
 

 

Exercises on text classification with Multi-Layer Perceptrons (MLPs) 
 

Ion Androutsopoulos, 2024–25 
 
Submit as a group of 2–3 members (unless specified otherwise in the lectures) a report 
(max. 10 pages, PDF format) for exercises 9 and 10. You may optionally submit also 
exercise 12 for extra bonus (your report may then be up to 15 pages). Include in your 
report all the required information, especially experimental results. Do not include code 
in the report, but include a link to a Colab notebook containing your code. Make sure to 
divide fairly the work of your group to its members and describe in your report the 
contribution of each member. The contribution of each member will also be checked 
during the oral examination of your submission. For delayed submissions, one point will 
be subtracted per day of delay. 

 
1. In the XOR MLP of slide 10, for each one of the possible four input vectors, calculate the 
corresponding new feature vector that the two hidden neurons produce, i.e., the vector that 
contains the outputs of the two AND gates. Show that the new feature vectors are linearly 
separable (hence they can now be separated by the neuron of the last layer).  
 
Answer: Let 〈𝑥!, 𝑥"〉 be the input vector, with 1,−1 denoting True or False, respectively, as 
on slide 10. Let 𝑛!, 𝑛" be the outputs of the top and bottom AND gates, respectively, of slide 
10. The two possible input vectors for which the XOR output is False, i.e., 〈𝑥! = −1, 𝑥" =
−1〉 and 〈𝑥! = 1, 𝑥" = 1〉 are both mapped to the new point 〈𝑛!, 𝑛"〉 = 〈−1,−1〉. The two 
possible input vectors for which the XOR output is True, i.e., 〈𝑥! = −1, 𝑥" = 1〉 and 〈𝑥! =
1, 𝑥" = −1〉 are mapped to the new points 〈𝑛!, 𝑛"〉 = 〈−1, 1〉 and 〈𝑛!, 𝑛"〉 = 〈1, −1〉, 
respectively. The three new points (one False, two True) are now linearly separable. 
 
2. Show that a Perceptron (single neuron) with a sigmoid activation function is a linear 
separator.  
 
Answer: For each input, the Perceptron produces the output 𝜎(𝑤,,⃗ ∙ �⃗�) = 𝜎(𝑤#𝑥# +
⋯+𝑤!𝑥! +𝑤$), assuming that we always set 𝑥$ = 1, where 𝑤,,⃗  is the weights vector the 
Perceptron has learned, �⃗� is the feature vector of the input, and  𝜎 the sigmoid function. We 
classify the input in the positive class if 𝜎(𝑤,,⃗ ∙ �⃗�) ≥ 0.5, and in the negative class if 𝜎(𝑤,,⃗ ∙
�⃗�) < 0.5. Since 𝜎(𝑧) ≥ 0.5 if and only if 𝑧 ≥ 0, we classify in the positive class the inputs for 
which  𝑤,,⃗ ∙ �⃗� ≥ 0, i.e., the inputs whose feature vectors 𝑥 are on the hyper-plane 𝑤,,⃗ ∙ �⃗� = 0 or 
in the positive semi-space of the hyper-plane 𝑤,,⃗ ∙ 𝑥 = 0 (“above” the hyper-plane), whereas 
we classify in the negative class any other input. Hence, the separating hyper-surface is the 
hyper-plane 𝑤,,⃗ ∙ �⃗� = 0, which is a linear separator. 
 
3. (a) Show that a two-level network of Perceptrons (like the one we used to implement the 
XOR gate on slide 10) can learn any logical function. As on slide 10: we use 1 to represent 
True (T) and −1 to represent False (F); we use a sign activation function in all neurons; we 
select appropriate weights and threshold values (or bias terms) to make the neurons of the first 
layer behave as AND gates and the neuron of the second layer behave as an OR gate. 
 
