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These slides are partly based on material from the book 
Speech and Language Processing by D. Jurafsky and
J.H. Martin, 2η edition, Pearson Education, 2009 and

3rd edition (in preparation). 
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Contents
• Context-free grammars (CFGs).
• Phrase-structure trees and dependency trees.
• Chomsky Normal Form and CKY parsing.
• Transition-based dependency parsing with neural 

models.
Extra optional slides: 
• Graph-based dependency parsing with neural models.
• Chomsky’s hierarchy and corresponding automata.
• Parsing as search.
• Augmented CFGs.
• Probabilistic CFGs, probabilistic CKY.
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Context-Free Grammars (CFGs)

• Terminal symbols, e.g., “βιβλίο” (book), “το” (the, neuter).
• Non terminal symbols, e.g., “Nominal”, “Adj” (adjective).
• Rules α à β:

– In CFGs, αmust be a single non-terminal, β can be a sequence of 
any terminals and/or non-terminals (even an empty sequence).

• Initial symbol: one of the non-terminals (here “NP”).
• Language of the grammar: the sequences of terminal symbols 

that can be produced from the initial symbol.

NP à Det Nominal
Nominal à N | Adj Nominal
Det à ο | η | το | …
Adj à πράσινο | μεγάλο | βαρύ | …
N à βιβλίο | αυτοκίνητο | …

Lexicon: in practice, 
possibly information 
from morphological 

analysis.

Disjunction. In effect, two rules.

4



Grammar-based parsing algorithms

• Inputs:
– A grammar of the type supported by the algorithm (e.g., CFG). 
– A sequence of symbols σ.

• Outputs:
– Is σ part of the language defined by the grammar?
– What is the parse tree of σ?
– The parse tree is a proof that σ complies with the grammar. It 

also provides information about the syntactic structure of σ.
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Slightly larger CFG example
• NP à Det PN | Pron | Det Nominal
• Nominal à N | Adj Nominal | Nominal PP 
• PP à Prep NP
• S à NP VP | VP 
• VP à V | V NP 
• Pron à εγώ
• Det à ο | η | έναν | μια | τον | την
• PN à Θεσσαλονίκη | Αθήνα
• N à πτήση | πελάτης | πελάτη
• Adj à πρωινή | απογευματινή
• V à θέλω | θέλει | προτιμώ | συμφωνώ
• Prep à προς | από

Acting as a 
lexicon.

την Αθήνα, 
εγώ, μια 

πτήση, μια 
πρωινή πτήση, 

μια πρωινή 
πτήση προς την 

Αθήνα, ...

εγώ θέλω μια 
πρωινή πτήση, ...
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πτήση προς την Αθήνα εγώ

Pron 

προτιμώ

V 

μια

Det 

πρωινή

Adj N Prep Det PN 

NP

PP

Nominal

NP 
NP

S 

Nominal 

Nominal 

VP 
Example of phrase 

structure tree using the 
grammar of the previous 

slide.
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Syntactically ambiguous sentences
• “We saw the scientist with the telescope.”

– We saw [NP the [Nominal scientist [PP with the telescope]]].
– As in “the flight from Thessaloniki”.

• “We saw the scientist with the telescope.”
– We saw [NP the scientist] [PP with the telescope].
– We would also have a rule: VP à V NP PP.

• “We saw the scientist with the telescope from Paris.”
– We saw [the scientist] [with the telescope] [from Paris].
– We saw [the scientist with the telescope] [from Paris].
– We saw [the scientist] [with the [telescope from Paris]].
– We saw [the [scientist with the [telescope from Paris]]].
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• “We saw the scientist with the white coat.”
– We need semantic constraints to rule out the possibility that 

the coat might be the observation instrument.
• From a purely syntactic point of view, most sentences 

are very ambiguous. 
– Large number of parse trees (often exponential increase as 

the number of phrases that can be combined increases).
– Time-consuming to discover and return all trees separately. 
– Problem for simplistic parsers that use generic search 

algorithms (e.g., depth-first search – see optional slides).  
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Chomsky Normal Form
• Context Free Grammars (CFG) in Chomsky Normal 

Form (CNF):
o Only rules of the form A à B C and A à w, were A, B, C

non-terminals and w terminal. For example:
S à V NP
V à θέλω V à επιθυμώ
NP à Det Nominal Nominal à Adj Nominal Nominal à N
Det à μια N à πτήση Nominal à πτήση
Adj à πρωινή Adj à απογευματινή

• Every CFG can be converted to CNF (see J&M).
o But the new grammar may not produce the same parse trees.

