OIKONOMIKO ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

M.Sc. Program in Computer Science Department of Informatics

Design and Analysis of Algorithms

Graph Algorithms

Vangelis Markakis

markakis@gmail.com

Graphs

- G = (V, E)
 V = {1,2,...,n}: set of nodes/vertices, |V| = n
 E ⊆ V×V = {(u,v) | u,v ∈ V}: set of edges/arcs, |E| = m
- undirected graphs (u,v) ≡ (v,u)
 Γ(u) = {v | (u,v) ∈ E}: neighborhood of u
 d(u) = |Γ(u)|: degree of u
- directed graphs (u,v) ≠ (v,u)
 Γ⁺(u) = {v | (u,v) ∈ E }: out-neighborhood of u
 Γ⁻(u) = {v | (v,u) ∈ E }: in-neighborhood of u
 d⁺(u) = | Γ⁺(u)|: out-degree of u
 d⁻(u) = | Γ⁻(u)|: in-degree of u

Graph representation

- n = # vertices
- m = #edges

Adjacency matrix

	1	2	3	4	5
1	0	1	0 1 0 1	0	1
1 2 3 4 5	0 1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	0	0

space O(n²)

Adjacency list

Dense graphs: m is O(n²)

Graph Traversal

- Suppose we want to visit all the vertices and edges/arcs of a graph
- E.g., we may want to process all nodes in a specific order
- Many applications require such a traversal of the graph
- Can we do this efficiently?

Part 1: DFS and its applications

Depth-First Search (DFS)

The graph may be disconnected

Hence, we can start by an auxiliary method that answers the question: Given a node u, find out which nodes are reachable from node u

- Previsit and postvisit are optional
- In case we want to process the node the first time we discover it, or the last time we are at it
- Will see applications soon

Depth-First Search (DFS)

To explore all the nodes of a graph G:

```
DFS (G)
{ for all u ∈ V do visited(u):= false;
  for all u ∈ V do
      if not visited(u) then explore(u)}
```

- Complexity: O(n+m)
 - Assuming previsit and postvisit take O(1)
 - We only look at each edge (u, v) 2 times, once when we examine u and once when we examine v

Depth-First Search (DFS)

Example

Visiting order: A B E I J - C D H G K L - F

DFS tree T = (V, A) for an undirected graph, $A \subseteq E$

The graph G is decomposed in

- tree edges $(u,v) \in A$
- backward edges (u,v) ∉ A

Let G be an undirected graph

- What is the visiting order of the nodes under DFS?
- Can we decide if G is connected?
 - i.e., there is a path that connects every pair of nodes
- Can we find the # of connected components?
- Who is the parent of each node in the DFS tree?

To answer these, we will exploit the previsit and postvisit operations

<u>Parameters</u>

```
clock: integer counter (defining the visiting order)
pre(u): the visiting order of u
cc: counts the number of connected components
ccnum(u): the connected component that u belongs to
parent(u): the parent of u in the DFS tree
```

```
explore(u);
                                        previsit(u);
{ previsit(u); —
                                           ccnum(u) = cc;
  visited(u):=true;
                                           pre(u):= clock;
  for each v \in \Gamma(u) do
                                           clock:= clock+1
      if not visited(v) then
        {explore(v); parent(v):=u; }
  postvit(u); }
                                        empty
DFS (G);
{ clock:=1; cc:=0;
  for all u \in V do
      {visited(u) := false; parent(u) :=null}
                                                 Complexity
  for all u \in V do
                                                  O(n+m)
      if not visited(u) then
             { cc:=cc+1; explore(u);} }
```


u	A	В	С	D	E	F	G	Н	T	J	K	П
pre(u)	1	2	6	7	3	12	9	8	4	5	10	11
ccnum(u)	1	1	2	2	1	3	2	2	1	1	2	2
parent(u)	null	A	null	С	A	null	Н	D	E	I	G	Н

DFS - More applications

- In other applications we will need to work harder
- More information from the graph traversal
- For this, we will need to exploit the postvisit procedure too

