ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

OIKONOMIKO
MANENIETHMIO
AOHNAON

M.Sc. Program in Computer Science
Department of Informatics

Design and Analysis of Algorithms
Graph Algorithms

Vangelis Markakis
markakis@gmail.com

Graphs

G=(V,E)
V={1,2,..,n}: setof nodes/vertices, |V|=n
EC VxV={(u,v) | uv & V}: set of edges/arcs, |E|] =m

undirected graphs (u,v) = (v,u)
— (u) ={v | (u,v) € E}: neighborhood of u
— d(u) =|M(u)|: degree ofu

directed graphs (u,v) = (v,u)
— " (u)={v | (uv) €EE }: out-neighborhood of u
— (u)={v | (v,u) €EE }: in-neighborhood of u
— d*(u) =[I"*(u)|: out-degree of u
— d (u) =|(u)|: in-degree of u

Adjacency matrix

A W N e

n = # vertices
m = #edges

1

2

3

4

Graph representation

=

—_ O O = O

e e R =

D o O = O

DO e = O

1
1
0
1
0

space O(n?)

0”9

E—4

edge

¢ veMex

Adjacency list
12| T 5[/ |
2|1 F S F{ T F—{a]7]
R B .-..--.p.i..z.i..-.i.-.,i.4.i:"..i
I FEE o NS e EN NN
5 a4 1T 1]/7]

space O(n+m)

Dense graphs: m is O(n?)

Graph Traversal

Suppose we want to visit all the vertices and edges/arcs
of a graph

E.g., we may want to process all nodes in a specific
order

Many applications require such a traversal of the graph

Can we do this efficiently?

Part 1: DFS and its applications

Depth-First Search (DFS)

The graph may be disconnected

Hence, we can start by an auxiliary method that answers the
guestion: Given a node u, find out which nodes are reachable from node u

explore (u) //for undirected graphs

{

previsit (u) ;//optional

visited(u) :=true;
for each v € T'(u) do //in alphabetical order, ['*(u) for
digraphs

1f not visited (wv)
then explore (v);
postvisit (u) ;//optional

Previsit and postvisit are optional

In case we want to process the node the first time we discover it, or the
last time we are at it

Will see applications soon

Depth-First Search (DFS)

To explore all the nodes of a graph G:

DFS (G)
{ for all u € V do visited(u) := false;
for all u € V do
1f not visited(u) then explore(u)}

e Complexity: O(n+m)
e Assuming previsit and postvisit take O(1)
 We only look at each edge (u, v) 2 times, once when we
examine u and once when we examine v

Depth-First Search (DFS)

Example

Visiting order: ABEIJ-CDHGKL-F

DFS tree T = (V, A) for an undirected graph, ACE
The graph G is decomposed in

= tree edges (u,v) EA

» backward edges (u,v) & A

DFS - Simple applications

Let G be an undirected graph
e What is the visiting order of the nodes under DFS ?

e Can we decide if G is connected?
= j.e., thereis a path that connects every pair of nodes

e Can we find the # of connected components?
e Who is the parent of each node in the DFS tree?

To answer these, we will exploit the previsit and postvisit
operations

DFS - Simple applications

Parameters

clock: integer counter (defining the visiting order)
pre(u): the visiting order of u

cc: counts the number of connected components
ccnum(u): the connected component that u belongs to
parent(u): the parent of u in the DFS tree

10

DFS - Simple applications

explore (u) ;

previsit (u) ;

{ ccnum(u)=cc;
pre (u) := clock;
clock:= clock+l

v

{ previsit (u);
visited (u) :=true;
for each v € T'(u) do
if not visited(v) then

{explore(v); parent(v) :=u; }
postvit (u); } > empty

DFS (G) ;
{ clock:=1; cc:=0;
for all u € V do
{visited(u) := false; parent(u):=null} (omplexity
for all u € V do O(n+m)
if not visited(u) then
{ cc:=cc+l; explore(u);} }

11

DFS - Simple applications

©
& ®
I
u A C F K| L
pre(u) 1 6 12 10 | 11
ccnum(u) 1 2 3 2 | 2
parent(u) null null null G |H

