n-gram language models and context-aware spelling correction

2023-24

Ion Androutsopoulos

http://www.aueb.gr/users/ion/

These slides are partly based on material from the book Speech and Language Processing by
D. Jurafsky кal J.H. Martin, 2^{η} edition, Pearson

Education, 2009.

Contents

- n-gram language models.
- Estimating probabilities from corpora.
- Entropy, cross-entropy, perplexity.
- Edit distance.
- Context-aware spelling correction.
- Beam-search decoding.

Language models

- How probable is it to encounter (e.g., in news articles) the following sentences (word sequences)?
- The government announcement new austerity metrics hopping to decrease the deficit.
- The government announced new austerity measures hoping to reduce the deficit.
- In many cases, candidate alternative sentences are produced. We wish to keep the most probable ones.
- Speech recognition, optical character recognition, machine translation, smartphone keyboards, spelling and syntax checking, text normalization of social media posts...

n-gram language models

- Notation for sequences of words:

$$
\left\langle w_{1}, w_{2}, \ldots, w_{k}\right\rangle \square w_{1}^{k}
$$

- \boldsymbol{n}-gram: sequence of \boldsymbol{n} consecutive words.
- Trigrams: "the government announced", "government announced new", "announced new austerity", ...
- Bigrams: "the government", "government announced", "announced new", "new austerity", ...
- In other cases, sequences of n consecutive characters.
- Chain rule:

$$
\begin{gathered}
P\left(w_{1}^{k}\right) \square P\left(w_{1}, \ldots, w_{k}\right) \square P\left(w_{1}\right) \cdot P\left(w_{2} \mid w_{1}\right) \\
P\left(w_{3} \mid w_{1}, w_{2}\right) \cdot P\left(w_{4} \mid w_{1}^{3}\right) \cdots P\left(w_{k} \mid w_{1}^{k-1}\right)
\end{gathered}
$$

How do we estimate the probabilities?

- Simplest approach: maximum likelihood estimates from a corpus of C tokens:
$P_{M L E}$ (the) $\square \frac{c \text { (the) }}{C}$
$P_{M L E}($ government \mid the $) \square \frac{c \text { (the, government })}{c(\text { the })}$
$P_{M L E}($ announced \mid the, gov $) \square \frac{c \text { (the, gov, announced })}{c(\text { the, gov })}$
- Many n-grams (esp. 4-grams, 5-grams, ...) will be very rare or may not occur even in a large corpus.
- Very poor or zero probability estimates.
- Leading to a zero chain product...

Markov assumption

- Bigram language model:

$$
\begin{aligned}
& P\left(w_{1}^{k}\right) \square P\left(w_{1}, \ldots, w_{k}\right) \square P\left(w_{1}\right) \cdot P\left(w_{2} \mid w_{1}\right) \cdot \\
& P\left(w_{3} \mid w_{1}, w_{2}\right) \cdot P\left(w_{4} \mid w_{1}^{3}\right) \cdots P\left(w_{k} \mid w_{1}^{k-1}\right) \simeq
\end{aligned}
$$

$$
P\left(w_{1} \mid \text { start }\right) \cdot P\left(w_{2} \mid w_{1}\right) \cdot P\left(w_{3} \mid w_{2}\right) \cdots P\left(w_{k} \mid w_{k-1}\right)
$$

- Trigram language model:
$P\left(w_{1} \mid\right.$ start $_{1}$, start $\left._{2}\right) \cdot P\left(w_{2} \mid\right.$ start $\left._{2}, w_{1}\right) \cdot P\left(w_{3} \mid w_{1}, w_{2}\right)$

$$
P\left(w_{4} \mid w_{2}, w_{3}\right) \cdots P\left(w_{k} \mid w_{k-2}, w_{k-1}\right)
$$

- Stationarity: We assumed probabilities do not depend on where the n-grams are encountered. E.g., in P (announced | the, government), we do not examine if "announced" occurs as the $3^{\text {rd }}$ or $4^{\text {th }}$ or \ldots word in the sentences of the corpus.
- Strictly speaking, we also need an end pseudo-token. See study exercises.

Laplace smoothing

- Even with a Markov assumption, we will still have many \boldsymbol{n}-grams that do not occur in the corpus.
- Laplace smoothing for unigrams: if we have $|V|$ vocabulary words (distinct words),

- Similarly, e.g., for trigrams:

$$
\begin{array}{r}
P_{\text {Laplace }}\left(W_{k} \square w_{k} \mid w_{k-2}, w_{k-1}\right) \square \frac{c\left(w_{k-2}, w_{k-1}, w_{k}\right) \square 1^{\prime}}{\left.c\left(w_{k-2}, w_{k-1}\right) \square|V|^{\prime}\right)} \\
\begin{array}{l}
\text { Add a pseudo-occurrence of each possible } \\
\text { trigram that starts with } w_{k-2}, w_{k-1} . \\
\text { are }|V| \text { such trigrams in total. }
\end{array}
\end{array}
$$

- But we over-estimate rare bigrams, trigrams, ...

Add- α smoothing

- For unigrams: if we have $|V|$ vocabulary words,

$$
P_{\text {Laplace }}(W \square w) \square \frac{c(w) \square \alpha}{C \square \alpha \cdot|V|}
$$

We tune $a(0 \leq a \leq 1)$ on held-out data (see below).