Answer: Every logical function can be defined by a truth table.  For 
example, the table on the right defines a logical function of three 
variables (X, Y, Z) with response C. In the first layer, we use as many 
neurons as the number of rows of the truth table where C = T (4 
neurons in our example). Each neuron of the first layer takes as inputs 
the variables (X, Y, Z). We make sure that each neuron of the first 
layer works as an AND gate that fires (outputs T) when the variables 
have the values of a raw (different per neuron) of the truth table where 

Χ Υ Ζ C 
F F F T 
F F Τ T 
F T F T 
F T T F 
T F F F 
T F T T 
T T F F 
T T T F 



 

 

C = T and only then. In our example, the neuron for the first row of the truth table could have 
weights set to –0.3 for all of its three inputs and threshold set to 0.8, so that it would fire if 
and only if all three inputs are F (–1). The first-layer neuron for the second row of the truth 
table, could have weights set to –0.3 for Χ and Υ, but set to +0.3 for Ζ, and threshold set to 
0.8, so that it would fire if and only if Χ = –1 (F), Y = –1 (F), Z = 1 (T). Similarly, for the 
other first-layer neurons for the rows of the truth table where C = T. Here, for the single 
neuron of the output layer to operate as an OR gate, we could set all of its input weights to 
0.5 and its threshold to –1.5. 
 
(b) Explain why an MLP like the one of the previous question, with appropriate weights and 
thresholds, can represent (hence, also learn in principle) every binary classification training 
dataset of Boolean features, provided that it has enough neurons in the first layer and there are 
no inconsistent training instances, but may not perform well on unseen (test) instances. 
  
Answer: The training instances can be represented by a (possibly 
incomplete) truth table like the one on the right, where we assume that 
we now have only 4 training instances coming from the truth table of 
the example of the previous question (here we have the first two and 
the last two rows of the table of the previous question). Again, we 
construct an MLP with two layers, as in the previous question. Here the first layer will have 
only two neurons (acting as AND gates), since we only have two positive (C = T) training 
instances. The MLP will respond correctly when the values of X, Y, Z correspond to one of the 
4 rows of the table on the right (training instances). In effect, the MLP has memorized the two 
positive training instances for which it responds C = T, and responds C = F in all other 
cases. However, the MLP will behave incorrectly in all the other lines of the truth table of the 
previous question, which might be included in the test data. Concretely, it will wrongly 
respond C = F for the combinations of X, Y, Z values that correspond to the third row from 
top and third row from bottom in the table of the previous question.  
 
4. (i) We wish to train a (single) Perceptron to separate 
the instances of the two classes (black and white dots, 
inside and outside of a circle) of the figure on the right. 
There are only two (real-valued) features, corresponding 
to the two axes. Explain why the Perceptron cannot learn 
to correctly separate the two classes using the current 
two features.    
 
Answer: The Perceptron is a linear classifier, i.e., it 
learns a point (for one feature), a straight line (for two 
features), a plane (for three features), or more generally 
a hyper-plane (for more features), and classifies unseen 
instances by examining if they fall above or below the hyper-plane. The dataset of the figure 
is not linearly separable with the current two features, i.e., there is no straight line that 
separates the black from the white dots. Hence, a single Perceptron cannot learn to separate 
the two classes with the current features.  
 
(ii) Propose a mapping from the feature vector of each instance to a single real number (a 
single real-valued feature), so that the new (single) feature will allow the Perceptron to 
correctly separate the two classes. 
 
Answer: We can represent each instance by its distance from the center of the circle. Then all 
the instances will be along the axis of the new, single feature (distance from the center), the 
black dots will be on the left of the value that corresponds to the radius (approximately 1), 
and the white dots will be on the right of the radius value. With the new (single feature) 

Χ Υ Ζ C 
F F F T 
F F Τ T 
T T F F 
T T T F 

Image from the book of Russel & Norvig; see 
references in the slides. 



 

 

representation, the classes are linearly separable, hence the Perceptron can learn to 
correctly separate them.  
 
5. (i) Two students are discussing how the Perceptron (single neuron) relates to a logistic 
regression classifier. The first student claims that a (binary) logistic regression classifier is the 
same as a (single neuron) Perceptron with a sigmoid activation function. To support her view, 
she wrote down the formulae that compute the output of the Perceptron and the probability 
that the logistic regression classifier assigns to the positive class, in both cases given an input 
vector �⃗�. Write down the formulae. What do they show? 
 