12

DFS - More applications

e |n other applications we will need to work harder
e More information from the graph traversal
e For this, we will need to exploit the postvisit procedure too

Parameters

clock: integer counter (increased by previsit and postvisit)
pre(u): the first time we visit u (determined by preuvisit)

post(u): the last time we deal with u (determined by
postvisit)

13

DFS orderings

explore (u) ;

{

previsit (u) ;
visited (u) :=true;
for each v € T'(u) do

v

if not visited(v) then explore(v);

postvit(u); }

»
>

DFS (G) ;

{

clock:=1;
for all u € V do

visited(u) := false;

for all u € V do

if not visited(u) then

explore(u); }

previsit(u) ;
{ pre(u) := clock;
clock:=clock+1l }

postvisit (u) ;
{ post(u) := clock;
clock:=clock+1l }

Complexity:
again O(n+m)

14

DFS orderings — undirected graphs

2324

Claim: For any pair of nodes u and v the intervals
[pre(u), post(u)] and [pre(v), post(v)] are
either disjoint or one is contained in the other

Due to how recursion works (i.e., Last-In First-Out operation of recursion stack)

15

DFS orderings — directed graphs

Four types of (directed) edges:

e Tree edges

e Forward edges: to a non-child descendant

e Backward edges: to an ancestor (cycle)

e Cross edges: to neither an ancestor nor a descendant

DFS orderings — dlrected graphs

Relations between the pre and post
parameters for each edge type:

pre/post ordering for (u,v) Edge type
: |:] : Tree/forward
u v v u
[[] Back —1+— post(u)<post(v)

v u u

[|

]] [Cross

Directed Acyclic Graphs (DAGs)

(directed) cycles in a directed graph:
paths of the formv, = v, = v, = ... v, = v,

DAG: A directed graph G = (V, E) with no directed cycles
= a partial order on V

Q: Given a directed graph, is it acyclic ?
A: It is iff DFS(G) does not produce any back edge

e Many applications of DAGs in scheduling problems or in modeling
hierarchies, dependencies, etc

e E.g., suppose we have to schedule a set of jobs with constraints of the
form “job i cannot start before job j finishes”

e Modeling the dependencies can be done with a DAG
e (learly there should be no cycles among the dependencies

18

Topological sorting of DAGs

Suppose we have a DAG modeling sheduling dependencies
Q: In what order should we execute the jobs?

Topological sorting = an ordering of the vertices such that for every
edge (u, v), u is before v in the ordering

= not necessarily unique

Q: Find a topological sorting of a DAG
A: use DFS and output nodes in decreasing order of post(u)

Claim: For every edge (u, v) in a DAG, post(u) > post(v)
» Because there are no backward edges

19

Topological sorting of DAGs

Visiting orderr ABEFGHCD
Topological orderr ACDBEHFG

Every DAG has such a topological sorting

20

Topological sorting of DAGs

More properties of DAGs:
« Every DAG has at least one source node (a node with no incoming
edges)
= The node in the beginning of the topological sorting has to be a source
« Every DAG has at least one sink node (a node with no outgoing
edges)

» The last node in the topological sorting has to be a sink

A different approach to produce a topological sorting:
» Find a source node
» Print it and delete it from the graph (remaining graph is still a DAG)
= Continue in the same manner with the remaining vertices

21

Connectivity in Directed Graphs

What does connectivity mean in a digraph G?
Two nodes u, v of G are connected iff
there is a path from u to v and a path from vtou

e Adirected graph is strongly connected iff every pair of nodes is
connected

e If a graph is not strongly connected, then a maximal subset of nodes S,
such that any 2 nodes u, v from S are connected, is called a strongly
connected component (SCC) of G

e Adirected graph is weakly connected iff for every pair of nodes u, v,
either there is a path from u to v or there is a path from v to u

e We can similarly define weakly connected components

e We are mostly interested in identifying the strongly connected
components of a graph

22

Strongly Connected Components

How can we find the SCCs
of a directed graph G?

