Semantic Parsing and Information Extraction

2022-23

Ion Androutsopoulos

http://www.aueb.gr/users/ion/

These slides are partly based on material from the books:

- "Speech and Language Processing" by D. Jurafsky and J.H. Martin, $2^{\text {nd }}$ edition, Prentice Hall, 2009 and $3^{\text {rd }}$ edition (in preparation, https://web.stanford.edu/~jurafsky/slp3/).
- "Artificial Intelligence - A Modern Approach" by S. Russel and P. Norvig, $2^{\text {nd }}$ edition, Prentice Hall, 2003.

Contents

- Semantic parsing:
- Translating sentences to First-Order Predicate Logic (FOPL) using grammars.
- Intent recognition and slot filling in dialog systems using grammars or neural models.
- Information extraction:
- Named entity recognition and supervised relation extraction with neural models.
Additional optional material:
- Unsupervised relation extraction.
- Lexical semantic relations, WordNet, events, FrameNet, thematic roles, selectional restrictions.

Examples of formulae in First-Order Predicate Logic

- All cats like milk.
$\forall \mathrm{x}(\operatorname{IsCat}(\mathrm{x}) \Rightarrow \operatorname{Likes}(\mathrm{x}$, Milk $))$
- There is a cat that likes milk.
$\exists \mathrm{x}(\operatorname{IsCat}(\mathrm{x}) \wedge \operatorname{Likes}(\mathrm{x}, \mathrm{Milk}))$
- Attention: $\exists \mathrm{x}(\operatorname{IsCat}(\mathrm{x}) \Rightarrow \operatorname{Likes}(\mathrm{x}$, Milk $))$ says "There is an x that: (i) is not a cat; or (ii) if it is a cat, it likes milk".
- Psita likes all dogs.
$\forall \mathrm{x}(\operatorname{IsDog}(\mathrm{x}) \Rightarrow \operatorname{Likes}($ Psita, x$))$
- Attention: $\forall \mathrm{x}(\operatorname{IsDog}(\mathrm{x}) \wedge \operatorname{Likes}($ Psita, x$))$ says "Everything is a dog and Psita likes it".
- There is a cat that likes all dogs.
$\exists \mathrm{x}(\operatorname{IsCat}(\mathrm{x}) \wedge \forall \mathrm{y}(\operatorname{IsDog}(\mathrm{y}) \Rightarrow \operatorname{Likes}(\mathrm{x}, \mathrm{y})))$

Examples of formulae in First-Order Predicate Logic

- Milos dislikes all cats.
$\forall \mathrm{x}(\operatorname{IsCat}(\mathrm{x}) \Rightarrow \neg \operatorname{Likes}($ Milos, x$))$
- All dogs dislike all cats.
$\forall \mathrm{x}(\operatorname{IsDog}(\mathrm{x}) \Rightarrow \forall \mathrm{y}(\operatorname{IsCat}(\mathrm{y}) \Rightarrow \neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})))$
or:

$$
\forall \mathrm{x} \forall \mathrm{y}((\operatorname{IsDog}(\mathrm{x}) \wedge \operatorname{IsCat}(\mathrm{y})) \Rightarrow \neg \operatorname{Likes}(\mathrm{x}, \mathrm{y}))
$$

- Every person likes his/her father.
$\forall \mathrm{x} \forall \mathrm{y}((\operatorname{IsPerson}(\mathrm{x}) \wedge \operatorname{IsFatherOf}(\mathrm{y}, \mathrm{x})) \Rightarrow \operatorname{Likes}(\mathrm{x}, \mathrm{y}))$
or: $\forall \mathrm{x}(\operatorname{IsPerson}(\mathrm{x}) \Rightarrow \operatorname{Likes}(\mathrm{x}$, FatherOf($\mathbf{x}))$)
If we have a large dataset with sentences and the corresponding FOPL formulae, we can try using neural machine translation models to "translate" from English to FOPL. Otherwise one option is to use grammars...

Semantic parsing example

Semantics of simple sentences

$\mathrm{S}\left(\sigma_{2}\left(\sigma_{1}\right)\right) \rightarrow \mathrm{NP}\left(\sigma_{1}\right) \mathrm{VP}\left(\sigma_{2}\right)$
$\operatorname{VP}\left(\sigma_{3}\left(\sigma_{4}\right)\right) \rightarrow \mathrm{V}\left(\sigma_{3}\right) \mathrm{NP}\left(\sigma_{4}\right)$
$\mathrm{NP}(\sigma) \rightarrow \mathrm{PN}(\sigma)$
PN(John) \rightarrow John
PN(Mary) \rightarrow Mary
$\mathrm{V}(\lambda \mathrm{y} \lambda \mathrm{x} \operatorname{Loves}(\mathrm{x}, \mathrm{y})) \rightarrow$ loves

Compositional semantics:

The semantics of each syntactic constituent is a function of the semantics of its sub-constituents.

($\lambda \mathrm{x}$ Loves(x, Mary))(John) \equiv Loves(John, Mary)
σ_{2}
σ_{1}
$\sigma_{2}\left(\sigma_{1}\right)$

Handling quantifiers

- We extend the grammar to handle sentences like:
- "I want a flight from Athens to Thessaloniki."
- "A customer prefers a flight to Herakleion."
- We will initially produce formulae with quantifiers inside the arguments of the predicates:
- "Every customer wants a flight." will initially become: Wants ($\forall \mathbf{x}$ Client(x), $\exists \mathbf{y}$ Flight(y))
- Not allowed in FOPL, but makes semantic parsing easier.
- Also allows us to produce a single formula for sentences with ambiguous quantifiers (see below).
- A post-processing stage will fix the formulae (see optional slides).