• The CKY algorithm (next slides) is for CFGs in CNF.
o Yet another dynamic programming algorithm.
o Other algorithms (e.g., Earley) can handle CFGs not in CNF.
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CKY algorithm
0 1 2 4θέλω μία πτήσηπρωινή 3

0 1 2 3 4

0 V
(0,1)

1 Det
(1,2)

2 Adj
(2,3)

3
Nominal
N
(3,4)
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CKY algorithm
0 1 2 4θέλω μία πτήσηπρωινή 3

0 1 2 3 4

0 V
(0,1)

X 
(0,2)

1 Det
(1,2)

2 Adj
(2,3)

3
Nominal
N
(3,4)

There is no grammar rule 
to combine V and Det.
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CKY algorithm
0 1 2 4θέλω μία πτήσηπρωινή 3

0 1 2 3 4

0 V
(0,1)

1 Det
(1,2)

X
(1,3)

2 Adj
(2,3)

3
Nominal
N
(3,4)

There is no grammar rule 
to combine Det and Adj.
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CKY algorithm
0 1 2 4θέλω μία πτήσηπρωινή 3

0 1 2 3 4

0 V
(0,1)

Χ
(0,3)

1 Det
(1,2) (1,3)

2 Adj
(2,3)

3
Nominal
N
(3,4)

Cell (1,3) is empty.
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CKY algorithm
0 1 2 4θέλω μία πτήσηπρωινή 3

0 1 2 3 4

0 V
(0,1) (0,2)

Χ
(0,3)

1 Det
(1,2) (1,3)

2 Adj
(2,3)

3
Nominal
N
(3,4)

Cell (0,2) is empty.
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CKY algorithm
0 1 2 4θέλω μία πτήσηπρωινή 3

0 1 2 3 4

0 V
(0,1) (0,2)

1 Det
(1,2) (1,3)

2 Adj
(2,3)

Nominal
(2,4)

3
Nominal
N
(3,4)
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CKY algorithm
0 1 2 4θέλω μία πτήσηπρωινή 3

0 1 2 3 4

0 V
(0,1) (0,2)

1 Det
(1,2) (1,3)

X
NP 
(1,4)

2 Adj
(2,3)

Nominal
(2,4)

3
Nominal
N
(3,4)
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CKY algorithm
0 1 2 4θέλω μία πτήσηπρωινή 3

0 1 2 3 4

0 V
(0,1) (0,2) (0,3)

S         X X
(0,4)

1 Det
(1,2) (1,3)

NP 
(1,4)

2 Adj
(2,3)

Nominal
(2,4)

3
Nominal
N
(3,4)

Try also: http://lxmls.it.pt/2015/cky.html 18



Extracting trees from CKY’s table
• We can store in each cell the rules that produced the 

corresponding non-terminals.
o This allows extracting the parse tree from the table.
o For syntactically ambiguous sentences, multiple parse trees 

will be extracted. 
o But extracting the parse tree makes the worst case time 

complexity of the algorithm exponential, because there are 
exponentially many parse trees in the worst case.

o Without parse tree extraction, the time complexity is O(n3), 
where n is the sentence length in words.
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Dependency trees

• In this case there is a node for each word.
o The arcs denote dependencies between words.
o Same trees for different word orders in free word order languages.
o Closer to graph-based semantic representations.

• Obtaining dependency trees:
o We can automatically produce dependency trees from phrase 

structure trees (with some additional effort – see optional slides). 
o This allows reusing treebanks of phrase structure trees to train 

dependency parsers. And using parsers that produce phrase 
structure trees to obtain dependency trees. 

o But there are also parsers that produce directly dependency trees.

προτιμώ

εγώ

μια

πτήση

πρωινή προς

την
Αθήνα

subj dobj

det
amod

prep

pobj

det
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Projective vs. non-projective dependency trees
• Projective dependency tree: all its arcs are projective.

o Projective arc: There is a path from the head to every word 
between the head and the dependent (modifier).  

• Non-projective dependency tree:
o Contains at least one non-projective arc. Less common in 

English, more common in more free-word order languages.
o Some parsing algorithms can produce only projective trees. 

Im
ages from

 

“Speech and Language Processing

” by D
. Jurafsky and D

.H
. 

M
artin, 3

rdEdition (draft Jan. 2017), http://w
eb.stanford.edu/~jurafsky/slp3/
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Transition-based dependency parsing

From the paper of D. Chen and C. Manning “A Fast and Accurate Dependency 
Parser using Neural Networks”, EMNLP 2014. 

http://aclweb.org/anthology/D/D14/D14-1082.pdf
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Transition-based dependency parsing
• Initially all words in the buffer, stack contains only ROOT.
• Possible actions at each step (‘arc-standard’ model):

o Shift the first word of the buffer to the stack. 
o Connect the top two words of the stack with a left arc and particular 

label (e.g., NSUBJ), leaving only the right word in the stack.
o Connect the top two words of the stack with a right arc and a 

particular label, leaving only the left word in the stack. 

• Final state: only ROOT in the stack, no words in the buffer.
• A classifier selects the action to take at each point. 

o The classifier may select the wrong action.
o Greedy search, no going back once an action is selected. 
o But people seem to backtrack (e.g., “garden path” sentences).

• Linear complexity in sentence length. 



Garden path sentences
• The horse raced past the barn fell. (The horse that was raced past the barn fell.)