Let’s understand first the structure of the SCCs in a graph
* Suppose we take each SCC and shrink it into one node
* This creates a meta-graph H, where:
* The vertices of H are the SCCs
* Thereis an edge from a SCC C to a SCC C’ if there exists an
edge (u, v) in G, suchthatu& Candv & C (i.e., if thereis a
way to go from Cto C') 23

Strongly Connected Components

Claim: The graph of the SCCs is a DAG
Hence:

H has at least one source node and at least one sink node
Let S = source SCC
Let T = sink SCC

- ———

24

Strongly Connected Components

|dea: explore (u) for some u &€ T, will visit all nodes of T and no

other node
= This way we can identify the sink SCC
= No such guarantees if we run explore(u) for some node unotin T

Q1: How can we find such a node u € T, without knowing T in
advance ?

Q2: If we succeed in Q1, we have only identified one SCC. How can
we find the other SCCs ?

There seems to be no direct way to locate a node in T...

25

Strongly Connected Components

Q1: How canwe findsuchaue&eT?

* Property 1: The node of G with the highest post number in DFS(G) is in a
source SCC (why?)

« But, we need a node in a sink SCC of G...
* |dea: Work on the reverse graph of G
« GR=same vertices as in G, but with all edges reversed

26

Strongly Connected Components

Q1: How canwe findsuchaue&eT?

Property 2: GR has the same SCCs with G (why?)
Hence:

Run DFS on GR: The node u with highest post(u) lies in some source SCC
of GR =» u lies in a sink SCC of G !

27

Strongly Connected Components

Q2: How can we continue to the next SCC ?

Property 3: If for SCCs C and C’, there is an edge from Cto C’, then
the highest post(u), u € Cis bigger than the highest post(v), vE C’

e This suggests we can keep using the post(u) ordering of the DFS on GR

e After we delete a sink SCC from G: the node in G\T of the highest post

number according to DFS(GR) belongs again to a source SCC of GR = a sink
SCCin G\T

28

Strongly Connected Components

Algorithm for finding all SCCs
Run DFS on GR® to obtain post(u) for every u € V;

Run on G:

= the algorithm we saw for finding connected components for undirected graphs
(but using '(u) instead of ['(u)),

= processing the vertices of G in decreasing order of post(u)

29

Il Jep—

Strongly Connected Components

explore (u) ;
{ ccnum(u)=cc;
visited (u) :=true;
for each v € T'"(u) do
if not wvisited(v) then explore(v)}

DFS (G) ;

{ cc:=0;
for all u € V do visited(u) := false;
for all u €V

in decreasing order of post(u) do

if not visited(u) then
{ cc:=cc+l;
explore(u)} }

SCCs: {G,H,I,J,K,L} {D} {C,F} {B,E} {A}

I

30

Part 2: BFS and shortest path problems

31

Graph Traversals

DFS is a particular way to perform a traversal of the
nodes

Suitable for solving problems related to connectivity

Many other applications exploit different visiting
orders of the nodes

E.g., for shortest path computations, we need a
“breadth-first” approach

32

Breadth-First Search (BFS)

BFS starts from a node u and explores the graph level
by level

We first visit all the neighbors of u (at distance 1
from u)

We then visit nodes at distance 2
And so on and so forth

How can we implement a level-by-level traversal?
= Using a FIFO queue

33

Breadth-First Search (BFS)

Instead of a stack (LIFO for DFS) it uses a queue Q (FIFO for BFS)

explore (u) ;
{ ENQUEUE (u) ; inqg[u] :=true;
while Q is non-empty do

visit (u) ;
{ order (u) :=clock
clock:= clock+1l }

{ DEQUEUE (%ii///””’////////*
visit (u) ;
for each v € T'(u) do
if not ing(v) then
{ ENQUEUE (v); ing(v) :=true } } }
BFS (G) ;
{ clock:=1 ;
for all u € V do ing(u) := false;
for all u € V do if not ing(u) do explore(u)}

34

BFS - example

What is the complexity of BFS(G) ?