Semantics of nouns and determiners

$\mathrm{N}\left(\lambda \mathrm{x}_{1}\right.$ Customer $\left.\left(\mathrm{x}_{1}\right)\right) \rightarrow$ customer
$\operatorname{Det}\left(\lambda \mathrm{x}_{2} \lambda \mathrm{p}_{1} \forall \mathrm{x}_{2} \mathrm{p}_{1}\right) \rightarrow$ every

Similarly:
$\mathrm{N}\left(\lambda \mathrm{x}_{4}\right.$ Flight $\left.\left(\mathrm{x}_{4}\right)\right) \rightarrow$ flight
$\operatorname{Det}\left(\lambda \mathrm{x}_{5} \lambda \mathrm{p}_{2} \exists \mathrm{x}_{5} \mathrm{p}_{2}\right) \rightarrow \mathrm{a}$
The other rules for verbs, VP, S remain unchanged.

Computing the semantics of a sentence

Converting to true FOPL

－A post－processor produces all the possible FOPL formulae from the intermediate formula．
－Wants（ $\forall \mathrm{x}$ Customer（ x ），ヨy Flight（y））becomes：
$-\forall x$ Customer（x）$\rightarrow(\exists y \operatorname{Flight}(y) \wedge$ Wants（x，y））or：
$-\exists y$ Flight $(y) \wedge(\forall x$ Customer $(x) \rightarrow$ Wants（ $\mathrm{x}, \mathrm{y}))$
－Cut a quantifier（and its predicate）from the intermediate formula leaving only its variable：
－E．g．，Wants（x，ヨy Flight（y））
－Paste the quantifier and its predicate at the beginning of the formula．
－Connect with \Rightarrow if the quantifier is a \forall ．
－Connect with \wedge if the quantifier is a \exists ．
$-\forall \mathbf{x}$ Customer（x）\Rightarrow Wants（x，ヨy Flight（y））

Converting to true FOPL - continued

- Repeat for the other quantifier:
$-\forall \mathrm{x}$ Customer $(\mathrm{x}) \Rightarrow$ Wants (x, y)
$-\exists y \operatorname{Flight}(y) \wedge(\forall x \operatorname{Customer}(x) \Rightarrow \operatorname{Wants}(x, y))$
- There is a single (the same for all customers) flight that they all want.
- Cutting the existential quantifier first, leads to another reading:
$-\forall \mathrm{x}$ Customer $(\mathrm{x}) \Rightarrow(\exists \mathrm{y}$ Flight $(\mathrm{y}) \wedge$ Wants($\mathrm{x}, \mathrm{y}))$
- For every customer, there is a possibly different flight that the customer wants.
- The intermediate formula may also contain pseudoquantifiers representing referring expressions.
- "The customer wants a flight."
- Wants(The.x Customer(x), ヨy Flight(y))
- The pseudo-quantifiers are replaced by appropriate expressions using algorithms that resolve referring expressions.

NLU in spoken dialogue systems

Speech recognition (ASR)
[$\theta \dot{\lambda} \lambda \omega, \theta \alpha, \pi \alpha ́ \omega, \sigma \tau 0, ~ ? ? ?]$
NL understanding (NLU)
parameter-input(arrive-to, noise)
Dialogue manager
other systems
parameter-ask(arrive-to)
NL generation (NLG)
[$\pi \mathrm{ov}, ~ \theta \dot{\text { ć }} \mathrm{\varepsilon} \varepsilon \tau \varepsilon, \mathrm{v} \mathrm{\alpha}, \pi \alpha ́ \tau \varepsilon$, ;]
Speech synthesis (TTS)
«Поv́ $\theta \dot{\text { ć } \lambda \varepsilon \tau \varepsilon ~ v \alpha ~ \pi \alpha ́ \tau \varepsilon ; » ~(v o i c e) ~}$

Dialogue systems based on frames

- Supporting mixed initiative is often easier with dialogue managers based on frames.
How may I help you?
I want to book a flight to Athens with Olympic Air E.g., using a grammar. tomorrow at five.
requestType(booking) \wedge date(tomorrow) $\wedge \operatorname{carrier}(\mathrm{oa}) \wedge$ destination $($ ath $) \wedge$ departTime (17:00)

Where do you want to depart from?

requestType	booking	Do you want to book or change ticket?
carrier	OA	Which carrier do you want to fly with?
date	$23 / 5 / 11$	On which date do you want to fly?
departFrom		Where do you want to depart from?
destination	ATH	What is your destination?
departTime	$17: 00$	What time do you want to depart?
\ldots	\ldots	\ldots

Dialogue systems based on frames

- The NLU uses a grammar that covers sentences specifying the values of any of the frame fields.
- Possibly also fields they system hasn't asked about.
- The grammar extracts field values from the sentences and helps the ASR prune unlikely word sequences.
- If a field value is missing, the system takes the initiative and asks its value.
- For each field, the frame provides a suitable question.
- The user may or may not answer the particular question and/or provide additional information, corrections etc.
- There may be several frames (e.g., for tickets, car, hotel).
- There may be a graph of frames (e.g., book a ticket, then rent a car or book a hotel) and classifiers activating frames.

