OIKONOMIKO ATHENS UNIVERSITY
MANENIETHMIO OF ECONOMICS
AOHNAON AND BUSINESS

M.Sc. Program in Computer Science
Department of Informatics

Design and Analysis of Algorithms
Basic Algorithmic Techniques

Vangelis Markakis
markakis@gmail.com

Basic Algorithmic Techniques
Content

Divide and Conquer algorithms

— Multiplication of numbers, Mergesort, Quicksort
— Recurrence relations and the Master theorem

— Variations: Decrease and Conquer

Greedy Algorithms

— The general approach
— Greedy algorithms for Interval Scheduling

— Gas station problems

Dynamic Programming

— Weighted Interval Scheduling

— Maximum Sub-array

Divide and Conquer algorithms,
Recurrence relations,
and the Master theorem

Divide & Conquer

e Divide (recursively) the problem into smaller subproblems, of about the
same size

e End of recursion: Solve the (appropriately small) subproblems usually in
constant time

e Combine (recursively) the solutions to the subproblems until we reach the
initial problem

Recursion tree

Analysis: Through recurrence relations

Integer Multiplication

First a useful insight!

e Leta, b, c, dbe4real numbers
* Suppose we want to compute the product of two

complex numbers (a + bi) (c + di)
 We trivially have: (a + bi) (c + di) = ac - bd + (ad +bc)i
* 4 multiplications suffice

A (not so useful at first sight) observation:

Gauss equation : ad +bc =(a+b)(c+d)—-ac—-bd

* 3 multiplications suffice!

Integer Multiplication

INTEGER MULTIPLICATION
I: 2 n-bit numbers, x and y

Q: Compute their product

*kkkkkkkkk

Back to elementary school: x sxxxksinns

*kkkkkkkkk

*kkkkkkkkk
*kkkkkkkkk
*kkkkkkkkk
*kkkkkkkkk
*kkkkkkkkk
*hkkkkkkkk
*kkkkkkkkk
*kkkkkkkk

*kkkkkkkk

*kkkkkkkhkkkhkkkkkk

Integer Multiplication

Complexity?

*kkkkkkkkk

X *kkkkkkkkk

*kkkkkkkkk
*kkkkkkkkk
*kkkkkkkkk
*kkkkkkkkk
*hkkkkkkkk
*kkkkkkkkk
*kkkkkkkkk
*kkkkkkkkk
*kkkkkkkk

*kkkkkkkk

*kkkkkkkkkkkkkkkkkk

O(n) to compute each of the n
terms that are to be added
Adding 2 n-bit numbers takes O(n)

Complexity = O(n?)

Can we do better?

Integer Multiplication

e Divide and Conquer approach

e For simplicity, suppose that n is a power of 2
e Minor modifications if not true

n/2 bits n/2 bits
X = a b = a2"? +b
y = C d = ¢2v2 +(

For example, if x = 10011010, then x = (1001) 24 + 1010

Xy = (@22 +b)(c2”2 +d)=ac2" +(ad+bc)2v2 + bd

Integer Multiplication

Algorithm IntMultl (x,y)

1f n=1 return xy

a = n/2 leftmost bits of x, b = n/2 rightmost bits of x
c = n/2 leftmost bits of y, d = n/2 rightmost bits of y
P, = IntMultl(a,c), P, = IntMultl (a,d)

P, = IntMultl(b,c), P, = IntMultl (b,d)

return P, 2° + (P, + P;) 272 + P,

Complexity:
4 recursive calls for multiplying numbers with n/2 bits T(n/2)
2 multiplications with powers of 2 O(n)

3 additions of n-bit numbers O(n)

Integer Multiplication

Complexity:
4 recursive calls for multiplying numbers with n/2 bits T(n/2)
2 multiplications with powers of 2 O(n)
3 additions of n-bit numbers O(n)
1, ifn=1 ;
T'(n)=: . = T(n)=0(0n")
4T(n/2)+O0(n), 1fn>1

10

Integer Multiplication

n/2 bits n/2 bits
X = a b = a2¥? +b
y = C d = C 2n/2 + d

Xy = (@22 +b)(c2”2 +d)=ac2"+(ad+bc)2v2 + bd

Recall the observation of Gauss:

ad+bc=(a+b)(c+d)—ac-bd

ac 2" + (ad +bc) 22 + bd
ac 2" + [(a+b)(c+d) - ac - bd] 22 + bd
P,2" + [P,-P,-P,]2V2 + P,