• The old man the boat. (The old operate the boat.)

• While the man hunted the deer ran into the woods. 
(While the man hunted, the deer ran into the woods.)

• While Anna dressed the baby played in the crib. (While 
Anna dressed, the baby played in the crib.)

• I convinced her children are noisy. (I convinced her that children are noisy)

• The coach smiled at the player tossed the Frisbee. (The 
coach smiled at the player who was tossed the Frisbee.)

• The cotton clothes are made up of grows in 
Mississippi. (The cotton that clothes are made up of grows in Mississippi.)

Examples from https://www.washingtonpost.com/news/wonk/wp/2016/05/18/googles-
new-artificial-intelligence-cant-understand-these-sentences-can-you/
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An MLP oracle in transition parsing

From the paper of D. Chen and C. Manning “A Fast and Accurate 
Dependency Parser Using Neural Networks”, EMNLP 2014. 

http://aclweb.org/anthology/D/D14/D14-1082.pdf

Word embeddings, POS tag 
embeddings, label 

embeddings (e.g., of top 3 
words of the stack, of top 3 
words of the buffer, of the 

leftmost and rightmost 
children of the top 2 words of 

the stack, …).

Cube activation function.
Probabilities of the 

possible actions: SHIFT, 
LEFT-ARC(amod), 

RIGHT-ARC(dobj), etc.

http://aclweb.org/anthology/D/D14/D14-1082.pdf
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Adding context-aware word embeddings

From the paper of E. Kiperwasser and Y. Goldberg “Simple and Accurate Dependency 
Parser Using Bidirectional LSTM Feature Representations”, Transactions of ACL, vol. 4, 

pp. 313 – 327, 2016. https://aclweb.org/anthology/Q16-1023

A biLSTM
produces context 

aware word 
embeddings.

An MLP decides 
the next action, 

using the 
embeddings of 
the top 3 stack 
words and the 

1st buffer word.

https://aclweb.org/anthology/Q16-1023
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Training the oracle
• For each training sentence, we have the correct tree.

o We use it to figure out the correct action that the oracle should 
take at each point, in order to train the oracle.

• At each point, the correct decision is:
o LEFT-ARC if the resulting dependency is in the correct tree.
o RIGHT-ARC if (1) the resulting dependency is in the correct 

tree and (2) all the modifiers (in the correct tree) of the top 
token of the stack have already been linked (as modifiers) to the 
top token of the stack. 
o E.g., if we link “book” to “flight” with a RIGHT-ARC, we won’t be able to 

link “flight” to “through”, because “flight” will no longer be in the stack.

o Otherwise, the correct decision is SHIFT.

Exam
ple im

age from
 

“Speech and Language Processing

” by D
. Jurafsky and 

D
.H

. M
artin, 3

rdEdition (draft Jan. 2017), http://w
eb.stanford.edu/~jurafsky/slp3/



28

Evaluating dependency parsers
• Unlabeled Attachment Score (UAS): How many words

(viewed as modifiers) were linked to their correct head.
o Ignoring the labels of the dependencies.

• Labeled Attachment Score (LAS): How many words
(viewed as modifiers) were linked to their correct head with 
the correct dependency label.
o We can also measure how well we do per dependency label.
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Extra optional slides follow.



Graph-based dependency parsing
the

brown
ROOT

jumped fox

30

nsubj

amod

det

• Which arcs to keep and with what labels?
o The selected arcs must form a tree (e.g., no circles).
o And it must be the correct tree.

• Arc-factored graph-based dependency parsers:
o Score each candidate arc (and candidate label) separately.
o Greedily assign to each word (modifier) the head of the arc 

with the best score, even if the result is not a tree.
o Or use a decoder to select the tree with the best total score.
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Graph-based dependency parsing

From the paper of E. Kiperwasser and Y. Goldberg “Simple and Accurate Dependency 
Parser Using Bidirectional LSTM Feature Representations”, Transactions of ACL, vol. 4, 

pp. 313 – 327, 2016. https://aclweb.org/anthology/Q16-1023

An MLP
computes the 
score of each 
candidate arc 
(word pair).

Total score of the 
selected arcs/tree.

A decoder selects the “best” tree (max total score of arcs, arcs forming a tree). 
Alternatively, we can greedily link each modifier to its most probable head, even if the 

selected arcs may not form a tree. We may use the greedy approach always, or only 
during training, and use a decoder for testing.