Instead of grammars

- Instead of grammars, we may rely on a language model and sequence labeling methods.
- The language model helps the ASR prune unlikely word sequences. No grammar required, if the language model is good enough (e.g., lots of dialogue transcripts available).
- Sequence labeling (e.g., with RNNs, BERT) detects phrases that correspond to frame fields. But normalization of the frame values needed (e.g., "to Athens" \rightarrow "ATH"), possibly with regular expressions or grammars.
[ignore Good morning] [noise \#\$\#\$@\#\$] [ignore would like to] [requestType book] [noise @\#\$\#\$] [destination to Athens] [noise @\#\$@] [departTime at five] [noise \#\$\$@\#\$] [date tomorrow] [noise \$@\#\#\$\$] [carrier with Olympic] [ignore please.]

Domain, intent, slot fillers

- In Siri, Alexa, Cortana, Google Now etc., we need to figure out the domain of the request, the intent of the user, and fill in the slots of the corresponding frame.

	DOMAIN:	AIR-TRAVEL	
Show me morning flights from	INTENT:	SHOW-FLIGHTS	
Boston to San Francisco on Tuesday	ORIGIN-CITY:	Boston	ORIGIN-DATE:
	Tuesday	Examples from	
	ORIGIN-TIME:	morning	Jurafsky and
	DEST-CITY:	San Francisco	Martin, $3^{\text {rd }}$ edition.

Wake me tomorrow at 6

$$
\begin{array}{ll}
\text { DOMAIN: } & \text { ALARM-CLOCK } \\
\text { INTENT: } & \text { SET-ALARM } \\
\text { TIME: } & 2017-07-010600-0800
\end{array}
$$

- There may be grammars for all these, or there may be classifiers predicting the domain, intent, and sequence labeling components extracting slot values.

Reminder: T5

T5 uses stacked encoder and stacked decoder Transformer layers.

For unsupervised pretraining, T5 is trained to recover missing/noised parts of the input, here masked spans.

Original text

Targets
< $X>$ for inviting < $\gamma>$ last <Z>
Top figure from J. Alammar's "The Illustrated Transformer" (https://jalammar.github.io/illustratedtransformer/). Bottom figure from the T5 paper: C. Raffel et al., "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer", JMLR 2020 (https://jmlr.org/papers/v21/20-074.html/).

T5-based slot filling (for known intent)

The model can also learn to normalize the fillers (e.g., "Athens" \rightarrow "ATH"). And no need to annotate the spans of the fillers (no BIO tags) in the training examples.

Figure from P. Tassias, "A prompting-based encoder-decoder approach to intent recognition and slot filling", MSc thesis in Data Science, AUEB, 2021.
http://nlp.cs.aueb.gr/theses/p tassias msc thesis.pdf

Information extraction

Dec. 3, 2015: Important news from General Company Hellas, the largest Greek construction company. Yesterday GCH announced it bought 42% of Small Company Ltd, a British company that specializes in iron constructions.

buyer	GCH
bought	SCL
share	0.42
announcement date	$2 / 12 / 2015$

Information extraction: first stages

<s> <date norm="3/12/2015" $>$ Dec. 3 , $2015</$ date $>:</$ s $>$
<s> Important news from <company id="GCH"> General Company Hellas </company>, the largest Greek construction company. </s>
$<$ s $><$ date norm=" $2 / 12 / 2015 ">$ Yesterday $</$ date $><$ company id="GCH"> GCH </company> announced it <verb base="buy">
bought </verb> <percent norm="0.42"> 42% </percent> of
<company id="SCL"> Small Company Ltd </company>, a British company that specializes in iron constructions. $</$ s $>$

Information extraction: first stages

- Preprocessing:
- Tokenization, sentence splitting, markup processing etc.
- Morphological analysis:
- Part-of-speech tagging, lemmatization etc.
- Dates, amounts, percentages etc.
- Including normalization (e.g., "Dec. 3, 2015", 3/12/2015), often using simple regular expressions or grammars.
- Named entity recognition (e.g., persons, companies, locations, products, diseases, genes).
- Sequence labeling algorithms (e.g., RNNs, BERT).

The CRF layer in effect adds a second loss (apart from maximizing the log-likelihood of the correct labels) that penalizes unlikely tag sequences (e.g. O followed by I-PER).

A neural NE recognizer

CRF Layer

Concatenation

Right-to-left LSTM
Left-to-right LSTM

Char+GloVe Embeddings

Figure 18.8 Putting it all together: character embeddings and words together in a bi-LSTM sequence model. After Lample et al. (2016).

Figure from Jurafsky and Martin's "Speech and Language Processing", $3^{\text {rd }}$ edition (in preparation). https://web.stanford.edu/~jurafsky/slp3/

Information extraction: next stages

- Coreference resolution.
- "She also said that...". "The company also announced that..."
- Including name matching (e.g., "General Company Hellas", "GCH", "Mr. George Papandreou", "Papandreou") and possibly linking entity mentions to ontology concepts (ids).
- Relation (more generally, event) extraction:
- In the simplest case, using manually crafted rules.
- E.g., Acquisition(buyer:C1, bought:C2, share:P) \rightarrow * Company(id:C1) * Verb(base:buy/acquire/obtain) * Percent(norm:P) * Company(id:C2) *
- Or using supervised machine learning: learn to predict the relation (if any) between each pair of named entities (that do not exceed a maximum distance). Classification problem. One class per relation type (plus 'none').