Answer: The output of the Perceptron with a sigmoid activation function is: 
 

 
 
The probability that the logistic regression classifier assigns to the positive class is:  
 

 
 
The formulae show that if we use the same weights 𝑤,,⃗ , the output of the Perceptron will be the 
same as the probability of the positive class of logistic regression, which seems to agree with 
the claim of the first student. 
 
(ii) The second student, however, responded that the Perceptron and logistic regression learn 
different weights, even if they use the same training dataset, the same initial weights, and the 
same optimizer. To support her claim, she wrote down the weight update rules of the 
Perceptron (with sigmoid activation function, slide 14) and logistic regression (with stochastic 
gradient ascent). Write the update rules. What do they show? 
 
Answer: The weight update rule of the Perceptron (with sigmoid activation function) is: 
 

 
 
The weight update rule of logistic regression (with stochastic gradient ascent, without 
regularization) is:  
 

 
 
The update rules are indeed different. This is because the Perceptron that we considered in 
the slides tries to minimize the squared error loss, whereas logistic regression tries to 
minimize the cross-entropy (or to maximize the conditional log-likelihood) of the training 
data. Hence, the second student is right, that in general the Perceptron will learn different 
weights than logistic regression. However, if we used the cross-entropy loss in the Perceptron 
too (and the same regularization and optimizer), we would come up with the same update 
rules, which would agree with the first student’s opinion. 
 
6. Show that without activation functions, a multi-layer neural network is equivalent to 
applying a linear transformation to the input, i.e., the output can be written as �⃗� = 𝑊�⃗� + 𝑏, 
where 𝑊 is a weights matrix, 𝑏 ∈ ℝ is a bias term, and �⃗�𝜖ℝ# is the input feature vector. 
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7. Confirm the computation of %&
%'(⃗

 in the computation graph of slide 29.  
 

 
Answer: The gradient that we need to compute is: 
 

𝜕𝐸
𝜕�⃗�

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑜!…
𝜕𝐸
𝜕𝑜*…
𝜕𝐸
𝜕𝑜+⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
Let us consider separately a single derivative %&

%'!
 (a single element of the gradient): 

 
𝜕𝐸
𝜕𝑜*

=
𝜕
𝜕𝑜*

G
1
2
I𝑡, − 𝑜,K

"
+

,-!

=
𝜕
𝜕𝑜*

1
2
(𝑡* − 𝑜*)" =

1
2
∙ 2 ∙ (𝑡* − 𝑜*) ∙

𝜕
𝜕𝑜*

(𝑡* − 𝑜*)

= (𝑡* − 𝑜*) ∙ (−1) = (𝑜* − 𝑡*) 
 
Hence:  
 

𝜕𝐸
𝜕�⃗�

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑜!…
𝜕𝐸
𝜕𝑜*…
𝜕𝐸
𝜕𝑜+⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝑜! − 𝑡!
…

𝑜* − 𝑡*
…

𝑜+ − 𝑡+⎦
⎥
⎥
⎥
⎤
= �⃗� − 𝑡 

 
Note: We do not need to compute %&

%.⃗
, because we do not update 𝑡 (the correct prediction). 

 
  



 

 

8. (i) Compute the gradient %&
%'(⃗ (#)

 in the network with the following computation graph. 
 
Answer: The gradient %&

%'(⃗ (#)
 is computed as in Exercise 7. 

 

 
(ii) Show that for a sigmoid node 𝜎(𝑠) = �⃗�, %&

%/⃗
 can be computed as follows, where 𝐽 is the 

Jacobian matrix.1    
 

 
 
Answer: The gradient that we need to compute is: 
 

𝜕𝐸
𝜕𝑠

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑠!
⋮
𝜕𝐸
𝜕𝑠*
⋮
𝜕𝐸
𝜕𝑠+⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
1 See https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant.  

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant


 

 

 
Let us consider separately a single derivative %&

%/!
 (a single element of the gradient). By the 

chain rule of derivatives, we obtain:  
 

𝜕𝐸
𝜕𝑠*

=G
𝜕𝐸
𝜕𝑜,

𝜕𝑜,
𝜕𝑠*

+

,-!

 

However, each 𝑠* affects only 𝑜* = 𝜎(𝑠*). It does not affect any other 𝑜, = 𝜎I𝑠,K, for 𝑗 ≠ 𝑖. 