A biLSTM
produces context 

aware word 
embeddings.

https://aclweb.org/anthology/Q16-1023


Graph-based dependency parsing
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• Hinge loss (𝐿) between the correct tree 𝒚 and the most 
highly scored incorrect tree 𝒚′ (e.g., from a sample):
𝐿 = max 0,𝑚 − *

!,# ∈ %

MLP 𝑣!; 𝑣# +max
%&'%

*
!,# ∈ %&

MLP 𝑣!; 𝑣#

o If the score of the correct (gold) tree 𝑦 exceeds that of the 
top-scored incorrect tree 𝑦! by a margin 𝑚, then 𝑳 = 𝟎. 

o Otherwise, loss ≠ 𝟎 and we back-propagate to update the 
weights of the MLP(s), biLSTM(s) etc.

o See the paper of K&G for further improvements.
• The hinge loss can also be used in other applications.

o It does not require probability scores. It only cares to 
distinguish the scores of good and bad instances by a margin.

o E.g., it does not try to make the probability of a gold tree 
become 1. It suffices if its score already exceeds the scores of 
(the best) other candidate trees by a margin 𝑚.
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Chomsky’s hierarchy of grammars
• Type 3 (regular grammars, right linear or left linear):

– Rules of the form Α à x and Α à x B (for right linear).
– Rules of the form A à x και A à B x (for left linear).
– x: (possibly empty) sequence of terminal symbols.
– Α, B: single non terminal symbols.
– Example of right linear regular grammar:   

NP à the Nominal NP à a Nominal
Nominalà large Nominal Nominalà nice Nominal
Nominalà easy to drive Nominal  
Nominal à N N à person N à car

• Type 2 (context-free grammars):
– Rules of the form Αà α.    
– Α: single non terminal symbol.
– α: (possibly empty) sequence of terminals and non terminals.
– E.g., we can now have the rule: NP à Det Nominal.
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Chomsky’s grammar hierarchy – cont. 
• Type 1 (context-sensitive grammars):

– Rules of the form αΑβ à αγβ.
– α, β, γ: sequences of terminals and non terminals (γ must not 

be empty, whereas α, β can be empty).
– E.g., ( Date ) à ( Day / Month / Year )
– The rule S à ε is also allowed, where S is the initial symbol and ε the 

empty string, provided that S is not used on the right-hand side of any rule. 
– Alternative definition: rules α à β, with 0 ≤ |α| ≤ |β|.
– The length of sequence α must me smaller or equal to that of sequence β. 

We can define the same languages, as with the first definition of Type 1 
grammars, with the exception of languages that include ε. 

• Type 0 (recursively enumerable grammars):
– Rules of the form α à β (α not empty, β may be empty).
– α, β: sequences of terminals and non terminals.
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Generative power of grammars
• languages(Τ): The set of languages that can be defined with 

grammars of type Τ. 
• languages(type 3) Ì languages(type 2)

– E.g., regular grammars cannot define languages of the form  
anbn (language containing ab, aabb, aaabbb etc.),

– whereas context-free grammars can (S à ab and S à aSb).
• languages(type 2) Ì languages(type 1)

– E.g., context-free grammars cannot define languages of the 
form anbncn,

– whereas context-sensitive grammars can (S à abc,         
S à aSBc, cB à Bc, bB à bb, type 1 by the 2nd definition).

• languages(type 1) Ì languages(type 0)
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Generative power of grammars

type 3 
(regular)

type 2 (context-free)

type 1 (context-sensitive)

type 0
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Finite state automata (FSAs)

Regular grammar:
S à a A
A à a A
A à B
B à b B
B à b

S A

F

a

ε

a

b

For the language ambn, with m, n > 0.

Final state

Initial state

B

b
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Grammars and automata
• Regular grammars are equivalent to finite state 

automata (FSAs).
– For each regular grammar, we can define an FSA to

produce or admit the same language and vice versa.
• To check if a sequence of terminals belongs to the 

language, we feed the sequence to the FSA. 
– The FSA “reads” (consumes) the symbols of the sequence 

one by one, changing state (or remaining at the same state) 
after each symbol, if there is a corresponding (allowed) 
transition in its graph.

– If there is no corresponding transition, the FSA gets stuck. 
– The sequence of terminals is part of the language if there 

is a sequence of transitions of the FSA that allows it to 
consume the entire sequence of terminals, leaving the FSA 
at a final state.
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Grammars and automata 
• Context-free grammars are equivalent to non 

deterministic pushdown automata (PDAs).
– The automaton also has a stack, which has to be empty at the 

final states. 
– In anbn languages, we need the stack to know how many b 

symbols we need after the a symbols. Each time we encounter 
an a, we push a symbol to the stack. Each time we encounter a 
b, we pop a symbol from the stack. 

– Non-deterministic: the current state and the symbol being 
read (and the contents of the stack for PDAs) do not 
functionally determine the next state.

– Every non-deterministic FSA (without a stack) can be converted to a 
deterministic FSA (with more states), but this does hold for PDAs.

• Type 0 grammars are equivalent to Turing machines.
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What grammars for natural languages?
• Almost all the syntactic phenomena of natural languages 

can be captured using regular grammars.
– Hence we can parse NLs using FSAs, for which there are very 

efficient algorithms.
– But often we use CFGs because they are shorter (fewer rules).
– And because their parse trees are more useful in semantics. 