Rule-based relation/event extraction

<s> Important news from <company id="GCH"> General Company Hellas </company>, the largest Greek construction company. </s>
<s> <date norm=" \(2 / 12 / 2015\) "> Yesterday $</$ date> <company id="GCH"> GCH </company> announced that it <verb base="buy"> bought</verb> <percent norm="0.42"> 42\%
</percent> of <company id="SCL"> Small Company Ltd $</$ company $>$, a British company that specializes in iron constructions. </s>

Acquisition(buyer:C1, bought:C2, share:P) \rightarrow * Company(id:C1) * Verb(base:buy/acquire/obtain) * Percent(norm:P) * Company(id:C2) *

Acquisition(buyer:GCH, bought:SCL, share:0.42)

Relation extraction via supervised learning

<s> <company id="GCH"> General Company Hellas </company> <verb base="buy"> bought </verb> <percent norm="0.42"> 42\% </percent> of <company id="SCL"> Small Company Ltd </company>. </s> <s> <company id="LCL"> Large Company Ltd </company> had also <verb base="buy"> bought </verb> shares of <company id="SCL"> Small </company> <date norm="Y2007"> last year </date> . </s>

- E.g., for acquisition relations:
- Consider company-company and person-company pairs (up to a maximum distance).
- Classes (for each pair): negative, positive (or type of relation, e.g., acquisition, merger).

Relation extraction annotated dataset

Example	Entity Types \& Label
Carey will succeed Cathleen P. Black, who held the position for 15 years and will take on a new role as chairwoman of Hearst Maga- zines, the company said.	PERSON/TITLE
Relation: per:title	
Irene Morgan Kirkaldy, who was born and reared in Baltimore, lived	
on Long Island and ran a child-care center in Queens with her second	
husband, Stanley Kirkaldy.	PERSON/CITY
Baldwin declined further comment, and said JetBlue chief executive Dave Barger was unavailable.	Types: PERSON/Th Relation: no_relation

Figure 17.4 Example sentences and labels from the TACRED dataset (Zhang et al., 2017).

Figure from Jurafsky and Martin's "Speech and Language Processing", $3^{\text {rd }}$ edition (in preparation). https://web.stanford.edu/~jurafsky/slp3/

BERT-based relation extraction

Figure 17.7 Relation extraction as a linear layer on top of an encoder (in this case BERT), with the subject and object entities replaced in the input by their NER tags (Zhang et al. 2017, Joshi et al. 2020).

- Replacing entity names by their types may help the model generalize with fewer training examples.
- Candidate entity pairs can be limited to particular syntactic relations to consider fewer pairs.
- Or just concatenate the context-aware embeddings of the first tokens of the two entity names (of each candidate pair) and pass them to an MLP to predict their relation type (if any).

Figure from Jurafsky and Martin's "Speech and Language Processing", 3 rd edition (in preparation). https://web.stanford.edu/~jurafsky/slp3/

Joint NE and relation extraction

Figure from G. Bekoulis et al., "Joint entity recognition and relation extraction as a multi-head selection problem", Expert Systems with Applications 114, pp. 34-45, 2018. See also G. Bekoulis et al., "Adversarial training for multi-context joint entity and relation extraction", EMNLP 2018, https://www.aclweb.org/anthology/D18-1307/

Evaluating relation extraction

- We can use precision, recall, F-measure again.
- If we have texts manually annotated with the correct relations (slide 27), count how many correct relation mentions (in the texts) were extracted (true positives), how many were not extracted (false negatives), how many wrong relation mentions were extracted (false positives) etc.
- If we have a database with known entity pairs per relation type, count how many of the known entity pairs of the DB were extracted (true positives) from a document collection, how many were not extracted (false negatives), how many unknown entity pairs were extracted (false positives) etc.
- Such a database could also be used during training ("distant supervision", we have no annotations directly on the texts).

Extra optional slides.

DCG for simple arithmetic language

digit --> [zero].
digit --> [one].
digit --> [nine].
expression --> digit.
expression --> [open], expression, [plus], expression, [close]. expression --> [open], expression, [minus], expression, [close]. expression --> [open], expression, [star], expression, [close]. expression --> [open], expression, [slash], expression, [close].
> phrase(expression, [open, open, two, plus, four, close, slash, open, four, minus, one, close, close]).
Yes.

Semantic parsing for the arithmetic language

$$
\begin{aligned}
& \operatorname{digit}(0) \text {--> [zero]. } \\
& \text { digit(1) --> [one]. }
\end{aligned}
$$

$$
\ldots
$$

digit(9) --> [nine].

Inside braces we write additional constraints that need to be satisfied for the rule to be used. Here 'is' assigns the result of X1 + X2 to X . ('=' denotes unification in Prolog.)
expression (X)--> $\operatorname{digit}(\mathrm{X})$.
expression(X) --> [open] ${ }_{2}$ expression(X1) , [plus], expression(X2), [close], $\{\mathrm{X}$ is $\mathrm{X} 1+\mathrm{X} 2\}$.
expression(X) --> [open], expression(X1) , [minus],
expression(X2), [close], $\{\mathrm{X}$ is $\mathrm{X} 1-\mathrm{X} 2\}$.
> phrase(expression(X), [open, open, two, plus, four, close, slash, open, four, minus, one, close, close]).
$X=2$.