- Similarly, e.g., for trigrams:

$$
P_{\text {Laplace }}\left(W_{k} \square w_{k} \mid w_{k-2}, w_{k-1}\right) \square \frac{c\left(w_{k-2}, w_{k-1}, w_{k}\right) \square \alpha}{c\left(w_{k-2}, w_{k-1}\right) \square \alpha \cdot|V|}
$$

- Better, but still poor estimates for language models.
- In practice, Laplace and add- α smoothing are not used in language models (but often work well in classification tasks).
- See optional reading slides for better estimates for n-gram LMs (e.g., Knesser-Ney smoothing, backoff models).

Linear interpolation

- We use a linear combination of estimates from \boldsymbol{n} gram language models with different n values.

$$
\begin{gathered}
P_{\text {int }}\left(w_{k} \mid w_{k-2}, w_{k-1}\right) \square \lambda_{1} \cdot P\left(w_{k} \mid w_{k-2}, w_{k-1}\right) \square \\
\lambda_{2} \cdot P\left(w_{k} \mid w_{k-1}\right) \square \lambda_{3} \cdot P\left(w_{k}\right) \quad \text { with } \sum_{i \square 1}^{3} \lambda_{i} \square 1
\end{gathered}
$$

Spelling correction/normalization

- The words we see:

He pls gd ftball.

- Possible candidate corrections:

He please god football.
He plays god football.
He plays good football.
He players good football.
...
He pleases god ball.
fT̄ne green words are vocabulary words with small distance (e.g., Levenshtein) from the out-ofvocabulary words.

A language model estimates how well the words of each candidate sequence fit together.

Edit distance

- Input: two strings (e.g., words from tweet and dictionary).
- What is the total minimum cost to convert one input string to the other, using particular operators?
- Levenshtein distance (one possible edit distance):
\circ Operators: insert (I, cost 1), delete (D, cost 1), replace (R, cost 2). Other work may set the cost of R to 1 .
- When converting from Greeklish to Greek, we may want to set, for example, $R(e, \varepsilon)<R(e, \alpha)$.

[^0]
Actually two types of errors...

- The wrong words may actually be vocabulary words!
- $1^{\text {st }}$ type: "he plays good football" \rightarrow "he pls gd ftball".
$\circ 2^{\text {nd }}$ type: "he plays good football" \rightarrow "he please god ftball".
- Let's continue to focus on the $1^{\text {st }} \mathbf{t y p e}$ for the moment.
- The wrong words are all out of vocabulary words (e.g., words that do not occur at least 10 times in a large corpus).
- For each wrong word, get candidate corrections:
- Simplest case: get vocabulary words at a small Levenshtein distance from the wrong word.
- Alternatively use an edit distance that takes into account the keyboard layout, the visual similarity of characters etc., possibly modifying the Replace operator accordingly.

Correcting errors of the $1^{\text {st }}$ type

- The words we see:
w_{1}^{k} : He pls gd ftball.
- Possible candidate corrections:
t_{1}^{k} : He please god football.
t_{1}^{k} : He plays god football.
t t_{1}^{k} : He plays good football.
t_{1}^{k} : He players good football.
t_{1}^{k} : He pleases god ball.
[T̄he green words are vocabulary words with small distance (e.g., Levenshtein) from the out-ofvocabulary words.

A language model estimates how well the words of each candidate sequence fit together.

More to be discussed...

- Exactly how do we combine the edit distances with a language model to correct errors of the $1^{\text {st }}$ type?
- How do we correct errors of the $2^{\text {nd }}$ type?
- How do we evaluate a language model?
\circ Among different language models (e.g., using different n or smoothing), which one is the best?

A noisy channel model

- We assume that all the words were initially correct, but were transmitted through a noisy channel.
- Here the channel distorts the words by occasionally inserting, deleting, or replacing letters.
- We try to guess the initial (correct) words from the observed ones.
○ Initial (correct) words: $t_{1}^{k} \square\left\langle t_{1}, t_{2}, \ldots, t_{k}\right\rangle$
- Observed words:

$$
\begin{array}{r}
w_{1}^{k} \square\left\langle w_{1}, w_{2}, \ldots,\right. \\
\text { able initial words: }
\end{array}
$$

$$
\hat{t}_{1}^{k} \square \underset{t_{1}^{k}}{\arg \max } P\left(t_{1}^{k} \mid w_{1}^{k}\right) \square \underset{t_{1}^{k}}{\arg \max } \frac{P\left(t_{1}^{k}\right) \cdot P\left(w_{1}^{k} \mid t_{1}^{k}\right)}{P\left(w_{1}^{k}\right)}
$$

The most probable initial words

- For each observed sequence (e.g., sentence) w_{1}^{k} :

$\hat{t}_{1}^{k} \square \arg \max P\left(t_{1}^{k} \mid w_{1}^{k}\right) \square \arg \max \left(P\left(t_{1}^{k}\right) \cdot P\left(w_{1}^{k} \mid t_{1}^{k}\right)\right.$

In each candidate sequence \boldsymbol{t}_{1}^{k}, every wrong word has been replaced by a vocabulary word at a small distance from the wrong one.