Parameters

```
clock: integer counter (increased by previsit and postvisit)
pre(u): the first time we visit u (determined by previsit)
post(u): the last time we deal with u (determined by postvisit)
```

DFS orderings

```
explore(u);
                                         previsit(u);
{ previsit(u);
                                         { pre(u):= clock;
  visited(u):=true;
                                           clock:=clock+1
  for each v \in \Gamma(u) do
   if not visited(v) then explore(v);
  postvit(u); }
                                         postvisit(u);
                                         { post(u) := clock;
                                           clock:=clock+1
DFS (G);
{ clock:=1;
  for all u \in V do
      visited(u):= false;
                                                Complexity:
  for all u \in V do
                                                again O(n+m)
      if not visited(u) then explore(u); }
```

DFS orderings – undirected graphs

Claim: For any pair of nodes u and v the intervals [pre(u), post(u)] and [pre(v), post(v)] are either disjoint or one is contained in the other

Due to how recursion works (i.e., Last-In First-Out operation of recursion stack)

DFS orderings – directed graphs

Four types of (directed) edges:

- Tree edges
- Forward edges: to a non-child descendant
- Backward edges: to an ancestor (cycle)
- Cross edges: to neither an ancestor nor a descendant

DFS orderings – directed graphs

Relations between the pre and post parameters for each edge type:

Directed Acyclic Graphs (DAGs)

(directed) cycles in a directed graph: paths of the form $v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \dots v_k \rightarrow v_0$

DAG: A directed graph G = (V, E) with no directed cycles = a partial order on V

Q: Given a directed graph, is it acyclic?

A: It is iff DFS(G) does not produce any back edge

- Many applications of DAGs in scheduling problems or in modeling hierarchies, dependencies, etc
- E.g., suppose we have to schedule a set of jobs with constraints of the form "job i cannot start before job j finishes"
- Modeling the dependencies can be done with a DAG
- Clearly there should be no cycles among the dependencies

Topological sorting of DAGs

Suppose we have a DAG modeling sheduling dependencies

Q: In what order should we execute the jobs?

Topological sorting = an ordering of the vertices such that for every edge (u, v), u is before v in the ordering

not necessarily unique

Q: Find a topological sorting of a DAG

A: use DFS and output nodes in decreasing order of post(u)

Claim: For every edge (u, v) in a DAG, post(u) > post(v)

Because there are no backward edges

Topological sorting of DAGs

Visiting order: A B E F G H C D

Topological order: A C D B E H F G

Every DAG has such a topological sorting

Topological sorting of DAGs

More properties of DAGs:

- Every DAG has at least one source node (a node with no incoming edges)
 - The node in the beginning of the topological sorting has to be a source
- Every DAG has at least one sink node (a node with no outgoing edges)
 - The last node in the topological sorting has to be a sink

A different approach to produce a topological sorting:

- Find a source node
- Print it and delete it from the graph (remaining graph is still a DAG)
- Continue in the same manner with the remaining vertices

Connectivity in Directed Graphs

What does connectivity mean in a digraph G?

Two nodes u, v of G are connected iff there is a path from u to v and a path from v to u

- A directed graph is strongly connected iff every pair of nodes is connected
- If a graph is not strongly connected, then a maximal subset of nodes S, such that any 2 nodes u, v from S are connected, is called a strongly connected component (SCC) of G
- A directed graph is weakly connected iff for every pair of nodes u, v, either there is a path from u to v or there is a path from v to u
- We can similarly define weakly connected components
- We are mostly interested in identifying the strongly connected components of a graph

How can we find the SCCs of a directed graph G?

Let's understand first the structure of the SCCs in a graph

- Suppose we take each SCC and shrink it into one node
- This creates a meta-graph H, where:
 - The vertices of H are the SCCs
 - There is an edge from a SCC C to a SCC C' if there exists an edge (u, v) in G, such that u ∈ C and v ∈ C' (i.e., if there is a way to go from C to C')

Claim: The graph of the SCCs is a DAG

Hence:

- H has at least one source node and at least one sink node
- Let S = source SCC
- Let T = sink SCC

Idea: **explore (u)** for some $u \in T$, will visit all nodes of T and no other node

- This way we can identify the sink SCC
- No such guarantees if we run explore(u) for some node u not in T

Q1: How can we find such a node $u \in T$, without knowing T in advance?