Xy

O U O
N R
I
O QL
o O

; = (a+b)(c+d)

11

Integer Multiplication

Algorithm IntMult2(x,y) [Karatsuba 1962]

1f n=1 return xy

a = n/2 leftmost bits of x, b = n/2 rightmost bits of x
c = n/2 leftmost bits of y, d = n/2 rightmost bits of y
P, = IntMult2(a,c), P, = IntMultZ(b,d)

P, = IntMult2((a+b), (c+d))

return P, 2® + (P, - P, - P,)27/? + P,

Complexity:
3 recursive calls for multiplying numbers with n/2 bits T(n/2)
2 multiplications with powers of 2 O(n)

6 additions of n-bit numbers O(n)

12

Integer Multiplication

Complexity:
3 recursive calls for multiplying numbers with n/2 bits T(n/2)
2 multiplications with powers of 2 O(n)
6 additions of n-bit numbers O(n)
1, ifn=1 log, 3 1.59
I'(n)= . = T(n) =0(n™™")=0(n"")
3T(n/2)+0(n), ifn>1

13

The Master Theorem

* How do we analyze recurrence relations?

* There are various methods

 The substitution method:
* Keep substituting until you guess the solution
* Use induction to prove it formally

Example: T(n) =T(n-1) +n, T(1) =1
* T(n)=T(n-1) +n

e =(T(n-2)+n-1)+n

* =T(n-2)+n+n-1

e =(T(n-3)+n-2)+n+n-1

* =n+n-1+n-2+...+2+1=0(n?

Is there a general result that could be applicable to the
recurrence relations we will encounter?

14

The Master Theorem

If T(n) = aT([n/b]) + O(nY) for some constantsa>0,b>1,d >0,

then

O(n"), if d>log,a (b’ >a)
T(n)=10n"log, n), if d=1log, a (b° =a)
O(n'*® "), if d<log,a (b’ <a)

* Usually convenient to think of n as a power of b, so that n/b
IS an integer.

* In many cases of interest, b =2

 More general versions of this theorem are available as well

15

The Master Theorem - Examples

 Naive integer multiplication
— T(n) =4T(n/2) + O(n)
—a=4,b=2,log,a=log,4=2
—d=1<2=log, a
— Case (iii) applies: T(n)=0(n1°gb“) = O(n”)

e Karatsuba’s algorithm for integer multiplication
— T(n) =3T(n/2) + O(n)
—a=3, b=2,log,a=log,3=1.59
—d=1<log, a
— Case (iii) applies again: T(n)= O(nl‘)g”“) =0(n'"")

16

The Master Theorem - Examples

e T(n)=5T(n/25) + O(n?)
— a=5, b=25,log, a=1og,;5=0.5
— d=2>0.5=log, a
— case (i) applies: T'(n)= O(nd)= O(n*)

e T(n)=T(2n/3) + O(1)

- a=1, b=3/2,log,a=log;,1=0

— d=0=log, a

~ case (ii) applies: T(n) = Ofn"log,,, n)=O(logn)
e T(n)=9T(n/3)+ O(n)

— a=9,b=3,log,a=log;9=2

— d=1<2=log, a
— case (iii) applies: T'(n) = O(nlog”a)= O(nz)

17

Sorting Problems

SORTING
I: An array with n numbers, A[1..n]
Q: The array sorted in increasing order

e The input may also be a segment of the array A[p..r]
e One of the most basic problems in Computer Science
e Hundreds of articles mainly in the 60s and 70s on sorting

e Most commong algorithms: Bubblesort, Insertionsort,
Selectionsort, Shellsort, Mergesort, Quicksort, Heapsort

18

The Mergesort Algorithm

e The most natural idea for a recursive sorting algorithm
e Divide the problem into 2 subproblems

e Recursively sort the subproblems

e Merge the 2 sorted solutions into one sorted array

Algorithm Mergesort (A, p, r)

// Sortsarray Afromptor

if r<p return;

int m = (p+tr)/2;

Mergesort (A, p, m);

Mergesort (A, m+1, r);

Merge (AI e, my,]f),’

/ /merge the sorted subarrays A[p..m] and A[m+1..r]