O(n+m):
same as DFS(G)
Again, we consider each edge 2 times

35

BFS — Unweighted shortest paths

Suppose we want to compute the shortest path from a given node s to
any nodeu gV

BFS is designed to do exactly this

If we run explore(s), we will first visit all nodes that are at a distance of 1
from s, then all nodes at a distance 2,...

We also need to keep track of the shortest paths

We can simply store the parent of each node in the BFS tree

36

BFS — Unweighted shortest paths

(Unweighted) shortest paths

I: A graph G = (V, E), and a designated vertex s

Q: The shortest paths from s to all nodes

d(u) = length of shortest path to u

pred(u) = gives the predecessor of u in the shortest path

Algorithm Unweighted-Shortest-paths (G, s)

{ for all u € V do
{d(u) := ©; pred(u) := null }

d(s) :=0;
ENQUEUE (Q, s) ;
while Q is non-empty do
{ u:= DEQUEUE (Q) ;
for each v € T'(u) do
if d(v) = o« then
{ ENQUEUE (Q,V) ;
d(v) := d(u)+1;
pred(v):=u '} } }

Weighted graphs

Directed weighted graph: G= (V, E, w)
= Edge cost w(e),eEE
" Fornodess,t € V, directed simple s-t path: p={s235t}
= Costofpathp={s235t}=w(p)=9+23-2+16=44
= Goal: Find the shortest s-t path

38

Shortest Paths Problem

Single-source shortest paths

I: A weighted graph G = (V, E, w), and a designated vertex s
Q: The shortest paths from s to all nodes (the paths and their lengths)

Observation:

= |f some path from s to v contains a negative cost cycle, then there
is no shortest path

1 ®
@‘/ 4 %b w(C)<0

" |n all other cases, there exists a shortest s-v path that is simple
(we can remove cycles without increasing the cost)

Assumption: the graph does not contain cycles of negative cost

39

Shortest Paths Property

We will try to design a greedy algorithm

For this we need to relate optimal solutions to subproblems with the optimal
solution to the initial problem

Claim: All sub-paths of shortest paths are shortest paths.

— Let P, be an x-y sub-path of a shortest s-v path P. SpIfE]L SUSUUELIE

— Let P, be any x-y path. property

— W(P;) = w(P,), otherwise P is not a shortest s-v path.

40

Shortest Paths Problem

Special case: Single path multigraph
Find a shortest path from 1 to n

3 2 7
1 g 4 g N

7 7 5 L
5 6

Apply the greedy method
1-n shortest path: 1+2+5=38

41

Shortest Paths Problem

e For general graphs, we will try to follow a similar approach

e The algorithm will work in rounds:
= |n each round, we will compute the shortest path to one new vertex

*= Inround 1, we will find the shortest path to the vertex that has the smallest
distance from s (i.e., pick the cheapest edge from s)

" |nround 2, we will find the shortest path to the vertex that has the 2@
smallest distance from s

= And so on...

e Hence, the algorithm keeps solving optimally larger and larger
subproblems consisting of the vertices we have processed so

far.

42

Shortest Paths Problem

In a few more details:

We maintain a candidate shortest distance for each vertex
Initially all set to infinity
Suppose we have already found the shortest paths to a set S of vertices

The next round will identify the next shortest distance from s to some
vertex

There are 2 cases for this:
= Either this is the length of some edge (s, v)
= Or the shortest path will have to go through one of the vertices in S

Once we identify the next shortest distance, say from s to a node u, we
check if going through u creates a shorter path for the rest of the nodes in
VA\S.