Language model
 (e.g., trigram model)
 Simplest approach: probabilities inversely

proportional to edit distance (with normalization). See J\&M for better ideas.

$$
P\left(w_{1}^{k} \mid t_{1}^{k}\right) \square P\left(w_{1} \mid t_{1}^{k}\right) \cdot P\left(w_{2} \mid w_{1}, t_{1}^{k}\right) \cdot \therefore P\left(w_{k} \mid w_{1}^{k-1}, t_{1}^{k}\right)
$$

$$
\left.\simeq P\left(w_{1} \mid t_{1}\right) \cdot P\left(w_{2} \mid t_{2}\right) \cdot \ldots P\left(w_{k} \mid t_{k}\right) \square \prod_{i \square P}^{k} P\left(w_{i} \mid t_{i}\right)\right)
$$

\circ We assume that the probability to encounter an observed word depends only on the corresponding initial word.

Correcting errors of both types

- The words we see:
w_{1}^{k} : He pls god ftball.
- Possible candidate corrections:
t_{1}^{k} : He please god football.
t_{1}^{k} : He plays god football.
t_{1}^{k} : He plays good football.
t_{1}^{k} : Her players good football.
t_{1}^{k} : Her pleases god ball.

We now replace every word (even vocabulary words) by other close vocabulary words (or the same word).

Again, a language model estimates how well the words of each candidate sequence fit together.

Generalization for $2^{\text {nd }}$ type of errors

- Now every observed word may be wrong.
 observed word may have been replaced by a vocabulary word at a small distance. Many more candidates!

$$
P\left(w_{1}^{k} \mid t_{1}^{k}\right) \simeq \prod_{i \square 1}^{k} P\left(w_{i} \mid t_{i}\right)
$$

Again, simplest approach: probabilities inversely proportional to edit distance
(with normalization). See
J\&M for better ideas.

- Finding the best candidate sequence t_{l}, \ldots, t_{k} is a "decoding" problem, which can be solved with heuristic search (e.g., beam search) or dynamic programming (e.g., Viterbi).

Hill climbing search (HC)

1. Make the initial state the current state.
2. Generate and assess the children-states of the current state.
3. If no child-state is better than the current state, return the current state.
4. Make the best child-state the current state.
5. Go to step 2.

Spoiler alert: Most neural networks are also trained using a kind of HC (SGD, stochastic gradient descent), where the state contains the weights of the network.

Hill climbing

(Local) Beam search

(Local) Beam search

(Local) Beam search

- Like HC, but we keep \boldsymbol{k} states in the search frontier.
- Initially k random states.
- At each step, produce and assess the children-states of the \boldsymbol{k} states in the frontier.
- If a final state criterion exists and we reach a final state, stop.
- Keep the \boldsymbol{k} best of the children-states and repeat.
- Until we exceed a maximum number of iterations.
- We often repeat the search several times, starting from different initial \boldsymbol{k} states.
- Random restarts are also useful in HC.
- In neural nets, restarts with different random initial weights.
- In spelling correction decoding, there is only one initial state.

Beam search decoder

We search for a path from start to a state of column $k=4$ that maximizes $P\left(t_{1}^{k}\right) P\left(w_{1}^{k} \mid t_{1}^{k}\right)$ or that minimizes $L_{k}=-\lambda_{1} \log P\left(t_{1}^{k}\right)-\lambda_{2} \log P\left(w_{1}^{k} \mid t_{1}^{k}\right)$.
$\uparrow \quad$ With our previous simplifications: $\prod_{i=1}^{k} P\left(w_{i} \mid t_{i}\right)$
For a bigram language model: $\prod_{i=1}^{k} P\left(t_{i} \mid t_{i-1}\right)$

Beam search decoder

We search for a path from start to a state of column $k=4$ that maximizes $P\left(t_{1}^{k}\right) P\left(w_{1}^{k} \mid t_{1}^{k}\right)$ or that minimizes $L_{k}=-\lambda_{1} \log P\left(t_{1}^{k}\right)-\lambda_{2} \log P\left(w_{1}^{k} \mid t_{1}^{k}\right)$.
$\uparrow \quad$ With our previous simplifications: $\prod_{i=1}^{k} P\left(w_{i} \mid t_{i}\right)$ For a bigram language model: $\prod_{i=1}^{k} P\left(t_{i} \mid t_{i-1}\right)$

For each k, we keep
the b (here $b=2$) best paths only.

Beam search decoder

We search for a path from start to a state of column $k=4$ that maximizes $P\left(t_{1}^{k}\right) P\left(w_{1}^{k} \mid t_{1}^{k}\right)$ or that minimizes $L_{k}=-\lambda_{1} \log P\left(t_{1}^{k}\right)-\lambda_{2} \log P\left(w_{1}^{k} \mid t_{1}^{k}\right)$.
$\uparrow \quad$ With our previous simplifications: $\prod_{i=1}^{k} P\left(w_{i} \mid t_{i}\right)$ For a bigram language model: $\prod_{i=1}^{k} P\left(t_{i} \mid t_{i-1}\right)$

For each k, we keep
the b (here $b=2$) best paths only.