19

The Mergesort Algorithm

38127 (433|982 |10
38|27 |43 | 3 918210
38 27T/ 43 | 3 10
VAN / \ \
38 27 43 3 82 10
}27 38 3|43 9 |82 10
3|27 |38 |43 9110 |82
319|110 (27 |38 |43 |82

20

The Mergesort Algorithm

e Recursion trees
e They show how the problem breaks into smaller subproblems
e |n Mergesort, the trees are independent of the input

21

The Mergesort Algorithm

Complexity:
e letn =r—p+ 1 (how many numbers we want to sort)

e Claim: The merge of 2 sorted subarrays of size Land L
respectively can be done in time O(L+L")

Hence:
2 recursive calls for sorting arrays with n/2 numbers T(n/2)
1 merge of subarrays of size n/2 each O(n)
1 if n =1 MasterTheorem
T(n) = ’ _ = T(n)=0(nlogn
) {2T(n/2)+0(n), it 1> 2 () = Ollogr)

Space complexity: 2n
* merge needs an auxiliary matrix

 Main drawback of Mergesort when sorting large arrays
22

Quicksort

ldea: Recursion tree dependent on the
input
Use a pivot element x, and partition A so
that
* Elements smaller than x come to the
left of x
* Elements larger than x come to the
right of x
We can now recursively sort the 2
subarrays, left and right of x
Recurrence relation now depends on how
the pivot partitions A

R. Sedgewick
Ph.D. thesis, 1975

23

Quicksort

QuickSort (A, p, r)
if p < r:
select pivot x;
| ' Partition (A,p,r);
//it now holds that:
// A[i] £ x, for p £ 1 £ g-1
// x £ A[i1], for g+l £ i £ r
// q 1s the final position of x
QuickSort (A, p, g-1);
QuickSort (A, g+l, r);

v pivot’s final position

2|1 3|1|7\5m§|

24

Quicksort

How is Partition implemented?
— |In tutorial

Worst case: O(n?) (why?)
BUT: average case = O(nlogn)
In practice better than any other method

Most built-in sorting methods in various systems are

based on Quicksort

25

Decrease and Conquer

Sometimes we do not need to combine the solutions
of different subproblems

Instead, it is enough to solve recursively one
subproblem

Recurrences of the form T(n) = aT(n/b) + f(n) but
witha =1

Usually problems with low complexity

26

Decrease and Conquer

Examples

e Binary search in a sorted array
— Only need to decide which half of the array to look at

— T(n) =T(n/2) + O(1) = T(n) = O(logn)
e Search in a binary search tree

e Median and selection problems
— Find the k-th smallest element in a set
— In tutorial!

27

Greedy Algorithms

28

Greedy Algorithms

The basic idea:

— Simple algorithms, that evolve in rounds, easy to implement
— Start from the empty solution
— Repeatedly, build up a solution (evolving in rounds)

— At every round, make the choice that looks best at the moment
(according to some criterion)

e What the algorithm chooses in each round
— Can depend on previous choices
— Cannot change in the future (myopic moves)
— Reduces the size of the remaining problem

— Proof of correctness:
e Not as obvious as for divide and conquer algorithms

e Need to prove that locally optimal choices lead to a globally optimal

solution -

Algorithm design methods

DIVIDE AND CONQUER

GREEDY

) (@
U @

30

Activity Selection (Interval
Scheduling)

e Suppose we want to schedule some tasks (e.g., courses) that need to
use a common resource (e.g., a classroom)
* No 2 tasks can be scheduled at the same time

Interval Scheduling

I: A set A, of n jobs, each with a start time s, and a finish time f,

Q: Find a feasible schedule with the maximum possible number of tasks
(maximum throughput)

Comment: There can be many optimal solutions, scheduling different
tasks each. We do not care here which optimal solution we find

For an instance |, we let OPT denote the optimal schedule

31

Activity Selection (Interval
Scheduling)

a E E ! ‘
| |
| —
. A0 [oPT=3
] : :]]
| | | |
| | C : : : I .
? ?
jobsd and g
are incompatible
i
|
I
|
0] 2 3 4 5 6 7 8 < 10 11

32

Activity Selection — Some ideas

1) Choose in each round the task that starts at the earliest possible feasible time

P b e

S — . |
| |

c=1, OPT=4 |

2) Choose in each round the shortest feasible task among the remaining ones

T— ! } % C=1, OPT=2!

i
=

3) Choose in each round the task with the least number of overlaps

I i i i P i

p————————] e —
il —— ¢=3, OPT=4!
—i pr—— .