43

Shortest Paths Problem

Summing up:

We need to maintain in some data structure, the currently estimated
shortest distances to all unprocessed nodes

The minimum of these is a correct estimate (from the updates in the
previous rounds)

We then need to extract this minimum and update the current estimates
for the remaining nodes (if necessary)

But how can we extract efficiently the minimum in every round?
The “right” data structure is a priority queue

= Recall in the unweighted version, the right data structure is a FIFO queue

44

Priority Queues

* A collection of elements with a key
* For our problem:

* elements = nodes

* key =distance froms

Operation

Description

min (Q)

returns (a pointer to) the element of
Q with minimum key

insert (Q, x)

adds element x to the queue Q

delete min (Q)

deletes the element of minimum key
from Q

union (Q,Q ")

Combines queues Q' and Q' into
one

decrease key (Q, X)

Updates the queue with a decreased
key of element x

Delete (Q, X)

deletes element x from Q

45

Dijkstra's Algorithm

Algorithm Dijkstra (G, s)
for each v € V {d(v) = ©; pred(v) = null }
d(s) = 0;
Q = empty;
for each v € V insert(Q,v)//using d(v) as the key
while Q is non-empty do
{ u = delete min(Q) //selects vertex with min. distance
for each v € T'"(u) do
if d(v) > d(u) + w(u,v) then
{ d(v) = d(u) + w(u,v);
pred(v) = u;

decrease key(Q,v)}

46

Dijkstra's Algorithm - Example

SR

g 2

QW
[QW ITEN

o
b2 9
S o

N W
=

=9

QW=
N W O

o
S
Y O

QW=
N W
=
(=

S

S O

QW
N W

47

Dijkstra's Algorithm: Correctness

Theorem:

Upon termination, d(v) is the distance of the shortest s-v path for everyvey,
and the actual shortest path is obtained by following the value of pred(.)
starting from v

Proof:
e Can be done by induction or by contradiction

e LetS =nodes that have already been extracted from the priority queue as
the algorithm runs

e |Initially S={, eventually S=V
e We use induction on n to prove: For i=1,...,n, at the end of the i-th execution
of the while loop, d(v) = shortest s-v path for every vES
= Base case: end of step 1: S = {s}, d(s) =0, trivially true
= Hypothesis: Our claim holds up to step i
* |nduction step: Look at the end of step i+1 48

e Induction step: Let us look at the end of the (i+1)-th iteration

e Letvbe the vertex Dijkstra's algorithm adds to S at this
iteration

e Assume that the constructed path P is not an s-v shortest
path and let P* be a shortest s-v path : w(P*) < w(P) =d(v)

Claim: P* must use an edge that leaves S, say (x, y)

Otherwise, by induction hypothesis, and by optimal substructure,
P is optimal

It also holds that d(y) = d(v), since the algorithm selected v and
not y at this iteration

We have: d(y) =shortests-y path Because when x is
processed d(y) is updated

< shortest s-v path \
< d(v), a contradiction Assumes non-negative weights

ATTENTION: Dijkstra’s algorithm works only for non-negative weights!

49

Priority Queues — Summary

Choices for implementing a priority queue: Binary heap (more standard),
binomial heap, Fibonacci heap

Operation Binary Binomial Binomial Fibonacci
Worst Worst Amortized Amortized

min (Q) 0 (1) 0 (1) O (1) O (1)

insert (Q, x) O(logn) O(logn) O(1) O (1)

delete min (Q) O (logn) O(logn) O(logn) O(logn)

union (Q ,Q) O (n) O (logn) O (logn) O (1)

decrease key(| O(logn) O(logn) O(logn) O (1)

Q, X)

delete (Q, x) O(logn) O (logn) O(logn) O (logn)

50

Dijkstra’ s Algorithm: Complexity

of operations Queue implementation
Binary Binomial* Fibonacci*
Insert: n O(logn) O(1) O(1)
delete-min: n O(logn) O(logn) O(logn)
decrease-key: m O(logn) O(logn) O(1)
Binary heap: nlogn + nlogn+ m logn ~ O(m logn)

Binomial heap: n- O(1) + nlogn + mlogn ~ O(m logn)

Fibonacci heap: n- O(1) + nlogn+m- 0(1) ~ O(m + nlogn)

* amortized

51

Shortest paths in multistage graphs

Special case: Multistage graphs

Multi-stage graph G=(V,,V,,....V,, E)
Vy={s}, V={t}
E={(uyv)|luev,veVv,,)

Q>\@\G>/ Numbering of nodes level by level

Is the problem easier for this class?