Q2: If we succeed in Q1, we have only identified one SCC. How can we find the other SCCs?

There seems to be no direct way to locate a node in T...

Q1: How can we find such a $u \in T$?

- Property 1: The node of G with the highest post number in DFS(G) is in a source SCC (why?)
- But, we need a node in a sink SCC of G...
- Idea: Work on the reverse graph of G
- GR = same vertices as in G, but with all edges reversed

Q1: How can we find such a $u \in T$?

Property 2: GR has the same SCCs with G (why?)

Hence:

Run DFS on G^R : The node u with highest post(u) lies in some source SCC of $G^R \rightarrow u$ lies in a sink SCC of G!

Q2: How can we continue to the next SCC?

Property 3: If for SCCs C and C', there is an edge from C to C', then the highest post(u), $u \in C$ is bigger than the highest post(v), $v \in C$ '

- This suggests we can keep using the post(u) ordering of the DFS on G^R
- After we delete a sink SCC from G: the node in G\T of the highest post number according to DFS(G^R) belongs again to a source SCC of G^R → a sink SCC in G\T

Algorithm for finding all SCCs

Run DFS on G^R to obtain post(u) for every $u \in V$;

Run on G:

- the algorithm we saw for finding connected components for undirected graphs (but using $\Gamma^+(u)$ instead of $\Gamma(u)$),
- processing the vertices of G in decreasing order of post(u)


```
explore(u);
{ ccnum(u) = cc;
  visited(u):=true;
   for each v \in \Gamma^+(u) do
      if not visited(v) then explore(v) }
DFS (G);
  cc := 0;
   for all u \in V do visited(u):= false;
   for all u \in V
      in decreasing order of post(u) do
              if not visited(u) then
                           cc:=cc+1;
                           explore(u) } }
```

A B C G H K

SCCs: {G,H,I,J,K,L} {D} {C,F} {B,E} {A}

Part 2: BFS and shortest path problems

Graph Traversals

- DFS is a particular way to perform a traversal of the nodes
- Suitable for solving problems related to connectivity
- Many other applications exploit different visiting orders of the nodes
- E.g., for shortest path computations, we need a "breadth-first" approach

Breadth-First Search (BFS)

- BFS starts from a node u and explores the graph level by level
- We first visit all the neighbors of u (at distance 1 from u)
- We then visit nodes at distance 2
- And so on and so forth
- How can we implement a level-by-level traversal?
 - Using a FIFO queue

Breadth-First Search (BFS)

Instead of a stack (LIFO for DFS) it uses a queue Q (FIFO for BFS)

```
explore(u);
                                          visit(u);
{ ENQUEUE(u); inq[u]:=true;
                                            { order(u):=clock
  while Q is non-empty do
                                              clock:= clock+1 }
      DEQUEUE (u);
      visit(u);
       for each v \in \Gamma(u) do
              if not inq(v) then
                 { ENQUEUE (v); inq(v):=true } } }
BFS (G);
{ clock:=1 ;
  for all u \in V do inq(u):= false;
  for all u \in V do if not inq(u) do explore(u)}
```

BFS - example

What is the complexity of BFS(G)?

O(n+m):

- same as DFS(G)
- Again, we consider each edge 2 times

BFS – Unweighted shortest paths

- Suppose we want to compute the shortest path from a given node s to any node u ∈ V
- BFS is designed to do exactly this
- If we run explore(s), we will first visit all nodes that are at a distance of 1 from s, then all nodes at a distance 2,...
- We also need to keep track of the shortest paths
- We can simply store the parent of each node in the BFS tree