• There are syntactic phenomena that seem to require CFGs:
– The cat likes tuna fish.
– The cat (that) the dog chased likes tuna fish.
– Similarities with anbn languages (NPnVn tuna fish).
– The intersection (common sentences) of English with the regular language 

[NPnVm tuna fish] is [NPnVn tuna fish], which is non-regular. Hence, 
English is not a regular language, because the intersection of regular 
languages is a regular language.

– But even people have trouble for n > 2.
– For finite values of n, regular grammars are enough.
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What grammars for natural languages?
• There are syntactic phenomena in some natural languages 

that require context-sensitive grammars.
– Swiss German and Bambara (Mali and neighbouring countries). 
– In Swiss German there are expressions of the form 

wanbmxcndmy.
• But in most natural languages no phenomena of this kind 

have been found.
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Gender agreement with CFGs
• S à NP VP | VP 
• NP à Pron | DetFem PNFem | DetFem NominalFem | 

DetMasc PNMasc | DetMasc NominalMasc
• NominalFem à NFem | AdjFem NominalFem | NominalFem PP 
• NominalMasc à NMasc | AdjMasc NominalMasc |       

NominalMasc PP 
• VP à V | V NP                       • PP à Prep NP
• Pron à εγώ
• DetFem à η | μια | την • DetMasc à ο | έναν | τον
• PNFem à Θεσσαλονίκη | Αθήνα
• NFem à πτήση • NMasc à πελάτης | πελάτη
• AdjFem à πρωινή | απογευματινή
• V à θέλω | θέλει| προτιμώ | προτιμά 
• Prep à προς | από

Twice as many gender-
sensitive rules. Even more 
rule variants for number

and case agreement. 
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Gender agreement with augmented CFGs
• S à NP VP | VP 
• NP à Pron | Det(G) PN(G) | Det(G) Nominal(G)
• Nominal(G) à N(G) | Adj(G) Nominal(G) | Nominal(G) PP 
• VP à V | V NP 
• PP à Prep NP
• Pron à εγώ
• Det(masc) à ο | έναν | τον
• Det(fem) à η | μια | την
• PN(fem) à Θεσσαλονίκη | Αθήνα
• N(fem) à πτήση
• N(masc) à πελάτης | πελάτη
• Adj(fem) à πρωινή | απογευματινή
• V à θέλω | θέλει| προτιμώ | προτιμά
• Prep à προς | από

Similar features for 
number, case:

Det(fem, nom, sing) à η

Not a CFG any more, but 
can be converted to a 
CFG with more rules, 

provided that the possible 
feature values are finite.
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Parsing with Prolog
• Prolog supports DCGs out of the box.

– Definite Clause Grammars are in effect augmented CFGs, 
as in the gender agreement slides.

– It converts them to First-Order Logic Horn clauses and treats parsing as 
an inferencing problem. 

– In effect, it parses top-down with depth-first search.
– We will use Prolog only to easily experiment with grammars.

• More elaborate parsing algorithms used in practice.
– E.g., CKY, Earley, possibly modified, to support augmented 

CFGs.
– They can also be implemented in Prolog (or other 

programming languages).
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DCGs in Prolog
• Augmented CFGs written in the form:

nominal(G) à adj(G), nominal(G).
det(masc) à [έναν].

– Terminal symbols written in square brackets.
– Symbols starting with capital letters are variables.

• Limitation due to the built-in DFS parsing:
– We need to avoid rules with left recursion.
– E.g., nominal à nominal, pp.
– More generally rules allowing productions of the form:

A à ... à A ...

45



Example of DCG
s --> np, vp.
s --> vp.

np --> pron.
np --> det(G), pn(G).
np --> det(G), nominal(G).

nominal(G) --> n(G).
nominal(G) --> adj(G), nominal(G).
% Avoiding left recursion:
% nominal(G) --> nominal(G), pp.
nominal(G) --> n(G), manypp.
manypp --> pp.
manypp --> pp, manypp.

vp --> v.
vp --> v, np.

pp --> prep, np.

pron --> [εγώ].

det(masc) --> [ο].
det(masc) --> [έναν].

…

(Consult the course’s 
documents for many more 
examples.)
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Experimenting with DCGs
• You will need a Prolog interpreter.

– Recommended: SWI-Prolog (http://www.swi-prolog.org/).
• Loading the grammar file (plain text):

– consult(…) at the Prolog prompt.
– For Windows: double-click on the .pl grammar file.
– Many examples of DCGs in the course’s documents.

• Parsing, once the grammar is loaded:
– phrase(s, [θέλω, μια, πτήση, από, την, αθήνα]).
– phrase(nominal(masc), [πελάτης, από, την, αθήνα]).
– A yes/no response by Prolog means a parse tree (with the 

specified root) was found or not.  
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Experimenting with DCG – cont.
• Queries to the parser:

– phrase(nominal(G), [πελάτης, από, την, αθήνα]).
– Response: G = masc.
– Typing «;» requests another solution (here there isn’t).