52

Shortest paths in multistage graphs

@>>< The shortest path to u has to
@)\ —ia. pass through a node in I (u)

d() = 1 d(3)=2,d(4) =

d(9) = min{4+d(2), 9+d(3)} = min {4+1, 9+2} = 5 Recurrences useful for a
dynamic programming

d(6) = min{11+d(2), 5+d(3)} = min{11+1, 5+2} =7 approach!

d(7) = min{16+d(3), 2+d(4)} = min{16+2, 2+5} =7

d(8) = min{18+d(5), 13+d(6), 2+d(7)} = min{18+5, 13+7, 2+7} = 9

53

Shortest paths in multistage graphs
d(u) = Venl}_il(l){W(v,u)+d(V)}, d(1)=0

for each u € Vdo { d(u}:= «; pred(u) := null }
d(l) :=0;
for u:=2 to n do
{for each v&I'" (u) do
if w(v,u)+d(v) < d(u) then
{ d(u) :=w(v,u)+d(v) ;
pred(u) :=v; } }

Complexity?
= O(n+m): like the analysis of DFS/BFS
Negative weights?

= No problem!

Shortest paths in DAGs

Dag G=(V,E) Topological sorting of G

We know that there are no negative weight cycles in such graphs
Multi-stage graphs are a special case of DAGs

Same dynamic programming approach can be applied for DAGs
after we find a topological sorting of the vertices

d(u) = Vgrn?) wv,u)+d(v)}, d(s)=0

95

Shortest paths in DAGs
d(u) = Venrn?) wv,u)+d(v)}, d(s)=0

for each u € Vdo { d(u}:= «; pred(u) := null }
d(s) :=0;
Find a topological sorting of G
for each u € V-{s} in topological order do
{for each v € T'"(u) do
if w(v,u)+d(v) < d(u) then
{ d(u) := w(v,u)+d(v) ;
pred(u) := v; } }

Complexity? O(n+m)
Negative weights? No problem!

Same arguments as for multi-stage graphs

56

Shortest paths with negative weights

* Consider now a general weighted
directed graph G =(V, E, w)
possibly with negative weights

* Dijkstra does not work

e (Can anything else work?

Y

Shortest paths with negative weights

We will resort again to dynamic programming

d(u,k): shortest path from node s to node u using at most k edges

S u S (u) u
O/LJO)
d(u,k-1) d(v,k-1) w(v,u)

d(u,k)=min{d(u,k-1), gl?) wv,u)+d(v,k-1)}}, d(s,0)=0

Note: Any path has length at most |V|-1 = n-1
Hence: Suffices to do n-1 times the updates that Dijkstra does!

58

Shortest paths with negative weights

~

Iteration £k

Node | 0 1 2 3 4 5
S
A
B
C
D
E
F
G

|Idea of the algorithm:

Use d(u) as the current estimate, initially set to oo

Think of it as gradually filling up a n x (n-1) array

Iteration 1: shortest paths of length 1, i.e., only for vertices
that s directly connects to

Iteration k: update d(u) to be equal to the shortest s-u path
with at most k edges
Continue until iteration n-1

59

Shortest paths with negative weights

Iteration £k
Node | 0 1 2 3 4 5 6 | 7
S
A
B
C
D
E
F
G

Correctness:

* Before the beginning of iteration k, we have already updated
d(u) for every u €V, to equal the shortest s-u path with at
most k-1 edges

* Hence, we can correctly update d(u) using our recurrence

Update operation:

d(u) = min{d (), min {w(v,u)+d(V)}}, d(s) =0

60

Shortest paths with negative weights

Algorithm Bellman- Ford(G, s)
for each u € Vdo { d(u}:= «~; pred(u)=null }
d(s) :=0;
for k:=1 to n-1 do

for each u € V-{s} do

{for each v € T"" (u) do
if w(v,u) + d(v) < d(u) then
{ d(u) := w(v,u)+d(v) ;
pred(u) := v; } }

Complexity: O(n-m) (why?)