Syntax of First-Order Predicate Logic

 formula \rightarrow atomic formula| (formula connective formula)
| quantifier variable formula
$\mid \neg$ forumla
atomic_formula \rightarrow relation_symbol(term, ...) \mid term $=$ term term \rightarrow constant \mid variable \mid
function_symbol(term, ...)
connective $\rightarrow \wedge|\vee| \Rightarrow \mid \Leftrightarrow$
quantifier $\rightarrow \forall \mid \exists$
constant $\rightarrow \mathrm{A}\left|\mathrm{X}_{1}\right|$ John \mid Mary $\mid \ldots$
variable $\rightarrow \mathrm{a}|\mathrm{x}| \mathrm{s} \mid \ldots$
relation_symbol \rightarrow IsFatherOf | HasColor | IsKing | ... function_symbol \rightarrow FatherOf \mid LeftLeg $\mid \ldots$

Examples of formulae in First-Order Predicate Logic

- Every dog that barks is afraid of a (possibly different) cat. $\forall \mathrm{x}((\operatorname{IsDog}(\mathrm{x}) \wedge \operatorname{Barks}(\mathrm{x})) \Rightarrow$

$\exists y(\operatorname{IsCat}(\mathrm{y}) \wedge \operatorname{IsAfraidOf}(\mathrm{x}, \mathrm{y})))$

- Every cat likes exactly one (possibly different) dog.

$$
\begin{aligned}
& \forall \mathrm{y}(\operatorname{IsCat}(\mathrm{y}) \Rightarrow \\
& \quad \exists \mathrm{x}(\operatorname{IsDog}(\mathrm{x}) \wedge \operatorname{Likes}(\mathrm{y}, \mathrm{x}) \wedge \\
& \quad \forall \mathrm{z}((\operatorname{IsDog}(\mathrm{z}) \wedge \operatorname{Likes}(\mathrm{y}, \mathrm{z})) \Rightarrow \mathrm{z}=\mathrm{x})))
\end{aligned}
$$

DCG for semantics of simple sentences

 $s($ Predicate) --> np(X1), vp(X, Predicate), $\{\mathrm{X} 1=\mathrm{X}\}$.$\mathrm{vp}(\mathrm{X}$, Predicate $)-->\mathrm{v}(\mathrm{Y}, \mathrm{X}$, Predicate $), \mathrm{np}(\mathrm{Y} 1),\{\mathrm{Y}=\mathrm{Y} 1\}$.
$\mathrm{np}(\mathrm{Sem})$--> $\mathrm{pn}(\mathrm{Sem})$.
We require the meaning representation Y1 of the np (e.g., john) to be unified with the second argument of the logical predicate of the verb (the Y of loves(X,Y)). This causes the representation of the np to be copied into the predicate of the verb (e.g., loves(X,Y) becomes loves(X, john)).

```
pn(john) --> [john].
pn(mary) --> [mary].
    The three arguments of v stand for the \(\lambda y \lambda x \operatorname{Loves}(x, y)\) of the previous slide.
\(\mathrm{v}(\mathrm{Y}, \mathrm{X}, \operatorname{loves}(\mathrm{X}, \mathrm{Y}))\)--> [loves].
```


DCG rules for nouns and quantifiers

n(X1, customer(X1)) --> [customer].
n(X4, flight(X4)) --> [flight]. $\operatorname{det}(\mathrm{X} 2, \mathrm{P} 1$, forall(X2, P1)) --> [every].
$\operatorname{det}(\mathrm{X} 5, \mathrm{P} 2$, forsome(X5, P2)) --> [a].

Representing events

I ate.
Eating $_{1}$ (Speaker)
I ate a souvlaki.
$\exists \mathrm{x}\left(\right.$ IsSouvlaki(x) \wedge Eating $_{2}($ Speaker, x$\left.)\right)$
I ate a souvlaki at my office.
$\exists \mathrm{x}\left(\operatorname{IsSouvlaki}(\mathrm{x}) \wedge\right.$ Eating $_{3}($ Speaker, x, OfficeOf(Speaker) $)$)
I ate a souvlaki at my office yesterday.
$\exists \mathrm{x}$ (IsSouvlaki(x) \wedge
Eating $_{4}($ Speaker, x, OfficeOf(Speaker), Yesterday))

- If we use separate $\operatorname{Eating}_{1}(\ldots), \operatorname{Eating}_{2}(\ldots), \operatorname{Eating}_{3}(\ldots)$ etc. predicates, we need meaning postulates stating, for example, that when $\operatorname{Eating}_{3}(\ldots)$ happens then $\operatorname{Eating}_{2}(\ldots)$ also happens.

Representing events - cont.

I ate.
$\exists \mathrm{x} \exists \mathrm{y} \exists \mathrm{z}$ Eating(Speaker, $\mathrm{x}, \mathrm{y}, \mathrm{z})$
I ate a souvlaki.
$\exists \mathrm{x} \exists \mathrm{y} \exists \mathrm{z}($ IsSouvlaki(x) $\wedge \operatorname{Eating}($ Speaker, $\mathrm{x}, \mathrm{y}, \mathrm{z}))$
I ate a souvlaki at my office.
$\exists \mathrm{x} \exists \mathrm{z}(\operatorname{IsSouvlaki}(\mathrm{x}) \wedge$ Eating(Speaker, x, OfficeOf(Speaker), z))
I ate a souvlaki at my office yesterday.
$\exists \mathrm{x}$ (IsSouvlaki(x) ^
Eating(Speaker, x, OfficeOf(Speaker), Yesterday))

- How many arguments does Eating(...) need?
- What about "I quickly ate a souvlaki at my office yesterday"?
- What about "I quickly ate a souvlaki at my office yesterday before leaving"?

