered by iterations 1,2,...,i-1}$$

- U-C: uncovered elements before iteration i
- $|U-C| \ge n-k+1$ , since element  $x_k$  is covered in iteration i

# Weighted Set Cover (WSC)

- These elements of U-C are covered in the optimal solution by some sets at a cost of at most OPT
- Among them there must be one set with cost-effectiveness at most

$$\leq \frac{OPT}{|U-C|} \leq \frac{OPT}{n-k+1}$$

- the set  $S_i$  was picked by the algorithm as the set with the best cost-effectiveness at that moment (and it covered  $x_k$ )
- that is  $p(x_k) \le \frac{OPT}{n-k+1}$

$$W = \sum_{k=1}^{n} p(x_k) \le \sum_{k=1}^{n} \frac{OPT}{n-k+1} = OPT \sum_{i=1}^{n} \frac{1}{k} = OPT \cdot H_n = O(\log n)OPT$$

#### LP relaxation for Set Cover:

$$\min \sum_{S} x_{S}$$

$$s.t.$$

$$\sum_{u:u \in S} x_{S} \ge 1, \quad \forall u \in U$$

$$x_{S} \ge 0, \quad \forall S \in F$$

Q: How should we round a fractional solution?

#### LP rounding:

- Solve the LP relaxation
- Fractional solution  $\mathbf{x} = \{x_s\}_{s \in F}$  of cost LP-OPT
- Rounding: if  $x_s \ge 1/f$ , then include S in the cover

Theorem: The LP Rounding algorithm achieves an approximation ratio of f for the WSC problem

#### Proof:

Let C be the collection of sets picked

#### Claim 1: C is a valid set cover

#### Assume not

- Then there exists some u that is not covered
- => For each set S for which  $u \in S$ ,  $x_S < 1/f$
- But then:

$$\sum_{S:u \in S} x_S < \frac{1}{f} | \{S: u \in S\} | = \frac{1}{f} f_u \le \frac{1}{f} f = 1$$

 a contradiction since we found a violated LP constraint

Proof:

Let C be the collection of sets picked

Claim 2: C achieves an f-approximation

Proof very similar to the proof for WVC