Beam search decoder

We search for a path from start to a state of column $k=4$ that maximizes $P\left(t_{1}^{k}\right) P\left(w_{1}^{k} \mid t_{1}^{k}\right)$ or that minimizes $L_{k}=-\lambda_{1} \log P\left(t_{1}^{k}\right)-\lambda_{2} \log P\left(w_{1}^{k} \mid t_{1}^{k}\right)$.
$\uparrow \quad$ With our previous simplifications: $\prod_{i=1}^{k} P\left(w_{i} \mid t_{i}\right)$ For a bigram language model: $\prod_{i=1}^{k} P\left(t_{i} \mid t_{i-1}\right)$

For each k, we keep
the b (here $b=2$) best paths only.

Beam search decoder

We search for a path from start to a state of column $k=4$ that maximizes $P\left(t_{1}^{k}\right) P\left(w_{1}^{k} \mid t_{1}^{k}\right)$ or that minimizes $L_{k}=-\lambda_{1} \log P\left(t_{1}^{k}\right)-\lambda_{2} \log P\left(w_{1}^{k} \mid t_{1}^{k}\right)$.
$\uparrow \quad$ With our previous simplifications: $\prod_{i=1}^{k} P\left(w_{i} \mid t_{i}\right)$ For a bigram language model: $\prod_{i=1}^{k} P\left(t_{i} \mid t_{i-1}\right)$

For each k, we keep
the b (here $b=2$) best paths only.

Beam search decoder

We search for a path from start to a state of column $k=4$ that maximizes $P\left(t_{1}^{k}\right) P\left(w_{1}^{k} \mid t_{1}^{k}\right)$ or that minimizes $L_{k}=-\lambda_{1} \log P\left(t_{1}^{k}\right)-\lambda_{2} \log P\left(w_{1}^{k} \mid t_{1}^{k}\right)$.
$\uparrow \quad$ With our previous simplifications: $\prod_{i=1}^{k} P\left(w_{i} \mid t_{i}\right)$ For a bigram language model: $\prod_{i=1}^{k} P\left(t_{i} \mid t_{i-1}\right)$

For each k, we keep
the b (here $b=2$) best paths only.

Beam search decoder

We search for a path from start to a state of column $k=4$ that maximizes $P\left(t_{1}^{k}\right) P\left(w_{1}^{k} \mid t_{1}^{k}\right)$ or that minimizes $L_{k}=-\lambda_{1} \log P\left(t_{1}^{k}\right)-\lambda_{2} \log P\left(w_{1}^{k} \mid t_{1}^{k}\right)$.
$\uparrow \quad$ With our previous simplifications: $\prod_{i=1}^{k} P\left(w_{i} \mid t_{i}\right)$ For a bigram language model: $\prod_{i=1}^{k} P\left(t_{i} \mid t_{i-1}\right)$

For each k, we keep
the b (here $b=2$) best paths only.

Smart keyboards

人

To
|type message
Pitch

More to be discussed...

- Exactly how do we combine the edit distances with a language model to correct errors of the $1^{\text {st }}$ type?
- How do we correct errors of the $2^{\text {nd }}$ type?
- How do we evaluate a language model?
- Among different language models (e.g., using different n or different smoothing), which one is the best?

Encoding example and entropy

- Let the possible values of a random variable \boldsymbol{C} be:
$-c_{1}$ with $P\left(c_{1}\right)=1 / 4, c_{2}$ with $P\left(c_{2}\right)=1 / 4, c_{3}$ with $P\left(c_{3}\right)=1 / 2$.
- A good encoding:
- Use fewer bits for more probable values.
$-c_{1} \rightarrow 10, c_{2} \rightarrow 11$. We use $-\log _{2}(1 / 4)=2$ bits.
$-c_{3} \rightarrow 0$. We use $-\log _{2}(1 / 2)=1$ bits.
- Exp. number of transmitted bits: $1 / 4 \cdot 2+1 / 4 \cdot 2+1 / 2 \cdot 1=1.5$
- Information theory says the ideal encoding (lowest expected number of transmitted bits) uses $-\log _{2} P\left(\boldsymbol{c}_{\boldsymbol{i}}\right)$ bits for value $\boldsymbol{c}_{\boldsymbol{i}}$.
- We may need to use a slightly different number of bits in practice, if the $P\left(c_{i}\right)$ probabilities are not powers of 2 .
- With an ideal encoding (as above), the expected number of transmitted bits is the Entropy $H(C)$ of C.
- It shows how uncertain we are about the value of C, i.e., how much information (in bits) we need to transmit to let somebody know its value.

Entropy

- Entropy of a random variable C :
- How uncertain we are about the value of \boldsymbol{C}.
- How much information (in bits, with an ideal encoding) we need to receive to be certain about the value of C.
- What is the expected number of bits (with an ideal encoding) that we need to receive to be certain about the value of C.

- If C has only two possible values:
$H(C) \square-P(C \square 1) \cdot \log _{2} P(C \square 1)-P(C \square 0) \cdot \log _{2} P(C \square 0)$
Probabilities estimated from training data.