BFS – Unweighted shortest paths

(Unweighted) shortest paths

```
I: A graph G = (V, E), and a designated vertex s
Q: The shortest paths from s to all nodes
d(u) = length of shortest path to u
pred(u) = gives the predecessor of u in the shortest path
Algorithm Unweighted-Shortest-paths(G, s)
\{ \text{ for all } u \in V \text{ do } \}
     \{d(u) := \infty; pred(u) := null \}
   d(s) := 0;
   ENQUEUE(Q,s);
   while Q is non-empty do
           u := DEQUEUE(Q);
                 for each v \in \Gamma(u) do
                         if d(v) = \infty then
                             \{ ENQUEUE(Q,v); 
                                d(v) := d(u) + 1;
                                pred(v) := u } }
```

Weighted graphs

Directed weighted graph: G = (V, E, w)

- Edge cost w(e), $e \in E$
- For nodes s, t ∈ V, directed simple s-t path: p = {s 2 3 5 t}
- Cost of path $p = \{s 2 3 5 t\} = w(p) = 9 + 23 2 + 16 = 44$
- Goal: Find the shortest s-t path

Single-source shortest paths

I: A weighted graph G = (V, E, w), and a designated vertex s

Q: The shortest paths from s to all nodes (the paths and their lengths)

Observation:

If some path from s to v contains a negative cost cycle, then there is no shortest path

In all other cases, there exists a shortest s-v path that is simple
 (we can remove cycles without increasing the cost)

Assumption: the graph does not contain cycles of negative cost

Shortest Paths Property

- We will try to design a greedy algorithm
- For this we need to relate optimal solutions to subproblems with the optimal solution to the initial problem
- Claim: All sub-paths of shortest paths are shortest paths.
 - Let P_1 be an x-y sub-path of a shortest s-v path P.
 - Let P_2 be any x-y path.
 - w(P₁) ≤ w(P₂), otherwise P is not a shortest s-v path.

Optimal substructure property

Special case: Single path multigraph

Find a shortest path from 1 to n

Apply the greedy method

1-n shortest path: 1 + 2 + 5 = 8

- For general graphs, we will try to follow a similar approach
- The algorithm will work in rounds:
 - In each round, we will compute the shortest path to one new vertex
 - In round 1, we will find the shortest path to the vertex that has the smallest distance from s (i.e., pick the cheapest edge from s)
 - In round 2, we will find the shortest path to the vertex that has the 2nd smallest distance from s
 - And so on...
- Hence, the algorithm keeps solving optimally larger and larger subproblems consisting of the vertices we have processed so far.

In a few more details:

- We maintain a candidate shortest distance for each vertex
- Initially all set to infinity
- Suppose we have already found the shortest paths to a set S of vertices
- The next round will identify the next shortest distance from s to some vertex
- There are 2 cases for this:
 - Either this is the length of some edge (s, v)
 - Or the shortest path will have to go through one of the vertices in S
- Once we identify the next shortest distance, say from s to a node u, we check if going through u creates a shorter path for the rest of the nodes in V\S.

- Summing up:
- We need to maintain in some data structure, the currently estimated shortest distances to all unprocessed nodes
- The minimum of these is a correct estimate (from the updates in the previous rounds)
- We then need to extract this minimum and update the current estimates for the remaining nodes (if necessary)
- But how can we extract efficiently the minimum in every round?
- The "right" data structure is a priority queue
 - Recall in the unweighted version, the right data structure is a FIFO queue

Priority Queues

- A collection of elements with a key
- For our problem:
 - elements = nodes
 - key = distance from s

Operation	Description			
min(Q)	returns (a pointer to) the element of Q with minimum key			
insert(Q,x)	adds element x to the queue Q			
delete_min(Q)	deletes the element of minimum key from Q			
union(Q',Q'')	Combines queues Q' and Q' into one			
decrease_key(Q,x)	Updates the queue with a decreased key of element x			
Delete(Q,x)	deletes element x from Q			

Dijkstra's Algorithm

```
Algorithm Dijkstra(G, s)
for each v \in V \{d(v) = \infty; pred(v) = null \}
d(s) = 0;
Q = empty;
for each v \in V insert (Q, v) / using <math>d(v) as the key
while Q is non-empty do
 { u = delete min(Q) / selects vertex with min. distance}
   for each v \in \Gamma^+(u) do
       if d(v) > d(u) + w(u,v) then
             \{ d(v) = d(u) + w(u,v); \}
               pred(v) = u;
               decrease key(Q,v)}
```