Other ideas? .,

Activity Selection — The algorithm

Rename the jobssothatf, <f,=f,<=..=f

* Choose first the job with the
earliest finish time, f,

* Remove those that overlap with
job 1

e Continue in the same manner,
choosing the earliest finish time
among the remaining ones

Clearly a polynomial time algorithm

Is this optimal?

34

Activity Selection — Proof of
correctness

* How do we prove that a greedy algorithm is optimal?

e Usually proof by contradiction or by induction

* But, the crucial property for a greedy algorithm to be
optimal, is that it should satisfy the “optimal substructure”
property

Optimal substructure in general:
A problem satisfies optimal substructure if an optimal solution to
a problem contains within it optimal solutions to subproblems

Optimal Substructure for Activity Selection:
An optimal solution (that contains job 1), contains the optimal (why?)
solution for the jobs

A={i EA:s2f,} y

Activity Selection — Proof of
correctness

Theorem: Choosing in every round the job with the earliest finish time
produces an optimal solution for the Activity Selection problem

Pf. [by contradiction]
« Assume greedy is not optimal, and let's see what happens.
« Leti, i, ... ipdenote set of jobs selected by greedy.
« Letj, ja, ... jn denote set of jobs in an optimal solution with
iy =Jji. b=Ja. i, = j, fOr the largest possible value of r.

Job i, exists and finishes before j,,;

|

Creedy: 3} iz i Trse1 SR Tk

A 4

OPT: 21 J2 Jr m e n
|

why not replace job j.,;
with job i, ,?

36

Activity Selection — Proof of
correctness

Theorem: Choosing in every round the job with the earliest finish time
produces an optimal solution for the Activity Selection problem

Pf. [by contradiction]
« Assume greedy is not optimal, and let's see what happens.
« Let i, i, ... i;denote set of jobs selected by greedy.
. Letjy, 5, ... j,, denote set of jobs in an optimal solution with
iy =J1. h=j>. i, =J, for the largest possible value of r.

Job i.,; exists and finishes before j,,,

|

Greedy: I i i, Tre1 == I

OPT: J J . N -

solution still feasible and optimal
(but contradicts maximality of r)

37

Activity Selection — Proof of
correctness

In other words:

e What we showed is that the algorithm always “stays ahead”
of the optimal solution

e This is how optimality of greedy algorithms is established for
many other problems

e |n each problem, we need to find the sense in which the
algorithm “stays ahead”, i.e., does at least as good as the
optimal solution

38

The gas station problem

e Suppose you want to drive along Route 66 from Chicago to Los Angeles.

e Your car with a full tank can drive up to x miles

e Your map shows all the points on the highway where gas stations are
located, along with distances from one to the next

e Can you minimize the number of stops that you make?

Assume Route 66 is a straight line

The gas station problem
I: The coordinates of each available gas station on the line, the parameter x

Q: Find where to stop for gas so as to minimize the number of stops

39

The gas station problem

Greedy selection of gas stations:
e Do not do now what you can do later!

e Always go to the very last gas station that you can go before you run out
of gas

The algorithm:

Starting from one end of the line (say the left one)

Move to the right and find the last gas station available in the interval [O,
X]. Let p, be its location

From p,, move to the right and find the right-most gas station in the
interval [p,, p; + X]

Continue in the same manner till you reach the end of the line.

40

The gas station problem

Optimal substructure

e Let p, be the first gas station in the optimal solution

e The optimal solution contains within it an optimal solution for the
subproblem to the right of p,

e Otherwise, we could replace it with an optimal solution to the subproblem
and obtain a better global solution

Theorem: The algorithm described minimizes the number of stops required
on Route 66

Proof: very similar with the proof in the Interval Scheduling problem

41

Dynamic Programming

42

Dynamic Programming

Richard Bellman (1953)

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time £ is determined by a
set of quantities which we call state parameters, or state variables.

