
 

 

Exercises on Natural Language Processing with Transformers 
 

Ion Androutsopoulos, 2023–24 
 
Submit as a group of 2–3 members (unless specified otherwise in the lectures) a report 
(max. 10 pages, PDF format) for exercises 1 and 2. Include in your report all the 
required information, especially experimental results. Do not include code in the report, 
but include a link to a Colab notebook with your code. Make sure to divide fairly the 
work of your group to its members and describe in your report the contribution of each 
member. The contribution of each member will also be checked during the oral 
examination of your submission. For delayed submissions, one point will be subtracted 
per day of delay.  
 
1. Repeat Exercise 2 of Part 5 (sentiment classifier), by fine-tuning a pre-trained BERT 
model.1 Tune the hyper-parameters (e.g., sizes of any task-specific layers on top of BERT, 
number of BERT encoder blocks to keep frozen) on the development subset of your dataset. 
Monitor the performance of your models on the development subset during training to decide 
how many epochs to use. If the texts of your experiments exceed BERT’s maximum length 
limit, you may want to truncate them at the maximum allowed length of BERT or use a 
BERT-like model that can handle longer texts (e.g., Longformer).2 Include experimental 
results of a baseline majority classifier, as well as experimental results of your best classifiers 
from exercise 15 of Part 2, exercise 9 of Part 3, exercise 1 of Part 4, exercise 2 of Part 5, now 
treated as additional baselines. Otherwise, the contents of your report should be as in exercise 
2 of Part 5, but now with information and results for the experiments of this exercise. You 
may optionally include (for extra bonus) indicative experimental results on a small subset of 
the test set (e.g., 10 test examples) obtained by prompting an LLM (e.g., Chat-GPT), using 
appropriate instructions and possibly including few-shot examples (demonstrators).3 
 
2. Repeat Exercise 3 of Part 5 (POS tagger), by fine-tuning a pre-trained BERT model. Tune 
the hyper-parameters on the development subset of your dataset. Monitor the performance of 
your models on the development subset during training to decide how many epochs to use. If 
the sentences of your experiments exceed BERT’s maximum length limit, you may want to 
truncate them at the maximum allowed length of BERT or use a BERT-like model that can 
handle longer texts (e.g., Longformer). Include experimental results of a baseline that tags 
each word with the most frequent tag it had in the training data; for words that were not 
encountered in the training data, the baseline should return the most frequent tag (over all 
words) of the training data. Also include experimental results of your best method from 
exercise 10 of Part 3, exercise 2 of Part 4, exercise 3 of Part 5, now treated as additional 
baselines. Otherwise, the contents of your report should be as in exercise 3 of Part 5, but now 
with information and results for the experiments of this exercise. You may optionally include 
(for extra bonus) indicative experimental results on a small subset of the test set (e.g., 10 test 
examples) obtained by prompting an LLM (e.g., Chat-GPT), using appropriate instructions 
and possibly including few-shot examples (demonstrators). 
  

 
1 You can use, for example, https://huggingface.co/transformers/.  
2 See https://huggingface.co/docs/transformers/model_doc/longformer. 
3 See, for example, https://chat.openai.com/auth/login, https://chat.lmsys.org/, 
https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI. 
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3. (a) We were given a BERT model pre-
trained on a generic English corpus and we 
want to use it to build a Machine Reading 
Comprehension (MRC) system. The MRC 
system will be given a question and a 
paragraph (as shown in the figure) and will 
aim to predict the spans (sequences of tokens) 
of the paragraph that answer the question. The 
first token of each answer span should be 
classified as B (begin), the other tokens of the 
answer span as I (inside), and all the other 
tokens of the paragraph as O (outside). Let ℎ! 
be BERT’s top-level representation of the i-th 
token of the paragraph and let 𝑝! ∈ [0,1]" be 
the probability distribution over the three 
classes (B, I, O) produced by the MRC model 
for the same token. We add a task-specific dense layer on top of BERT to obtain the 𝑝! 
distribution for each token of the paragraph from the corresponding ℎ!. Write a formula 
showing how 𝒑𝒊 is obtained from 𝒉𝒊, assuming ℎ! ∈ ℝ$%&. Also write down the 
dimensions of all the matrices and vectors used in the formula. 
 
Formula: 𝑝! = softmax(𝑊ℎ! + 𝑏), where 𝑝!,( =

[*+,(./!01)]"	
∑ [*+,(./!01)]#	$
#%&

 and 𝑗 ∈ {1, 2, 3}. 
 
Dimensions: 𝑊 ∈ ℝ"×$%&, 𝑏 ∈ ℝ" 

 
(b) Write a detailed formula showing how you would compute the overall loss (L) for an 
input training instance when training the model (jointly fine-tuning BERT and training the 
task specific dense layer on top). Assume for simplicity that in all the training instances, the 
question is 𝑁7 tokens long and the paragraph is 𝑁8 tokens long. Call 𝑡! the correct (gold) 
output probability distribution for the i-th token of the paragraph. Do not assume that every 
𝒕𝒊 is 1-hot. For example, 𝑡! may be a gold per-token probability distribution over the classes, 
based on the opinion of multiple human annotators; we may have three annotators, two of 
them may have said that the i-th token is a B, and the third annotator may have said it is an O, 
in which case the gold distribution for the token over B, I, O is 2/3, 0, 1/3. 
 
Loss: 𝐿 = −∑ ∑ 𝑡!,( log 𝑝!,("

(9$
:'
!9$  

 
(c) Now assume that every 𝒕𝒊 is 1-hot. Show how the formula of the previous sub-
question can be simplified. Clearly explain the steps of the simplification. 
 
Solution: 
 
Now for every token (at position 𝑖) of the paragraph, 𝑡!,( = 1 if the correct class of the token 
is the 𝑗-th one, and 𝑡!,( = 0 otherwise. Let 𝑟(𝑖) be the (index of the) correct class of the 𝑖-th 
token. Then the loss becomes: 
 

𝐿 = −H𝑡!,;(!) log 𝑝!,;(!)

:'

!9$

=Hlog𝑝!,;(!)

:'

!9$

 

 
i.e., we maximize the log-likelihood of the correct classes of the paragraph’s tokens.  
 

BERT – Fine-tuning for MRC
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Figure from Devlin et al., “BERT: Pre-training of Deep 
Bidirectional Transformers for Language Understanding”, 2018.



 

 

(d) The MRC system of questions (a)–(c) will actually be used in the biomedical domain. 
We have 3k annotated training instances (question-paragraph pairs with gold answer spans) 
from the biomedical domain, along with 500k additional plain text paragraphs of 
biomedical text (without any questions and answer spans). The BERT model we have was 
pre-trained (using a masked language modeling and a next sentence prediction loss) on 
millions of plain text inputs, but from a generic corpus that contains very few biomedical 
documents. How could we use the additional 500k plain text biomedical paragraphs to 
improve the performance of our MRC system? You do not need to provide any formulae 
for this sub-question, but your answer must be sufficiently detailed for an experienced 
colleague (e.g., another student of the course) to understand and implement your idea(s).  
 
One possible answer: 
 
We can take the BERT model that is already pre-trained on millions of plain text inputs and 
further pre-train it (with masked language modeling loss and next sentence prediction loss) on 
the 500k additional biomedical plain text paragraphs to tailor it to the biomedical domain. We 
could then fine tune the pre-trained model on the 3k annotated MRC training instances of the 
biomedical domain, as in questions (a)–(c). 