Dijkstra's Algorithm - Example

Dijkstra's Algorithm: Correctness

Theorem:

Upon termination, d(v) is the distance of the shortest s-v path for every $v \in V$, and the actual shortest path is obtained by following the value of pred(.) starting from v

Proof:

- Can be done by induction or by contradiction
- Let S = nodes that have already been extracted from the priority queue as the algorithm runs
- Initially $S = \emptyset$, eventually S = V
- We use induction on n to prove: For i=1,...,n, at the end of the i-th execution of the while loop, d(v) = shortest s-v path for every $v \in S$
 - Base case: end of step 1: S = {s}, d(s) = 0, trivially true
 - Hypothesis: Our claim holds up to step i
 - Induction step: Look at the end of step i+1

Dijkstra's Algorithm: Correctness

- Induction step: Let us look at the end of the (i+1)-th iteration
- Let v be the vertex Dijkstra's algorithm adds to S at this iteration
- Assume that the constructed path P is not an s-v shortest path and let P* be a shortest s-v path: w(P*) < w(P) = d(v)

Claim: P* must use an edge that leaves S, say (x, y)
Otherwise, by induction hypothesis, and by optimal substructure,
P is optimal

It also holds that $d(y) \ge d(v)$, since the algorithm selected v and not y at this iteration

We have: d(y) = shortest s-y path $\leq \text{shortest s-v path}$ $\leq \text{shortest s-v path}$ $\leq \text{d(v), a contradiction}$ Because when x is processed d(y) is updated $\leq d(v), \text{ a contradiction}$ Assumes non-negative weights

ATTENTION: Dijkstra's algorithm works only for non-negative weights!

Priority Queues – Summary

Choices for implementing a priority queue: Binary heap (more standard), binomial heap, Fibonacci heap

Operation	Binary Worst	Binomial Worst	Binomial Amortized	Fibonacci Amortized
min(Q)	0(1)	0(1)	0(1)	0(1)
insert(Q,x)	O(logn)	O(logn)	0(1)	0(1)
delete_min(Q)	O(logn)	O(logn)	O(logn)	O(logn)
union(Q',Q'')	0 (n)	O(logn)	O(logn)	0(1)
<pre>decrease_key(Q,x)</pre>	O(logn)	O(logn)	O(logn)	0(1)
delete(Q,x)	O(logn)	O(logn)	O(logn)	O(logn)

Dijkstra's Algorithm: Complexity

#	of operations		<u>Queue implementat</u>	ion
		Binary	Binomial*	Fibonacci*
Insert:	n	O(logn)	O(1)	O(1)
delete-min:	n	O(logn)	O(logn)	O(logn)
decrease-key	: m	O(logn)	O(logn)	O(1)

Binary heap: $n \log n + n \log n - O(m \log n)$

Binomial heap: $n \cdot O(1) + n \log n + m \log n \sim O(m \log n)$

Fibonacci heap: $n \cdot O(1) + n \log n + m \cdot O(1) \sim O(m + n \log n)$

^{*} amortized

Shortest paths in multistage graphs

Special case: Multistage graphs

Multi-stage graph $G=(V_1, V_2, ..., V_k, E)$ $V_1 = \{s\}, V_k = \{t\}$ $E = \{(u,v) \mid u \in V_i, v \in V_{i+1}\}$

Numbering of nodes level by level

Is the problem easier for this class?

Shortest paths in multistage graphs

The shortest path to u has to pass through a node in Γ (u)

$$d(1) = 0$$

 $d(2) = 1$, $d(3) = 2$, $d(4) = 5$

$$d(5) = min\{4+d(2), 9+d(3)\} = min\{4+1, 9+2\} = 5$$

$$d(6) = min\{11+d(2), 5+d(3)\} = min\{11+1, 5+2\} = 7$$

$$d(7) = min\{16+d(3), 2+d(4)\} = min\{16+2, 2+5\} = 7$$

$$d(8) = min\{18+d(5), 13+d(6), 2+d(7)\} = min\{18+5, 13+7, 2+7\} = 9$$

Recurrences useful for a dynamic programming approach!