Etymology

(at that time; Bellman was studying multi-stage decision processes)
* Dynamic: relating to time

* Programming : what to do and when to do it

* Dynamic Programming: planning over time

Bellman gave an impressive name to be accepted by the
Secretary of Defense (Wilson) who didn’t like math research... 43

Dynamic Programming

Define sub-problems of the same structure with the original
— Overlapping sub-problems

Optimal substructure
— the optimal solution includes/can be constructed from the optimal
solution to its sub-problems

Solve the (sub)problem(s) recursively starting from trivial ones
— write a recursive formula for the optimal solution
This gives an order of subproblems such that one can be solved given the
answers of “smaller” ones (appearing earlier in this order)
- Attention: We are not going to solve the problem via recursion

Translate the recursive formula into an iterative algorithm
— Use a table to save intermediate results for later use

Get the value of the optimal solution

Find the solution itself

44

Algorithm design methods

DIVIDE AND CONQUER

Non overlapping sub-problems

Recursion can be used

GREEDY
A sub-problem defines the next one

A single (greedy) choice ({

DYNAMIC PROGRAMMING

Overlapping sub-problems —
Recursion is forbidden

Many choices for a sub-problem

45

Algorithm design methods

DIVIDE AND CONQUER
Non overlapping sub-problems

: Tree
Recursion can be used
GREEDY
A sub-problem defines the next one Chain

A single (greedy) choice

DYNAMIC PROGRAMMING
Overlapping sub-problems
Recursion is forbidden

OO O O O @

«— OPTIMAL SUB-STRUCTURE

—

Many choices for a sub-problem \J
- N

O—~G=0 H(;_- —0

46

Fibonacci numbers

Recall the Fibonacci sequence:

Fo=0,F,=1, F =F _,+F n=2

n-27

Direct implementation of recursion:

Algorithm £ibl (n) // Directimplementation of recursion
if n<2 then return n
else return fibl (n-1)+ fibl (n-2)

47

Fibonacci numbers
Recursion tree:

15t call

(6
2nd 17th
y ® @
(& O 1843) ONE
4th 9th 1 b 19th Q nd
(2 (2 ®, 2y @© @ ©,
Sth 16 th 24 th 25 th call
2y OO @ OO O ©
8th loth llth 14th 15th 20th 21 st
©
6th 7th

Recursion?
No, thanks !
T(n) > 2 /2]

48

Fibonacci numbers

Iterative version (non-recursive): Use a table to store
intermediate values

Algorithm £fib2 (n) //remember already computed values
f[0]:=0; f£[1]:=1;
for 1:=2 to n do f[i]:= f[i-1] + f£[i1i-2]

Note however:

Time Complexity: O(n) NOT polynomial in |I| = O(logn)
Space complexity: Also O(n) (but we could do it with 3
memory cells = O(1)

Dynamic programming does not always yield
polynomial time algorithms
49

Weighted Interval Scheduling

* Recall the Interval Scheduling problem

 We want to schedule some tasks (e.g., courses) that need to use a
common resource (e.g., a classroom)

* No 2 tasks can be scheduled at the same time

* Weighted version: each task has a weight, may correspond to value or
profit that we derive from the execution of each task

Weighted Interval Scheduling
I: A set A, of n jobs, each with a start time s, a finish time f, and a value v,
Q: Find a feasible schedule with the maximum possible total value

50

Weighted Interval Scheduling

 The greedy algorithm we saw before does not work any more

* |t may be beneficial to select just one job of high value than maximize
the number of non-overlapping jobs

e Actually, no other greedy approach is known for this problem

Dynamic Programming approach

We need to identify an optimal substructure property

Warmup:

* Reorderthejobssothat f,<f,<f,=..<f

* Let O, = optimal schedule if we had only the requests {1, 2, ..., j}
* Let OPT(j) = total value of the optimal solution O,

OPT(j) = Eieo.vi

51

Weighted Interval Scheduling

* |dea: try to find a recursive formula
 We need to relate OPT(j) with the optimal values for smaller instances

Definition: Let p(j) = largest index i, with i < j such that jobs i and j do not
overlap

i.e., the jobs p(j)+1, p(j)+2,...up to j-1 overlap with j

Why is this useful?

Consider an optimal solution O, for {1, 2,...,, j}.