Hence, %'%
%/!

= 0	for 𝑗 ≠ 𝑖, and we obtain: 
 

𝜕𝐸
𝜕𝑠*

=
𝜕𝐸
𝜕𝑜*

𝜕𝑜*
𝜕𝑠*

=
𝜕𝐸
𝜕𝑜*

𝜕𝜎(𝑠*)
𝜕𝑠*

=
𝜕𝐸
𝜕𝑜*

𝜎(𝑠*)I1 − 𝜎(𝑠*)K 

 
where we have use the property of the sigmoid that 𝑑𝜎(𝑥)𝑑𝑥 = 𝜎(𝑥)I1 − 𝜎(𝑥)K. 
 
Therefore: 
 

𝜕𝐸
𝜕𝑠

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑠!
⋮
𝜕𝐸
𝜕𝑠*
⋮
𝜕𝐸
𝜕𝑠+⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑜!

𝜕𝜎(𝑠!)
𝜕𝑠!
⋮

𝜕𝐸
𝜕𝑜*

𝜕𝜎(𝑠*)
𝜕𝑠*
⋮

𝜕𝐸
𝜕𝑜+

𝜕𝜎(𝑠+)
𝜕𝑠+ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑜!

𝜎(𝑠!)I1 − 𝜎(𝑠!)K

⋮
𝜕𝐸
𝜕𝑜*

𝜎(𝑠*)I1 − 𝜎(𝑠*)K

⋮
𝜕𝐸
𝜕𝑜+

𝜎(𝑠+)I1 − 𝜎(𝑠+)K⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
The latter can also be written as: 
 

𝜕𝐸
𝜕𝑠

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜎(𝑠!)
𝜕𝑠!

0 … 0

0
𝜕𝜎(𝑠")
𝜕𝑠"

… 0

⋮ ⋮ ⋮ ⋮

0 0 …
𝜕𝜎(𝑠+)
𝜕𝑠+ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑜!
𝜕𝐸
𝜕𝑜"
⋮
𝜕𝐸
𝜕𝑜+⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 

=

⎣
⎢
⎢
⎢
⎡𝜎(𝑠!)I1 − 𝜎(𝑠!)K 0 … 0

0 𝜎(𝑠")I1 − 𝜎(𝑠")K … 0
⋮ ⋮ ⋮ ⋮
0 0 … 𝜎(𝑠+)I1 − 𝜎(𝑠+)K⎦

⎥
⎥
⎥
⎤
𝜕𝐸
𝜕�⃗�

 

 
More generally, it can be written as: 
 

𝜕𝐸
𝜕𝑠

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜎(𝑠!)
𝜕𝑠!

𝜕𝜎(𝑠")
𝜕𝑠!

…
𝜕𝜎(𝑠+)
𝜕𝑠!

𝜕𝜎(𝑠!)
𝜕𝑠"

𝜕𝜎(𝑠")
𝜕𝑠"

…
𝜕𝜎(𝑠+)
𝜕𝑠"

⋮ ⋮ ⋮ ⋮
𝜕𝜎(𝑠!)
𝜕𝑠+

𝜕𝜎(𝑠")
𝜕𝑠+

…
𝜕𝜎(𝑠+)
𝜕𝑠+ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑜!
𝜕𝐸
𝜕𝑜"
⋮
𝜕𝐸
𝜕𝑜+⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 𝐽0
𝜕𝐸
𝜕�⃗�

 

 



 

 

where 𝐽 is the Jacobian matrix: 
 

𝐽 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜎(𝑠!)
𝜕𝑠!

𝜕𝜎(𝑠!)
𝜕𝑠"

…
𝜕𝜎(𝑠!)
𝜕𝑠+

𝜕𝜎(𝑠")
𝜕𝑠!

𝜕𝜎(𝑠")
𝜕𝑠"

…
𝜕𝜎(𝑠")
𝜕𝑠+

⋮ ⋮ ⋮ ⋮
𝜕𝜎(𝑠+)
𝜕𝑠!