• Returning the parse tree:
– We can extend the grammars (see below), to make Prolog 

also report the parse tree:
– phrase(nominal(G, T), [πελάτης, από, την, αθήνα]).
– Response: G = masc and:
– T = nominal(n(πελάτης), 

manypp(pp(prep(από), 
np(det(την), 

pn(αθήνα))))) 
48



πρωινή

adj( fem, adj(πρωινή) ) 

πτήση

n( fem, n(πτήση) ) 

nominal( fem, nominal(n(πτήση)) ) 

nominal ( fem, nominal(adj(πρωινή), nominal(n(πτήση))) )

Nodes with subtree representations

At each internal node 
of the parse tree we now 
have an extra feature 

representing the subtree
below that node.
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New form of the DCG rules
adj(fem, adj(πρωινή) ) --> [πρωινή].

n(fem, n(πτήση) ) --> [πτήση].

n(masc, n(πελάτης) ) --> [πελάτης].

nominal(G, nominal(T) ) --> n(G, T).

nominal(G, nominal(T1, T2) ) --> adj(G, T1), nominal(G, T2).

See file tree_structure.pl in the documents of the course.

If you find and adjective of gender G and subtree T1, 
followed by a nominal of gender G and subtree Τ2, then 

you have found a (larger) nominal of gender G with parse 
tree nominal(T1, T2).
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Chunking
• Sentence chunking into non-overlapping segments.

o Usually (non-recursive) NPs, VPs etc.
[NPThe morning flight] [PP from Athens] [VP has landed].

• Flat structure produced instead of deeper trees.
• We can train sequence labeling algorithms (e.g., with sliding 

windows, RNNs, CNNs, Transformers).
o B-NP: initial word of NP.

I-NP: inside word of NP.
B-VP: initial word of VP.
...
Ο: word outside any other segment
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Head children
• In rules with only one right-hand side symbol, that symbol 

(child) is the head child.
o E.g., Nominal à N

• In rules with multiple right-hand side symbols, we can 
define which symbol is the head child.
o E.g., Sà NP VP and VP à V NP
o Usually the (main) verb is considered the head child of a verb 

phrase, the verb phrase is considered the head child of a 
sentence, the (main) noun is considered the head child of a noun 
phrase etc.

o Or we may have separate rules to traverse the parse tree and
mark the head child of each non-terminal node.
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πτήση προς την Αθήνα εγώ

Pron (εγώ)

προτιμώ

V
(προτιμώ)

μια

Det (μια)

πρωινή

Adj
(πρωινή)

N
(πτήση) Prep (προς) Det 

(την)
PN

(Αθήνα)

NP (Αθήνα)

PP (προς)

Nominal
(πτήση)

NP (πτήση)

NP (εγώ)

S (προτιμώ)

Nominal (πτήση)

Nominal (πτήση)

VP (προτιμώ)
Phrase structure tree 
with the head children
marked, along with the 
words passed up from 

the head children.
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Phrase structure trees to dependency trees

• Producing dependency trees from phrase structure trees:
o Create a node for each word.
o For each node of the phrase structure tree that has more than one 

children, add dependencies from the word of the head child to the 
words of each one of the other children.

o Usually separate rules produce the labels of the arcs.

• See also slides for parsing algorithms that produce directly
dependency trees.

προτιμώ

εγώ

μια

πτήση

πρωινή προς

την
Αθήνα

subj dobj

det
amod

prep

pobj

det
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Finding phrase structure trees via depth-first search

NP 

S 

VP 

S 

S 

VP 

... ... ... ...

NP 

S 

VP 

Det PN 

NP 

S 

VP 

Pron

NP 

S 

VP 

Det Nominal 

We usually extend the 
leftmost non terminal 

we can, using the 
topmost rule of the 

grammar that applies.
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Problems with left recursion
• We search top-down with DFS and backtracking. 
• The input sequence does not agree with the grammar:  

– «μια από την Αθήνα»
• We have produced the tree:

Det Nominal 

μια

NP 

S 

VP 

• The first two rules for Nominal 
fail: 
Nominal à N 
Nominal à Adj Nominal

• We try the third rule:
Nominal à Nominal PP

• Infinite loop without consuming 
words of the input. 

• If the third rule is above the 
other two, we get an infinite 
loop even if the input agrees 
with the grammar.

Nominal PP 

Nominal PP 
...
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Problems with left recursion
• The problem is caused by rules of the form:

– Α1à Α2 α1 (Ai non-terminal, αi sequences of terminals
– Α2 à Α3 α2 and non-terminals)
– ...
– An à A1 αn

• The problem can often be solved by modifying the 
grammar, to avoid left recursion.

• Similar problems with other generic search algorithms
when applied to parsing.
– E.g., if there is left recursion in the grammar, best-first 

search finds the parse tree if there is one, but never stops if 
there is no parse tree, because the search space is infinite.
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πτήσημια

Det 

από την Αθήνα 

Det PN 

NP 

Nominal 

N

Reparsing the same subtrees

προς τα Χανιά 

? ? ? 