2 observations:
* Ifjisincluded in O, then O; also contains an optimal solution for {1,

2,..., p(j)}
* Since there is no overlap with such jobs

* Ifjisnotincluded in O, then OPT(j) = OPT(j-1)
Hence:

OPT(j) = max{ v, + OPT(p(j)), OPT(j-1) }, for every j = 1

52

Weighted Interval Scheduling

This directly yields a recursive algorithm:

Algorithm WIS1 (n)
// suppose we have pre-computed the values p(j) for every |

if n=0 return 0O;

else return max(v, + WISl (p(n)), WIS1(n-1))

To be more precise:

 The input to the algorithm consists of the vectors
* s=(s;S,,..., S,), the start times
« f=(f,f,,.., f), the finish times (assume we have ordered them)
* v=(vy V..., V,), the values
* WIS1 (j) means the execution of the algorithm on the first j jobs
Complexity:
* Recursion tree grows exponentially
* Same problem as with recursive algorithm for Fibonacci

53

Weighted Interval Scheduling

Memoization:

Use an array to remember already computed values
Loop through the array to compute the optimal values to all

subproblems

Algorithm WIS2 (n)

Set M[0]=0;
Compute the values p(j) for every]
for j = 1 to n do

M[J] = max(vy + M[p(J)], M[J-1])

return M[n]

Complexity:

Within each iteration, we need only O(1)
Hence O(n) total

Weighted Interval Scheduling

 The algorithm only computes the value of the optimal solution

 What if we want to find the schedule as well

 We could use a different array S, so that S[i] maintains the optimal
solution up to {1,...,i}

e But this causes some blowup

 We can instead recover the solution from M (why?)

Summarizing:

Theorem: We can solve the Weighted Interval Scheduling problem in
time O(n)

* Of(nlogn) if the finish times of the jobs are not sorted

95

Maximum Sub-array (MSA)

Maximum Sub-Array (MSA):
I: Array of numbers A[1..n]
Q: Find a sub-array A[p..q] with a maximum sum of its elements

Hence, we are looking for indices p, g, so that the
sub-array A[p..q] maximizes the quantity

q
Vip.g)= Y, AG)
i=p
Example: Profit history
Year 1 2 |3 |4 5 6 (7 |8 |9

Profit -3 |2 |1 (-4 |5 2 |-1 |3 |-1

We want the period of years with the greatest profit: V(5,8)=9

56

Maximum Sub-array (MSA)

We need to find a recurrence

Let E(i) be the value of the maximum sequence ending in position i

Observation:
e The MSA s one of the E(i)’s, thatis Vmax = max; { E(i) }
e The problem is then reduced to the calculation of the E(i)’s

DP: Find the E(i) based on E(i-1) (exploit optimal substructure)
e E(i) has to contain A(i)
e Two cases for E(i):
— Either it contains only Ali]: E(i) = A[i]
— Or it contains the optimal solution E(i-1): E(i) = E(i-1) + A[i]
Hence:

E(i) = max { E(i-1)+A[i], A[i] }
E(1)=A[1]

o7

Example:

A[l..n]

E[1..n]

Vmax

Maximum Sub-array (MSA)

E(i) = max { E(i-1)+A[i], A[i]}, E(1)=A[1]

31 41| 89 26 53 58 97 | -93 -23 84

Maximum Sum for any sub Array ending at it" location

31 10 59 85 32 90 187 94 71 155

Maximum so far

31 31 59 85 85 90 187 187 187 187

58

Maximum Sub-array (MSA)

E(i) = max { E(i-1)+A[i], A[i]}, E(1)=A[1]

MSA(A[1..n])

E(1)=A[1l], Vmax=A(1l)

for 1 = 2 to n do
E(1) = E(i1-1)+A(1)
if E(1) < A(1) E(1) = A(1)
if E(1) > Vmax Vmax = E (1)

Time complexity: O(n)
Space Complexity: O(n) (for the array E)
O(1) if we remove the indices

Maximum Sub-array (MSA)

 What about the indices p, q of the optimal solution?
* Let P(i) be the start index of E(i)

MSA(A[1..n])
E(1)=A[1l], Vmax=A(l), P(1)=1
For 1 = 2 to n do
E(1) = E(1-1)+A(1i), P(1)=P(1-1)
if E(1) < A(1)
E(i) = A(1)
P(1i) = 1

i1f E(1) > Vmax
Vmax = E (1)
p=P (1)
g=1
Time complexity: O(n)
Space Complexity: O(n) (for arrays E, P), O(1) if we remove the indices

60