Event variables (Davidsonian semanits)

I ate.
$\exists \mathrm{e}(\operatorname{Eating}(\mathrm{e}) \wedge$ Eater $(\mathrm{e}$, Speaker $))$
I ate a souvlaki.
$\exists \mathrm{e} \exists \mathrm{x}(\operatorname{Eating}(\mathrm{e}) \wedge \operatorname{IsSouvlaki}(\mathrm{x}) \wedge$ Eater $(\mathrm{e}$, Speaker $) \wedge$
Eaten(e, x))
I ate a souvlaki at my office.
$\exists \mathrm{e} \exists \mathrm{x}(\operatorname{Eating}(\mathrm{e}) \wedge$ IsSouvlaki(x) \wedge Eater $(\mathrm{e}$, Speaker) \wedge
Eaten(e, x) ^Location(e, OfficeOf(Speaker)))
I quickly ate a souvlaki at my office before leaving.
$\exists \mathrm{e}_{1} \exists \mathrm{e}_{2} \exists \mathrm{x} \exists \mathrm{i}_{1} \exists \mathrm{i}_{2}\left(\operatorname{Eating}\left(\mathrm{e}_{1}\right) \wedge \operatorname{IsSouvlaki}(\mathrm{x}) \wedge \operatorname{Eaten}\left(\mathrm{e}_{1}, \mathrm{x}\right) \wedge\right.$
$\operatorname{Eater}\left(\mathrm{e}_{1}\right.$, Speaker) $\wedge \operatorname{Location(\mathrm {e}_{1},~OfficeOf(Speaker))~} \wedge$
$\operatorname{Speed}\left(\mathrm{e}_{1}\right.$, Fast $) \wedge \operatorname{Leaving}\left(\mathrm{e}_{2}\right) \wedge \operatorname{Leaver}\left(\mathrm{e}_{2}\right.$, Speaker $) \wedge$
$\left.\operatorname{IntervalOf}\left(\mathrm{e}_{1}, \mathrm{i}_{1}\right) \wedge \operatorname{IntervalOf}\left(\mathrm{e}_{2}, \mathrm{i}_{2}\right) \wedge \operatorname{Before}\left(\operatorname{End}\left(\mathrm{i}_{1}\right), \operatorname{Start}\left(\mathrm{i}_{2}\right)\right)\right)$

Lexical semantic relations

- Homonyms: same spelling, different meanings.
- E.g., financial "bank" and "bank" of a river.
- E.g., "letter" of the alphabet and "letter" that you post.
- Synonyms: different words, but can be used with (approximately) the same meaning.
- E.g., "motorbike" and "motorcycle", "lift" and "elevator".
- Hypernym - hyponym: broader - narrower meaning.
- E.g., "vehicle" - "car", "organization" - "company".
- Antonyms: opposite meanings.
- E.g., "tall" - "short", "large" - "small".
- See J\&M for more kinds of lexical semantic relatations.

WordNet (http://wordnet.princeton.edu)

- Every sense is represented by a set of synonyms (synset) that can have that sense.
- Hypernym - hyponym hierarch per part of speech (nouns, adjectives, verbs, adverbs).
- Many other relations also included (see J\&M).
- E.g., meronyms (a "wheel" is part of a "bicycle").
- Initially for English, now for many languages.

WordNet Search - 3.0 - WordNet home page - Glossary - Help
Word to search for: bank Search WordNet
Display Options: (Select option to change) \quad Change
Key: "S:" Show Synset (semantic) relations, "W:" = Show Word (lexical) relations

Noun

- S: (n) bank (sloping land (especially the slope beside a body of water)) "they pulled the canoe up on the bank"; "he sat on the bank of the river and watched the currents"
- direct hyponym / full hyponym
- S: (n) riverbank, riverside (the bank of a river)
- S: (n) waterside (land bordering a body of water)
- direct hypernym / inherited hypernym / sister term
- $\mathrm{S}:(\mathrm{n})$ slope, incline, side (an elevated geological formation) "he climbed the steep slope"; "the house was built on the side of a mountain"
- derivationally related form
- S: (n) depository financial institution, bank, banking concern, banking company (a financial institution that accepts deposits and channels the money into lending activities) "he cashed a check at the bank"; "that bank holds the mortgage on my home"
- direct hyponym / full hyponym
- member holonym
- direct hypernym / inherited hypernym / sister term
- S: (n) financial institution, financial organization, financial organisation (an institution (public or private) that collects funds (from the public or other institutions) and invests them in financial assets)
- derivationally related form
- $\mathrm{S}:$ (n) bank (a long ridge or pile) "a huge bank of earth"
- $S:(n)$ bank (an arrangement of similar obiects in a row or in tiers) "he overated a bank of

Thematic roles

I quickly ate a souvlaki at my office before leaving.
$\exists \mathrm{e}_{1} \exists \mathrm{e}_{2} \exists \mathrm{x} \exists \mathrm{i}_{1} \exists \mathrm{i}_{2}\left(\operatorname{Eating}\left(\mathrm{e}_{1}\right) \wedge \operatorname{IsSouvlaki}(\mathrm{x}) \wedge \operatorname{Eaten}\left(\mathrm{e}_{1}, \mathrm{x}\right) \wedge\right.$
$\operatorname{Eater}\left(\mathrm{e}_{1}\right.$, Speaker $) \wedge \operatorname{Location(\mathrm {e}_{1},~OfficeOf(Speaker))~\wedge ~}$
$\operatorname{Speed}\left(\mathrm{e}_{1}\right.$, Fast $) \wedge \operatorname{Leaving}\left(\mathrm{e}_{2}\right) \wedge \operatorname{Leaver}\left(\mathrm{e}_{2}\right.$, Speaker $) \wedge$ $\left.\operatorname{IntervalOf}\left(\mathrm{e}_{1}, \mathrm{i}_{1}\right) \wedge \operatorname{IntervalOf}\left(\mathrm{e}_{2}, \mathrm{i}_{2}\right) \wedge \operatorname{Before}\left(\operatorname{End}\left(\mathrm{i}_{1}\right), \operatorname{Start}\left(\mathrm{i}_{2}\right)\right)\right)$

- Depending on the event type, different roles are available.
- Every event has an IntervalOf role.
- An Eating event may also have Eaten and Eater roles.
- A Leaving event may also have a Leaver role.
- We need a taxonomy of event types, which will define the possible event types and their roles.