PP

Prep 

NP 

Nominal 
• Top-down with DFS 

and backtracking.
• Wrong rule selected.
• Uncovered words left.
• Forced to backtrack.
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πτήσημια

Det 

από την Αθήνα 

NP 

Nominal 

προς τα Χανιά 

PP

Nominal 

Reparsing the same subtrees

59



πτήση από την Αθήνα μια

Det 

NP 

προς τα Χανιά 

PP

Det PN Prep 

NP 

N 

Nominal 

PPNominal 

Det PN Prep 

NP 

Nominal 
We had rediscovered these 

before. Waste of time.

Similar problems in 
bottom up parsing 
with generic search 

algorithms.

Reparsing the same subtrees
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Probabilistic CFGs (PCFGs)
• Like plain CFGs, but now each rule has a probability.

S à NP VP [0.7]
S à VP [0.3]
NP à Det Nominal [0.6]
NPà Det PN [0.4]
…
V à θέλω [0.03]
V à επιθυμώ [0.02]
...

• The probability of each rule shows how likely it is for the 
left-hand side non-terminal to have the form of the right-
hand side.
o The scores are conditional probabilities, like P(NP VP | S).

The total probability of all the 
rules for S must be 1.

The total probability of all the 
rules for NP must be 1.

The total probability of all the 
rules for V must be 1.
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Probability of a parse tree
• We take the probability of each parse tree

to be the product of the probabilities of the
rules that were used to construct it.
o Hence, we assume that rule applications are

independent...
S à NP VP [0.7]
S à VP [0.3]
...
VP à V NP [0.65]
NP à Det Nominal [0.6]
…
V à θέλω [0.03]

• If we get multiple parse trees for a
sentence, we prefer the most probable one.

S 

VP 

V NP 

θέλω Det Nominal 

μία N 

πτήση 

0.3

0.6

0.65

0.03

…

…

…
P(T) = 0.3 × 0.65 ×

0.03 × 0.6 × ...
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Probabilistic CKY
• For probabilistic CFGs in Chomsky Normal Form (CNF).
• Only rules of the form A à B C [p] and A à w [p], where

A, B, C non-terminals, w terminal, p probability.
S à V NP [0.7] NP à Det Nominal [0.8]
... ...
V à επιθυμώ [0.01] Nominal à Adj N [0.4]
V à θέλω [0.03] Nominal à πτήση [0.01]
... ...
Det à μια [0.2] N à πτήση [0.02]
Adj à πρωινή [0.01] Adj à απογευματινή [...]
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Probabilistic CKY
0 1 2 4θέλω μία πτήσηπρωινή 3

0 1 2 3 4

0 V [0.03]
(0,1)

1 Det [0.2]
(1,2)

2 Adj [0.01]
(2,3)

3
N [0.02]
Nominal [0.01]
(3,4)
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Probabilistic CKY
0 1 2 4θέλω μία πτήσηπρωινή 3

0 1 2 3 4

0 V [0.03]
(0,1) (0,2)

1 Det [0.2]
(1,2) (1,3)

2 Adj [0.01]
(2,3)

Nominal [0.4 ×
0.01 × 0.02]
(2,4)

3
N [0.02]
Nominal [0.01]
(3,4)

Probability of 
the rule (0.4).
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How do we learn the rules and probabilities?
• The most common way is to use a treebank.

o Corpus with sentences annotated (usually manually) with 
their parse trees.

o The rules follow from the parse trees.
o We usually exclude very rare rules. 
o Probabilities of the remaining rules:

• If we only have plain texts, without manually annotated trees, 
we can use a form of Expectation Maximization (EM).
o “Inside-outside” algorithm. See J&M.

count( )P( )
count( )

a ba b
a
®

® = How frequent is the non-
terminal α in the corpus?

How frequently does α 
become β in the corpus?
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Problems with PCFGs
• They assume that rule 

applications are 
independent. 
o E.g., that applying the rule 

NP à Det Nominal is 
equally probable 
regardless of whether the 
father of the NP is S or VP.

o But if the father of the NP
is an S, the probability of 
NP à Det Nominal may be
lower, perhaps because NP 
à Pron is more likely.

o Perhaps more likely to 
encounter a pronoun as a 
subject, than as an object. 

S 

VP

V NP 

θέλει Det Nominal 

μία N 

πτήση 

0.3

0.6

0.65

0.03

…

…

…

Det Nominal 

ο N 

πελάτης

0.6

…

…

NP 
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Splitting non-terminals
• We can distinguish NP^S

(NP with S father) from
NP^VP (NP with VP father). 
S à NP^S VP [0.3]
NP^S à Det Nominal [0.4]
VP à V NP^VP [0.65]
NP^VP à Det Nominal [0.6]

• We now have two variants
of NP à Det Nominal, each 
with a different probability. 
o One for subject NP, one for 

object NP.
o We can split other non-

terminals too. 