Shortest paths in multistage graphs

$$d(u) = \min_{v \in \Gamma^{-}(u)} \{ w(v, u) + d(v) \}, \ d(1) = 0$$

- Complexity?
 - O(n+m): like the analysis of DFS/BFS
- Negative weights?
 - No problem!

Shortest paths in DAGs

- We know that there are no negative weight cycles in such graphs
- Multi-stage graphs are a special case of DAGs
- Same dynamic programming approach can be applied for DAGs after we find a topological sorting of the vertices

$$d(u) = \min_{v \in \Gamma^{-}(u)} \{ w(v, u) + d(v) \}, \ d(s) = 0$$

Shortest paths in DAGs

$$d(u) = \min_{v \in \Gamma^{-}(u)} \{ w(v, u) + d(v) \}, \ d(s) = 0$$

```
for each u \in V do { d(u) := \infty; pred(u) := null } d(s) := 0;

Find a topological sorting of G for each u \in V - \{s\} in topological order do {for each v \in \Gamma^-(u) do if w(v,u) + d(v) < d(u) then { d(u) := w(v,u) + d(v) ; pred(u) := v; }
```

- Complexity? O(n+m)
- Negative weights? No problem!
- Same arguments as for multi-stage graphs

- Consider now a general weighted directed graph G = (V, E, w) possibly with negative weights
- Dijkstra does not work
- Can anything else work?

We will resort again to dynamic programming

d(u,k): shortest path from node s to node u using at most k edges

$$d(u,k) = \min\{d(u,k-1), \min_{v \in \Gamma^{-}(u)} \{w(v,u) + d(v,k-1)\}\}, \ d(s,0) = 0$$

Note: Any path has length at most |V|-1 = n-1

Hence: Suffices to do n-1 times the updates that Dijkstra does!

	Iteration k							
Node	0	1	2	3	4	5	6	7
S								
A								
В								
C								
D								
E								
F								
F G							:	

Idea of the algorithm:

- Use d(u) as the current estimate, initially set to ∞
- Think of it as gradually filling up a n x (n-1) array
- Iteration 1: shortest paths of length 1, i.e., only for vertices that s directly connects to
- ...
- Iteration k: update d(u) to be equal to the shortest s-u path with at most k edges
- Continue until iteration n-1

	Iteration k							
Node	0	1	2	3	4	5	6	7
S								
A								
B C								
C								
D								
E			:					
F								
F G							:	

Correctness:

- Before the beginning of iteration k, we have already updated d(u) for every u ∈ V, to equal the shortest s-u path with at most k-1 edges
- Hence, we can correctly update d(u) using our recurrence

Update operation:

$$d(u) = \min\{d(u), \min_{v \in \Gamma^{-}(u)} \{w(v, u) + d(v)\}\}, \ d(s) = 0$$

```
Algorithm Bellman-Ford(G, s)
for each u \in V do { d(u) := \infty; pred(u) = null } d(s) := 0;
for k := 1 to n-1 do
  for each u \in V - \{s\} do
   {for each v \in \Gamma^-(u) do
    if w(v,u) + d(v) < d(u) then
  { d(u) := w(v,u) + d(v) ;
      pred(u) := v; }
```

Complexity: O(n·m) (why?)

	Iteration							
Node	0	1	2	3	4	5	6	7
S	0	0	0	0	0	0	0	0
A	∞	10	10	5	5	5	5	5
В	∞	∞	∞	10	6	5	5	5
C	∞	∞	∞	∞	11	7	6	6
D	∞	∞	∞	∞	∞	14	10	9
E	∞	∞	12	8	7	7	7	7
F	∞	∞	9	9	9	9	9	9
G	∞	8	8	8	8	8	8	8

- Speeding up convergence: stop if in a round no update occurred
- Detecting negative cycles: allow one more iteration

Single-source shortest paths

I: A weighted graph G = (V, E, w)

Q: A shortest path for every pair of nodes

- Run Bellman-Ford n times O(n²m)
- Can we do better?