61

Shortest paths with negative weights

Iteration
Node | O | 1|2 |3 |4 |5 6|7
S O1o0fO0O]O[O]O]O0]O
A ~o | 10 [10 | 5 D D 5 |5
B x |oo|oc |10 6 | 5 | 5|5
C o loo|loo oo |11 T 66
D x| oo | oo | oo |oc 14109
E x| oo | 12 | R 7 7 7|7
F x|loo| 991919 |99
G xo | 8 8 8 8 8 8 | 8

* Speeding up convergence: stop if in a round no update occurred
* Detecting negative cycles: allow one more iteration

62

All pairs shortest paths

Single-source shortest paths
I: A weighted graph G = (V, E, w)
Q: A shortest path for every pair of nodes

* Run Bellman-Ford n times O(n?m)
 Can we do better?

First, we extend the weight function to all pairs:

0 if u=v

w(u,v)=Iw(e) If u=v ande=(u,v)EE
e if uzv ande=(u,v)&E

"

63

All pairs shortest paths

 We will again use a dynamic programming approach
* but adifferent one from before
 Suppose we name the verticesas 1, 2, ..., n

d(u, v, k):= shortest path from node u to node v using only nodes
{1,2,..., k} as intermediates

u v
d(uJ VJk'1) 50
d(u,k,k'1 _/
d(kl VJk' 1)

d(u,v,0) = w(u,v)
d(u,v,k)=min{d(u,v,k-1),d(u,k,k-1)+d(k,v,k-1)}

64

All pairs shortest paths

d(u,v,0) = w(u,v)
du,v,k)=min{dwu,v,k-1),d(u,k,k-1)+d(k,v,k-1)}

We will gradually find d(u,v,0), d(u,v,1), d(u,v,2), ..., d(u,v,n)

Idea of the algorithm:

 Use d(u, v) as the current estimate, initially set to w(u, v)

* Think of it as filling up a n x n array for each k

e lteration 1: update d(u, v) to equal the shortest path length
using node 1 as intermediate

* |teration k: update d(u, v) to equal the shortest u-v path with
{1, 2, ...k} as intermediates
* Continue until iteration n

d(u,v)=min{d(u,v),d(u,k)+dk,v)}

65

All pairs shortest paths

Algorithm Floyd-Warshall(G)
for u:=1 to n do
for v:=1 to n do
{ d(u,v) := w(u,v);
pred(u,v) := null }
for k:=1 to n do
for u:=1 to n do
for v:=1 to n do
if d(u,k) + d(k,v) < d(u,v) then

{ d(u,v):=d(u,k) + d(k,v);

pred(u,v) := k }

pred (u,v) : to be used for extracting the u-v shortest path
Complexity: O(n3)

66

All pairs shortest paths

-4

-2

5|0

4 10

0|38

2|5

dil=]

-4

-2

4 105 |11

0|38 |4

21-11-5|0

d3)=| =

-4

o]

-4

-2

4

-1

-2

4

1

5|0

-4

410
© | -5|0

410|511

038

2

0384

2|5

0|3]-1
3|0

7141053
21-11-5|0

8
il
=)
©

d2=| =

didi=

67

All pairs shortest paths

Extract the u-v shortest path

pred(u,v)=k : the u-v shortest path passes through node k

Consult pred(u,v):
e |[f pred(u,v)= null then the u-v shortest path is the edge (u,v)
e Otherwise compute recursively the shortest paths:

— from u to pred(u,v), and

— from pred(u,v) to v

68

All pairs shortest paths

Extract the u-v shortest path

Path (u,v);
{ 1f pred(u,v)=null then output (u,v)
else {Path(u,pred(u,v)), Path(pred(u,v),v) } }

Find the shortest path from vertex 2 to vertex 3.

2..3 Path(2,3) pred[2,3] = 4
3 Path(2,4) pred[2,4] = 5
..5..4..3 Path(2,5) pred[2,5] = nil Output(2,5)
25..4..3 Path(5,4) pred[5,4] = nil Output(5,4)
254..3 Path(4,3) pred[4,3] = 6
254..6..3 Path(4,6) pred[4,6] = nil Output(4,6)
2546..3 Path(6,3) pred[6,3] = nil Owutput(6,3)