Example

- Collection of $\mathbf{8 0 0}$ training e-mail messages.
- Messages received in the past, manually classified.
- 200 spam. 600 ham (non-spam).
- Estimate the entropy of \boldsymbol{C} using the training messages.
- $\boldsymbol{C}=\mathbf{1}$ (spam) $\mathfrak{\eta} \boldsymbol{C}=\mathbf{0}$ (ham).
$-\log _{2} 3=1.585$
- Repeat when all the training messages are in one category (all spam, or all ham).
- Repeat when we have an equal number of training messages per category (400 spam, 400 ham).

$$
H(C) \square-P(C \square 1) \cdot \log _{2} P(C \square 1)-P(C \square 0) \cdot \log _{2} P(C \square 0)
$$

Cross-entropy

- The entropy of a random variable C shows how uncertain we are about its value.

$$
H(C) \square-\sum_{c_{i}} P\left(C \square c_{i}\right) \cdot \log _{2} P\left(C \square c_{i}\right)
$$

- How many bits (expected value) we need to transmit (or receive) with an ideal encoding to transmit (receive) its value.
- If we use an encoding based on inaccurate probability estimates P_{m} instead of the correct probabilities P :

$$
H_{P_{m}}(C) \square-\sum_{c_{i}} P\left(C \square c_{i}\right) \cdot \log _{2} P_{m}\left(C \square c_{i}\right) \geq H(C)
$$

- We need to transmit more bits, because we don't use an ideal encoding (which uses $-\log _{2} P\left(c_{i}\right)$ bits per value).

Cross-entropy - continued

- If we have two models $\boldsymbol{P}_{\boldsymbol{m} I}(C), \boldsymbol{P}_{\boldsymbol{m} 2}(C)$ both trying to estimate the correct probabilities $\boldsymbol{P}(\boldsymbol{C})$, which one is the best?

$$
\begin{aligned}
& H_{P_{m 1}}(C) \square-\sum_{c_{i}} P\left(C \square c_{i}\right) \cdot \log _{2} P_{m 1}\left(C \square c_{i}\right) \geq H(C) \\
& H_{P_{m 2}}(C) \square-\sum P\left(C \square c_{i}\right) \cdot \log _{2} P_{m 2}\left(C \square c_{i}\right) \geq H(C)
\end{aligned}
$$

- The one with the smallest cross-entropy.
- It allows transmitting the values of C using fewer bits.
\circ Its encoding is based on more accurate probability estimates.
- Kullback-Leibler divergence (relative entropy):

$$
D_{K L}\left(P_{m} \| P\right) \square H_{P_{m}}(C)-H(C) \square-\sum_{c_{i}} P\left(C \square c_{i}\right) \cdot \log _{2} \frac{P_{m}\left(C \square c_{i}\right)}{P\left(C \sqcap c_{i}\right)}
$$

Language entropy

- We are given \boldsymbol{n}-tuples of words of a language \boldsymbol{L}. How uncertain are we about the \boldsymbol{n}-tuple we will be given?

$$
H\left(W_{1}^{n} \mid L\right) \square H\left(W_{1}, \ldots, W_{n} \mid L\right) \square-\sum_{n} P\left(W_{1}^{n} \square w_{1}^{n}\right) \cdot \log _{2} P\left(W_{1}^{n} \square w_{1}^{n}\right)
$$

- Per-word entropy (entropy rate):

$$
\frac{1}{n} \cdot H\left(W_{1}^{n} \mid L\right) \square-\frac{1}{n} \sum_{w_{1}^{n} \in V(L)^{n}} P\left(W_{1}^{n} \square w_{1}^{n}\right) \cdot \log _{2} P\left(W_{1}^{n} \square w_{1}^{n}\right)
$$

- Entropy of language L :

$$
\begin{aligned}
& H(L) \square \lim _{n \rightarrow \square \infty} \frac{1}{n} H\left(W_{1}^{n} \mid L\right) \square \\
& \quad-\lim _{n \rightarrow \square \infty} \frac{1}{n} \sum_{w_{1}^{n} \in V(L)^{n}} P\left(W_{1}^{n} \square w_{1}^{n}\right) \cdot \log _{2} P\left(W_{1}^{n} \square w_{1}^{n}\right)
\end{aligned}
$$

Language entropy - continued

- Entropy of language L :

$$
\begin{aligned}
H(L) & \square \lim _{n \rightarrow \square \infty} \frac{1}{n} H\left(W_{1}^{n} \mid L\right) \square \\
& -\lim _{n \rightarrow \square \infty} \frac{1}{n} \sum_{w_{1}^{n} \in V(L)^{n}} P\left(W_{1}^{n} \square w_{1}^{n}\right) \cdot \log _{2} P\left(W_{1}^{n} \square w_{1}^{n}\right)
\end{aligned}
$$

- It can be proven (Shannon-McMillan-Breiman) that:

$$
H(L) \square-\lim _{n \rightarrow \square \infty} \frac{1}{n} \log _{2} P\left(W_{1}^{n} \square w_{1}^{n}\right) \approx-\frac{1}{N} \log _{2} P\left(w_{1}^{N}\right)
$$

- In other words, we can use only one, very long sequence of N words (a corpus) of the language L.
- More precisely, assuming that the language is stationary and ergodic.