FrameNet

FrameNet (https://framenet.icsi.berkeley.edu)

- Particular trigger words activate frames, which define thematic roles (frame elements).
- "... an increase [int__value from 20\%] [final_value to 27\%]..."
- "... fell [final_value to 27%]..."
- Here both trigger words activate the same frame.
- FrameNet provides a rich collection of frames, trigger words, roles, inheritance from more general to more specific frames etc.
- Useful, for example, in information extraction.
- Semantic role labeling: methods that "fill" the roles of active frames in each sentence, usually by employing machine learning (see J\&M).

Selectional restrictions

I saw the [doctor [with the white coat]].
$\exists \mathrm{e}_{1} \exists \mathrm{x}_{1} \exists \mathrm{x}_{2} \exists \mathrm{i}_{1}\left(\operatorname{Seeing}\left(\mathrm{e}_{1}\right) \wedge \operatorname{IsDoctor}\left(\mathrm{e}_{1}, \mathrm{x}_{1}\right) \wedge \operatorname{IsCoat}\left(\mathrm{e}_{1}, \mathrm{x}_{2}\right) \wedge\right.$
$\operatorname{IsWhite}\left(\mathrm{e}_{1}, \mathrm{x}_{2}\right) \wedge \operatorname{Agent}\left(\mathrm{e}_{1}, \operatorname{Speaker}\right) \wedge \operatorname{Seen}\left(\mathrm{e}_{1}, \mathrm{x}_{1}\right) \wedge$
Wearing $\left(\mathrm{e}_{1}, \mathrm{x}_{1}, \mathrm{x}_{2}\right) \wedge \operatorname{IntervalOf}\left(\mathrm{e}_{1}, \mathrm{i}_{1}\right) \wedge \operatorname{Before}\left(\operatorname{End}\left(\mathrm{i}_{1}\right)\right.$, Now)$\left.)\right)$
? I saw [the doctor] [with the white coat].
$\exists \mathrm{e}_{1} \exists \mathrm{x}_{1} \exists \mathrm{x}_{2} \exists \mathrm{i}_{1}\left(\operatorname{Seeing}\left(\mathrm{e}_{1}\right) \wedge \operatorname{IsDoctor}\left(\mathrm{e}_{1}, \mathrm{x}_{1}\right) \wedge \operatorname{IsCoat}\left(\mathrm{e}_{1}, \mathrm{x}_{2}\right) \wedge\right.$ $\operatorname{IsWhite}\left(\mathrm{e}_{1}, \mathrm{x}_{2}\right) \wedge \operatorname{Agent}\left(\mathrm{e}_{1}, \operatorname{Speaker}\right) \wedge \operatorname{Seen}\left(\mathrm{e}_{1}, \mathrm{x}_{1}\right) \wedge$ ObservationInstrument $\left(\mathrm{e}_{1}, \mathrm{x}_{2}\right) \wedge \operatorname{IntervalOf}\left(\mathrm{e}_{1}, \mathrm{i}_{1}\right) \wedge$ Before(End(i_{1}), Now)))
The $2^{\text {nd }}$ reading can be ruled out via logical inference, if we have a sufficiently rich knowledge base. Difficult...
$\forall \mathrm{e} \forall \mathrm{x}$ (ObservationInstrument($\mathrm{e}, \mathrm{x}) \Leftrightarrow$ (IsEyeGlasses(e, x$) \vee$ IsBinoculars $(e, x) \vee \ldots))$

Selectional restrictions - cont.

- Alternatively, simple selectional restrictions can be included in the lexicon and grammar.
n (sense: $\left.\mathrm{s}_{144}\right) \rightarrow$ [food]. (Assuming that $\mathrm{s}_{\mathbf{1 4 4}}$ is the synset for the concept of food.)
$\mathrm{n}\left(\right.$ sense: $\left.\mathrm{s}_{138}\right) \rightarrow$ [salad]. (Assuming s_{138} is a hyponym of s_{144}.)
$\mathrm{v}\left(\mathrm{objSense}: \mathrm{s}_{144}\right) \rightarrow$ [eat]. (The argument of v shows that the verb requires an object with sense \mathbf{s}_{144} or hyponym.)
$\mathrm{vp} \rightarrow \mathrm{v}\left(\right.$ objSense: $\left.\mathrm{S}_{1}\right), \mathrm{n}\left(\right.$ sense $\left.: \mathrm{S}_{2}\right),\left\{\right.$ hypernymOf $\left.\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)\right\}$.
- Similarly (exercise...) we can rule out:

I saw [the doctor] [with the white coat].

- No parse trees produced for readings violating selectional restrictions.
- But WordNet may not provide exactly the concepts we need for some selectional restrictions.
- Also problems with negations (e.g., "Do not drink gasoline.") or metaphors ("Time flies when you're having fun.").

Temporal expressions

- Some kinds of temporal expressions:
- Temporal locations: e.g., "on January $18^{\text {th }}, 2015$ ", "in the $5^{\text {th }}$ century BC".
- Relative temporal locations: e.g., "yesterday", "two weeks earlier", "the following two years". Possibly related to the publication date or other prominent time (e.g., of an event).
- Durations, frequencies: "the battery lasts for 8 hours", "payment is due in three days/every January".
- Many temporal mechanisms in languages:
- Tense/aspect of verbs, temporal adjectives/adverbs, clauses...
- Check my thesis and book if interested...