First, we extend the weight function to all pairs:

$$w(u,v) = \begin{cases} 0 & \text{if } u = v \\ w(e) & \text{if } u \neq v \text{ and } e = (u,v) \in E \\ \infty & \text{if } u \neq v \text{ and } e = (u,v) \notin E \end{cases}$$

- We will again use a dynamic programming approach
- but a different one from before
- Suppose we name the vertices as 1, 2, ..., n

d(u, v, k):= shortest path from node u to node v using <u>only</u> nodes $\{1,2,...,k\}$ as intermediates

$$d(u, v, 0) = w(u, v)$$

$$d(u, v, k) = \min\{d(u, v, k-1), d(u, k, k-1) + d(k, v, k-1)\}$$

$$d(u, v, 0) = w(u, v)$$

$$d(u, v, k) = \min\{d(u, v, k-1), d(u, k, k-1) + d(k, v, k-1)\}$$

We will gradually find d(u,v,0), d(u,v,1), d(u,v,2), ..., d(u,v,n)

Idea of the algorithm:

- Use d(u, v) as the current estimate, initially set to w(u, v)
- Think of it as filling up a n x n array for each k
- Iteration 1: update d(u, v) to equal the shortest path length using node 1 as intermediate
- ...
- Iteration k: update d(u, v) to equal the shortest u-v path with {1, 2, ...,k} as intermediates
- Continue until iteration n

$$d(u,v) = \min\{d(u,v), d(u,k) + d(k,v)\}$$

```
Algorithm Floyd-Warshall(G)
for u:=1 to n do
    for v:=1 to n do
       \{ d(u,v) := w(u,v); \}
         pred(u,v):= null }
for k:=1 to n do
    for u:=1 to n do
        for v:=1 to n do
            if d(u,k) + d(k,v) < d(u,v) then
                   \{d(u,v):=d(u,k)+d(k,v);
                      pred(u,v) := k
```

pred (u, v): to be used for extracting the u-v shortest path Complexity: $O(n^3)$

d ⁽⁰⁾ =	0	3	8	8	-4
	8	0	8	1	7
	8	4	0	8	8
	2	8	-5	0	8
	8	8	∞	6	0

d ⁽²⁾ =	0	З	8	4	-4
	8	0	8	1	7
	8	4	0	5	11
	2	5	-5	0	-2
	∞	∞	∞	6	0

$$d^{(4)=} \begin{bmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{bmatrix}$$

d ⁽¹⁾ =	0	თ	œ	8	-4
	8	0	8	1	7
	8	4	0	8	8
	2	5	-5	0	-2
	8	8	8	6	0

	0	3	8	4	-4
d (3)=	8	0	8	1	7
	8	4	0	5	11
	2	-1	-5	0	-2
	8	8	8	6	0

Extract the u-v shortest path

pred(u,v)=k : the u-v shortest path passes through node k

Consult pred(u,v):

- If pred(u,v)= null then the u-v shortest path is the edge (u,v)
- Otherwise compute recursively the shortest paths:
 - from u to pred(u,v), and
 - from pred(u,v) to v

Extract the u-v shortest path

```
Path (u,v);
{ if pred(u,v)=null then output (u,v)
    else {Path(u,pred(u,v)), Path(pred(u,v),v) } }
```

Find the shortest path from vertex 2 to vertex 3.

```
2..3 Path(2,3) pred[2,3] = 4

2..4..3 Path(2,4) pred[2,4] = 5

2..5..4..3 Path(2,5) pred[2,5] = nil Output(2,5)

25..4..3 Path(5,4) pred[5,4] = nil Output(5,4)

254..3 Path(4,3) pred[4,3] = 6

254..6..3 Path(4,6) pred[4,6] = nil Output(4,6)

2546..3 Path(6,3) pred[6,3] = nil Output(6,3)

25463
```