Language cross-entropy

- If we have two language models $\boldsymbol{P}_{\boldsymbol{m} \boldsymbol{1}}, \boldsymbol{P}_{\boldsymbol{m} 2}$ for a language L, which one is the best?

$$
\begin{gathered}
H_{P_{m 1}}(L) \square-\lim _{n \rightarrow \square \infty} \frac{1}{n} \sum_{w_{1}^{n} \in V(L)^{n}} P\left(W_{1}^{n} \square w_{1}^{n}\right) \cdot \log _{2} P_{m 1}\left(W_{1}^{n} \square w_{1}^{n}\right) \\
\square-\lim _{n \rightarrow \square \infty} \frac{1}{n} \log _{2} P_{m 1}\left(w_{1}^{n}\right) \simeq-\frac{1}{N} \log _{2} P_{m 1}\left(w_{1}^{N}\right) \\
H_{P_{m 2}}(L) \square-\lim _{n \rightarrow \square \infty} \frac{1}{n} \sum_{w_{1}^{n} \in V(L)^{n}} P\left(W_{1}^{n} \square w_{1}^{n}\right) \cdot \log _{2} P_{m 2}\left(W_{1}^{n} \square w_{1}^{n}\right) \\
\square-\lim _{n \rightarrow-\infty} \frac{1}{n} \log _{2} P_{m 2}\left(w_{1}^{n}\right) \simeq-\frac{1}{N} \log _{2} P_{m 2}\left(w_{1}^{N}\right)
\end{gathered}
$$

- The model with the smallest language cross-entropy. In effect, the model that assigns the largest probability to the test corpus.
○ Always true: $H_{P_{m}}(L) \geq H(L)$

Cross-Entropy and Perplexity

- For example, if a bigram language model is used:
$-\frac{1}{N} \log _{2} P_{m}\left(w_{1}^{N}\right)=-\frac{1}{N} \log _{2}\left[P_{m}\left(w_{1} \mid \operatorname{start}\right) P_{m}\left(w_{2} \mid w_{1}\right) \ldots\right]$

$$
=-\frac{1}{N}\left[\log _{2} P_{m}\left(w_{1} \mid \text { start }\right)+\log _{2} P_{m}\left(w_{2} \mid w_{1}\right)+\ldots\right]
$$

- Usually perplexity scores are published:

$$
\text { Perplexity }=2^{H_{P_{m}}(L) \cong} 2^{-\frac{1}{N} \log _{2} P_{m}\left(w_{1}^{n}\right)}
$$

- The lower the perplexity, the better the model.
- Alternative interpretation: a language model with perplexity r is as uncertain about the next word as a model that selects uniformly and independently words from a vocabulary of r words.
$-\log P\left(w_{i} \mid w_{i-1}\right)$
Comparison 1-4-Gram $\quad-\log P\left(w_{i} \mid w_{i-2}, w_{i-1}\right)$

	word	unigram	bigram	trigram	4-gram
	i	6.684	3.197	3.197	3.197
	would	8.342	2.884	2.791	2.791
	like	9.129	2.026	1.031	1.290
	to	5.081	0.402	0.144	0.113
	commend	15.487	12.335	8.794	8.633
	the	3.885	1.402	1.084	0.880
	rapporteur	10.840	7.319	2.763	2.350
$-\frac{1}{N} \sum_{i=1}^{N} \log P\left(w_{i} \mid w_{i-2}, w_{i-1}\right)$	on	6.765	4.140	4.150	1.862
	his	10.678	7.316	2.367	1.978
$-\frac{1}{N} \sum_{i=1}^{N} \log P\left(w_{i} \mid w_{i-1}\right)$	- +W2rk	9.993	4.816	3.498	2.394
		-- 4.896	3.020	1.785	1.510
	</s>>...	-. 4.828	-- 0.005	0.000	0.000
	average	8.051	4.072	- 2.634	2.251
	perplexity	265.136	16.817	6.206	4.758

From P. Blunsom's presentation "From Language Modelling to Machine Translation" http://videolectures.net/deeplearning2015_blunsom_machine_translation/

LMs as next word predictors

- Sequence probability using a bigram LM:

$$
\begin{aligned}
& P\left(w_{1}^{k}\right) \square P\left(w_{1}, \ldots, w_{k}\right) \square P\left(w_{1}\right) \cdot P\left(w_{2} \mid w_{1}\right) . \\
& P\left(w_{3} \mid w_{1}, w_{2}\right) \cdot P\left(w_{4} \mid w_{1}^{3}\right) \cdots P\left(w_{k} \mid w_{1}^{k-1}\right) \simeq \\
& P\left(w_{1} \mid \text { start }\right) \cdot P\left(w_{2} \mid w_{1}\right) \cdot P\left(w_{3} \mid w_{2}\right) \cdots P\left(w_{k} \mid w_{k-1}\right)
\end{aligned}
$$

- We can think of the $\mathbf{L M}$ as a system that provides the probabilities $\boldsymbol{P}\left(\boldsymbol{w}_{\boldsymbol{i}} \mid \boldsymbol{w}_{\boldsymbol{i - 1}}\right)$, which we then multiply.
- Or the probabilities $\boldsymbol{P}\left(\boldsymbol{w}_{\boldsymbol{i}} \mid \boldsymbol{w}_{\boldsymbol{i - 2}}, \boldsymbol{w}_{\boldsymbol{i - 1}}\right)$ for a trigram LM.
- Or the probabilities $\boldsymbol{P}\left(\boldsymbol{w}_{\boldsymbol{i}} \mid \boldsymbol{h}\right)$ for an LM that considers all the "history" (previous words) h, e.g., in an RNN LM.
- An LM typically provides a distribution $\boldsymbol{P}(\boldsymbol{w} \mid \boldsymbol{h})$ showing how probable it is for every word $w \in V$ to be the next one.