Recognizing temporal expressions

- Temporal expressions often contain trigger words.
- E.g., "January", "week", "year", "Sunday".
- But there are exceptions too (e.g., "Never on a Sunday").
- We can use the same supervised learning methods as in named entity recognition (sequence labeling).
- For simple expressions (e.g., dates, durations) manually crafted regular expressions or grammars may suffice.
- Reasonably easy to write for simple temporal expressions.
- Grammars can be extended to also normalize the temporal expressions (e.g., "on January 18, 2015" \rightarrow "18/1/2015").

TimeML (ISO 8601)

Athens, <TIMEX3 id="t1" type="DATE" value="2015-07-02"
functionInDocument="CREATION_TIME"> July 2,
2015</TIMEX3> : The reduced ticket prices that OA announced <TIMEX3 id="t2" type="DATE" value="2015-W26" anchorTimeID="t1"> last week </TIMEX3> forced ...

- TimeML: Annotation standard (XML-based) for temporal expressions, their normalized values, and events.
- TimeBank: corpus annotated according to TimeML.
- See J\&M for further details.

(almost) Unsupervised relation extraction

<X=Jack Kerouac, $Y=O n$ the road> <X=Jules Verne, $Y=$ The Mysterious Island>

Jack Kerouac wrote On the road
$<X=$ Virginia Wolf, $Y=$ Mrs. Dalloway $>$
<X=Mary Shelley, Y=Frankenstein>

Identify new seeds

Virginia Wolf wrote Mrs. Dalloway
Frankenstein was written by Mary Shelley

Image by Prodromos Malakasiotis.

(almost) Unsupervised relation extraction

- For each relation type, perform bootstrapping:
- Start with seed entity pairs for which the relation holds.
- Retrieve sentences that contain the seed entity pairs.
- Construct patterns from the retrieved sentences, e.g., regular expression patterns or patterns operating on parse trees.
- Retrieve sentences that match the patters.
- Extract new entity pairs from the retrieved sentences etc.
- Semantic drift problem:
- Soon we start obtaining entity pairs and patterns that are very general or irrelevant (e.g., "X is known for Y ").
- A "human in the loop" is needed to filter the entity pairs and patterns, or measures to automatically score them, or classifiers to filter them (possibly trained on human decisions).

Scoring new patterns

- A good candidate pattern p will have high precision, but will also fire frequently in a corpus (high recall).
- Patterns with low precision are unreliable.
- Patterns that rarely fire will also not help much.

Scoring new entity pairs

- Assume an entity pair \boldsymbol{r} is wrong if and only if all the patterns $\boldsymbol{p} \in \boldsymbol{P}$ that extract (support) \boldsymbol{r} are mistaken.
- Assume that the mistakes of the patterns are independent.
- And that the confidence $\operatorname{Conf}(\boldsymbol{p})$ of each pattern p is (almost) a probability.
"Probability" that entity pair \boldsymbol{r} is correctly extracted (not all of the patterns that extract it are mistaken).

"Probability" that all the patterns that extract r are mistaken.
"Probability" that a pattern \boldsymbol{p} that extracts r is mistaken.

Relation extraction with graph CNNs

> I had an e-mail exchange with Benjamin Cane of Popular Mechanics which showed that he was not a relative of Mike Cane.

Prediction from dependency path: per:other_family Gold label: no_relation

- We are given the dependency tree and the spans (positions in text and tree) of two named entities (S, O). - Here "he" (referring expression really) and "Mike Cane".
- We need to predict the type of their relation (if any).

Relation extraction with graph CNNs (cont.)

- We build representations of the words at levels $1,2, \ldots$.
- At level one, each word w_{i} is represented by its embedding.
- At level \boldsymbol{l}, the representation $\boldsymbol{h}_{\boldsymbol{i}}^{(\boldsymbol{l})}$ of each word $\boldsymbol{w}_{\boldsymbol{i}}$ is a combination of the lower-level representations $\boldsymbol{h}_{j}^{(l-1)}$ of the words $\boldsymbol{w}_{\boldsymbol{j}}$ is connected to in the dependency tree (incl. itself).

Figure from Y. Zhang, P. Qi, C.D. Manning, "Graph Convolution over Pruned Dependency Trees Improves Relation Extraction", EMNLP 2018. http://aclweb.org/anthology/D18-1244

Relation extraction with graph CNNs (cont.)

Max-pooling of top-level representations of the
words in entity S, all the sentence, entity O.

$$
\stackrel{\Delta}{h_{s}} h_{\text {sent }} h_{o}
$$

$$
h_{\text {final }}=\mathrm{FFNN}\left(\left[h_{\text {sent }} ; h_{s} ; h_{o}\right]\right)
$$

Concatenation

Fed to a linear layer with softmax to predict the relation type (if any) between the two entities (S, O).

GCN Input $\mathbf{h}^{(0)}$

Recommended reading

- J\&M ($2^{\text {nd }}$ ed.): chapters $17,18,19,20,21,22$.
- Material not covered by the slides is optional.
- Check also the $3^{\text {rd }}$ edition (in preparation): http://web.stanford.edu/~jurafsky/slp3/
- J. Eisenstein, "Natural Language Processing", MIT Press, 2019: chapters: 12, 13, 17.
- Free draft available at https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf
- Material not covered by the slides is optional.