S 

VP

V NP^VP

θέλει Det Nominal 

μία N 

πτήση 

0.3

0.6

0.65

0.03

…

…

…

Det Nominal 

ο N 

πελάτης

0.4

…

…

NP^S
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Problems with PCFGs
S

VP 
V NP

είδαμε Det Nominal 

το

N 

σπίτι

Nominal PP

Prep 

με

τζάκι [pτζ] / μεσίτη [pμεσ]

S

VP 
V NP

είδαμε Det Nominal 

το N 

σπίτι

PP

Prep 

με

NP

Det Nominal 

το Ν

τζάκι [pτζ]
/ μεσίτη [pμεσ]

NP

Nominal 

Ν

Det 

τοLet pα be the 
probability of the 
rest of the tree. 

Let pβ be the probability of 
the rest of the tree. 

“We saw the house with the fireplace/broker.” 69



Problems with PCFGs
• Είδαμε το [σπίτι με το τζάκι]. 𝑝! " 𝑝"#
• Είδαμε [το σπίτι] [με το τζάκι]. 𝑝$ " 𝑝"#

• Είδαμε το [σπίτι με το μεσίτη]. 𝑝! " 𝑝%&'
• Είδαμε [το σπίτι] [με το μεσίτη]. 𝑝$ " 𝑝%&'

• If 𝒑𝒂 > 𝒑𝜷, we prefer the left tree in both sentences.
• If 𝒑𝒂 < 𝒑𝜷, we prefer the right tree in both sentences. 
• We want to prefer the left tree in the first sentence (with 

τζάκι, fireplace) and the right tree in the second sentence 
(with μεσίτη, broker).
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Lexicalized PCFGs
S(είδαμε)

VP(είδαμε)

V(είδαμε) NP(σπίτι)

είδαμε Det(το) Nominal(σπίτι)

το

N(σπίτι)

σπίτι

Nominal(σπίτι) PP(τζάκι/μεσίτη)

Prep(με)

με

τζάκι [pτζ] / μεσίτη [pμεσ]

NP(τζάκι/μεσίτη)

Nominal(τζάκι/μεσίτη)

Ν(τζάκι/μεσίτη)

Det(το)

το

We mark the head children and 
the words passed up. (For 

simplicity, we assume here that the head 
child of a PP is the NP.)

• pα is now different per sentence, 
because different Nominal rules
with different p1 > p2 are involved.
Nominal(σπίτι) à Nominal(σπίτι) PP(τζάκι) [p1]
Nominal(σπίτι) à Nominal(σπίτι) PP(μεσίτη) [p2] 71



Lexicalized PCFGs

VP(είδαμε)

V(είδαμε) NP(σπίτι)

είδαμε Det(το) Nominal(σπίτι)

το N(σπίτι)

σπίτι

Prep(με)

με Det(το)

το

τζάκι [pτζ] / μεσίτη [pμεσ]

Ν(τζάκι/μεσίτη)

Nominal(τζάκι/μεσίτη)

NP(τζάκι/μεσίτη)

PP(τζάκι/μεσίτη)

S(είδαμε)

• pβ is now also different per sentence, again because 
different Nominal rules with different p3 < p4 are involved.
VP(είδαμε) à V(είδαμε) NP(σπίτι) PP(τζάκι) [p3]
VP(είδαμε) à V(είδαμε) NP(σπίτι) PP(μεσίτη) [p4] 72



Lexicalized PCFGs and CPCFGs
• Improved results compared to non-lexicalized PCFGs. 
• Much larger number of rules, more difficult to estimate 

their probabilities.
o Many rules will have been used rarely in the treebank.
o Special probability smoothing techniques employed.
o E.g., replacing the words in brackets by their POS tags (esp. 

if the tags also indicate gender, number, case etc.) or with 
semantic classes (e.g., person, location).

o See J&M for more information. 
• In Conditional PCFGs (CPCFGs), whenever a rule is 

applied, it may have a different probability.
o The probability is generated by a model (nowadays, possibly 

an MLP) that considers features of the rules and the parts of 
the input text its symbols correspond to. 
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Recommended reading
• Y. Goldberg, Neural Network Models for Natural Language 

Processing, Morgan & Claypool Publishers, 2017. 
o Mostly sections 7.7, 8.6, 16.2.3.

• Jurafsky & Martin (2nd ed.): chapters 12, 13, 14, 16.
o Check also the 3rd edition (in preparation): 

http://web.stanford.edu/~jurafsky/slp3/ . 

• For probabilistic parsing you may optionally want to 
consult chapters 11 and 12 of Manning & Schütze.

• For more background on dependency parsing, consult 
the book Dependency Parsing by S. Kubler, R. 
McDonald, and J. Nivre, Morgan & Claypool, 2009. 

• The Universal Dependencies Project provides treebanks 
for many languages (including English, Greek).
o http://universaldependencies.org/

http://web.stanford.edu/~jurafsky/slp3/
http://universaldependencies.org/