Training, development, test data

- Training data:
- Used to estimate (learn) the probabilities of \boldsymbol{n}-grams.
- More generally, we train our model on these data.
- Development data:
- Used to select models (e.g., 2-gram or 3-gram LM), tune hyper-parameters (e.g., λ of interpolated LMs), select best training epochs (in neural networks) etc.
- If we make these choices by evaluating on test data, we indirectly train our model on the test dataset!
- Test data:
- Used for the final evaluation of our model, to see how well it performs on unseen data.

Training, development, test data

training data

development data
> final perplexity
> (or other score, to check the performance on unseen data)

test data

- In competitions, the test data may not be publicly available.
- The development data may have to be "held out" from the training data.
- This reduces the size of the training set.
- And a small development set, may not be representative.

Cross-validation

- Instead of holding out dev data from the training data:
- Divide the training data into \boldsymbol{n} parts (e.g., 5), often preserving class ratios (e.g., positives/negatives) in all parts ("stratified").
- Perform \boldsymbol{n} iterations (folds).
- In each iteration, use a different part as dev data and the other n-1 parts as training data.
- Average (e.g., the F-measure score) over the iterations.
- Even better (but costly): iterative cross-validation.
- Repeat the cross-validation multiple times, with different random segmentations into \boldsymbol{n} parts.

Additional optional study slides.

Kneser-Ney smoothing

- E.g., for bigrams w_{k-1}, w_{k} :
\checkmark green, apple
\checkmark green, paper
\checkmark green, book
$\checkmark \ldots$
\checkmark
\times green, mouse
\times green, cyclotron
\times green, York \times

Encountered in the corpus, i.e., $c\left(w_{k-1}, w_{k}\right)>0$. Steal probability mass from each estimate $\frac{c\left(w_{k-1}, w_{k}\right)}{c\left(w_{k-1}\right)}$, i.e., use $\frac{c\left(w_{k-1}, w_{k}\right)-D}{c\left(w_{k-1}\right)}$, where D is constant.

Not encountered in the corpus, i.e., $c\left(w_{k-1}, w_{k}\right)=0$. Distribute to them the probability mass stolen from all the encountered $\boldsymbol{w}_{\boldsymbol{k}-\mathbf{1}}, \boldsymbol{w}_{\boldsymbol{k}}$ that had the same $\boldsymbol{w}_{\boldsymbol{k}-1}$ ("green"). Distribute proportionally to $\boldsymbol{P}\left(\boldsymbol{w}_{\boldsymbol{k}}\right)$ (e.g., "mouse" is more frequent than "cyclotron").

Kneser-Ney smoothing

- Formula for ideas of previous slide (D is constant):

$$
P_{K N}\left(w_{k} \mid w_{k-1}\right) \square\left\{\begin{array}{c}
\frac{c\left(w_{k-1}, w_{k}\right)-D}{c\left(w_{k-1}\right)}, \text { if } c\left(w_{k-1}, w_{k}\right) \square 0 \\
a\left(w_{k-1}\right) \cdot P\left(w_{k}\right), \text { else }
\end{array}\right.
$$

$\circ \alpha$ values needed to ensure that probabilities sum up to 1 .

Improved $\mathrm{K}-\mathrm{N}$ smoothing

- Instead of $P\left(w_{k}\right)$, distribute the stolen probability mass proportionally to:

$$
\operatorname{Prev}\left(w_{k}\right)=\frac{\operatorname{prev}\left(w_{k}\right)}{\sum_{v \in V: c\left(w_{k-1}, v\right)=0} \operatorname{prev}(v)}
$$

The denominator ensures that the $\operatorname{Prev}\left(w_{k}\right)$ scores of all the words w_{k} that need to receive stolen probability mass sum to 1 .
where:

$$
\rightarrow \operatorname{prev}\left(w_{k}\right)=\left|\left\{w \in V: c\left(w, w_{k}\right)>0\right\}\right|
$$

How many vocabulary (distinct) words occur immediately before \boldsymbol{w}_{k} in the corpus. E.g., "York" may occur almost always after "New"; hence "green York" should not be given much of the probability mass stolen from the encountered bigrams that start with "green".

Improved K-N smoothing

$$
\begin{aligned}
& P_{K N}\left(w_{k} \mid w_{k-1}\right) \square\left\{\begin{array}{c}
\frac{c\left(w_{k-1}, w_{k}\right)-D}{c\left(w_{k-1}\right)}, \text { if } c\left(w_{k-1}, w_{k}\right) \square 0 \\
a\left(w_{k-1}\right) \cdot \operatorname{Prev}\left(w_{k}\right), \text { else }
\end{array}\right. \\
& a\left(w_{k-1}\right)=\frac{D}{c\left(w_{k-1}\right)} \cdot\left|\left\{w \in V: c\left(w_{k-1}, w\right)>0\right\}\right|
\end{aligned}
$$

Total probability mass stolen from bigrams that start with w_{k-1} ($w_{k-1}="$ green" in our example).

Katz backoff

- Consult an n-gram model with a smaller n, whenever necessary. For example, when using a trigram model:

$$
\begin{gathered}
P_{\text {Katz }}\left(w_{k} \mid w_{k-2}, w_{k-1}\right) \square\left\{\begin{array}{c}
P\left(w_{k} \mid w_{k-2}, w_{k-1}\right), \text { if } c\left(w_{k-2}^{k}\right) \square 0 \\
a\left(w_{k-2}, w_{k-1}\right) \cdot P_{\text {Katz }}\left(w_{k} \mid w_{k-1}\right), \text { else }
\end{array}\right. \\
P_{\text {Katz }}\left(w_{k} \mid w_{k-1}\right) \square\left\{\begin{array}{c}
P\left(w_{k} \mid w_{k-1}\right), \text { if } c\left(w_{k-1}, w_{k}\right) \square 0 \\
a\left(w_{k-1}\right) \cdot P\left(w_{k}\right), \text { else }
\end{array}\right.
\end{gathered}
$$

- The α values are needed to ensure that:

$$
\sum_{w_{k} \in V} P_{K a t z}\left(w_{k} \mid w_{k-2}, w_{k-1}\right) \square 1 \quad \sum_{w_{k} \in V} P_{K a t z}\left(w_{k} \mid w_{k-1}\right) \square 1
$$

- Consult the book of Jurafsky \& Martin for formulae to compute the α values and (many) other smoothing methods.

Computing Levenshtein distance

- How can we convert:

$$
\pi \dot{\delta} \zeta o l \text { to } \pi \alpha i \zeta \omega
$$

based on shorter (by one final letter) forms of $\pi \varepsilon ́ \zeta o l$ and/or $\pi \alpha i \zeta \omega$?

- $1^{\text {st }}$ way: Delete the last letter of $\pi \dot{\varepsilon} \zeta$ or and convert $\pi \varepsilon ́ \zeta o$ to $\pi \alpha i \zeta \omega$.

$$
\begin{gathered}
\pi \dot{\varepsilon} \zeta o \lambda \rightarrow \pi \alpha i \zeta \omega \\
\operatorname{Del}(\imath)+\operatorname{cost}(\pi \dot{\varepsilon} \zeta o, \pi \alpha i \zeta \omega)
\end{gathered}
$$

- $2^{\text {nd }}$ way: Convert $\pi \dot{\varepsilon} \zeta o \iota$ to $\pi \alpha i \zeta$ and add ω to the end of $\pi \alpha i \zeta$.

$$
\begin{gathered}
\pi \varepsilon ́ \zeta o l \rightarrow \pi \alpha i \zeta @ \\
\operatorname{cost}(\pi \dot{\varepsilon} \zeta o l, \pi \alpha i \zeta)+\operatorname{Ins}(\omega)
\end{gathered}
$$

Computing Levenshtein distance (II)

- 3 rd way: Convert $\pi \varepsilon ́ \zeta o$ to $\pi \alpha i \zeta$ and replace l by ω.

$$
\begin{gathered}
\pi \dot{\varepsilon} \zeta o @ \rightarrow \pi \alpha i \zeta @ \\
\operatorname{cost}(\pi \varepsilon \dot{\varepsilon} \zeta o, \pi \alpha i \zeta)+\operatorname{Rep}(l, \omega)
\end{gathered}
$$

- Which way is the best?
- The one with the smallest cost.
- At each step, we consider all three ways and we select the cheapest one (Ins, Del, or Rep).

Computing Levenshtein distance

Computing Levenshtein distance

Computing Levenshtein distance

Computing Levenshtein distance

	\#	π	$\boldsymbol{\alpha}$	í	ζ	ε	τ	ε
\#	0	1	2	3	4	5	6	7
π	1	0	1	2	3	4	5	6
$\dot{\varepsilon}$	2	1	2	3	4	3	4	5
ζ	3	2	3	4	J	4	5	6
0	4	3	4	5	4	5	6	7
t	5	4	5	4	5	6	7	8
τ	6	5	6	5	6	7	6	7
$\boldsymbol{\alpha}$	7	6	5	6	7	8	7	
t	8	7	6	5	6	7	8	(9)

\uparrow Del $(+1)$
Ins $(+1)$
Rep $(+2$, or 0 for same letter $)$
Shaded cells show one of the possible alignments.

For each cell, the outgoing arrows point to the neighbor(s) the cell's (best) value is based on.

Recommended reading

- Jurafsky \& Martin (2 ${ }^{\text {nd }}$ ed.): chapter 4 (not sections 4.5.2, 4.5.3, 4.7.1, 4.9.2), sections 3.10, 3.11, 5.9.
- Available at AUEB's library.
- See also the free draft of the $3^{\text {rd }}$ edition: http://web.stanford.edu/~jurafsky/slp3/
- For more information, consult chapters 2 and 6 of Manning \& Schütze's book Foundations of Statistical Natural Language Processing, MIT Press, 1999.
- Available at AUEB's library.
- Chapter 2 introduces basic concepts of probability theory, entropy, the noisy channel etc.
- Chapter 6 covers n-gram language models.

[^0]: We also get an alignment of characters. Similarly, we can compute the edit distance and alignment of the words of two sentences, by applying I, D, R to words instead of characters.