𝜕𝜎(𝑠+)
𝜕𝑠"

…
𝜕𝜎(𝑠+)
𝜕𝑠+ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
The latter applies more generally. For a node that computes 𝑓(𝑠, … ) = �⃗�, we can compute  
%&
%/⃗

 as follows (provided that 𝑠 is fed only to the 𝑓 node): 
 

 
(Check that this is also true for %&

%'(⃗
 in exercise 7.) 

If 𝑠 is fed to two (or more) nodes 𝑓!, 𝑓", we have to add the gradients for %&
%/⃗

 that we get from 
𝑓!, 𝑓": 
 

 
 
  



 

 

(iii) Show that for a matrix-vector multiplication node 𝑊�⃗� = 𝑠, %&
%'(⃗

 can be computed as 
follows: 
 

 
 
Answer:  
 

𝑠 =

⎣
⎢
⎢
⎢
⎡
𝑠!
𝑠"
𝑠1
…
𝑠+⎦
⎥
⎥
⎥
⎤
= 𝑊�⃗� =

⎣
⎢
⎢
⎢
⎡
𝑤!,! 𝑤",! … 𝑤3,!
𝑤!," 𝑤"," … 𝑤3,"
𝑤!,1 𝑤",1 … 𝑤3,1
… … … …
𝑤!,+ 𝑤",+ … 𝑤3,+⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑜!
𝑜"
𝑜1
…
𝑜3⎦
⎥
⎥
⎥
⎤
=

⎣
⎢
⎢
⎢
⎡
𝑤!,!𝑜! +𝑤",!𝑜" +⋯+𝑤3,!𝑜3
𝑤!,"𝑜! +𝑤","𝑜" +⋯+𝑤3,"𝑜3
𝑤!,1𝑜! +𝑤",1𝑜" +⋯+𝑤3,1𝑜3

…
𝑤!,+𝑜! +𝑤",+𝑜	" +⋯+𝑤3,+𝑜3⎦

⎥
⎥
⎥
⎤

 

 
The gradient that we need to compute is: 
 

𝜕𝐸
𝜕�⃗�

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑜!
⋮
𝜕𝐸
𝜕𝑜*
⋮
𝜕𝐸
𝜕𝑜3⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
Let us consider separately a single derivative %&

%'!
 (a single element of the gradient). By the 

chain rule of derivatives, we obtain:  
 

𝜕𝐸
𝜕𝑜*

=G
𝜕𝐸
𝜕𝑠,

𝜕𝑠,
𝜕𝑜*

+

,-!

 

 
According to the equations for 𝑠 = 𝑊�⃗� above: 
 

𝑠, = 𝑤!,,𝑜! +𝑤",,𝑜" +⋯+𝑤*,,𝑜* +⋯	+ 𝑤3,,𝑜3 
 
Hence:  

𝜕𝑠,
𝜕𝑜*

= 𝑤*,, 

Therefore: 
 

𝜕𝐸
𝜕𝑜*

=G
𝜕𝐸
𝜕𝑠,

𝜕𝑠,
𝜕𝑜*

+

,-!

=G
𝜕𝐸
𝜕𝑠,

𝑤*,,

+

,-!

 

 
which can also be written as: 
 



 

 

𝜕𝐸
𝜕𝑜*

= T
𝜕𝑠!
𝜕𝑜*

𝜕𝑠"
𝜕𝑜*

…
𝜕𝑠+
𝜕𝑜*

U

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑠!
𝜕𝐸
𝜕𝑠"
⋮
𝜕𝐸
𝜕𝑠+⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

= [𝑤*,! 𝑤*," … 𝑤*,+]

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑠!
𝜕𝐸
𝜕𝑠"
⋮
𝜕𝐸
𝜕𝑠+⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
Hence, for the overall gradient: 
 

𝜕𝐸
𝜕�⃗�

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑜!
𝜕𝐸
𝜕𝑜"
⋮
𝜕𝐸
𝜕𝑜*
⋮
𝜕𝐸
𝜕𝑜3⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝑠!
𝜕𝑜!

𝜕𝑠"
𝜕𝑜!

…
𝜕𝑠+
𝜕𝑜!

𝜕𝑠!
𝜕𝑜"

𝜕𝑠"
𝜕𝑜"

…
𝜕𝑠+
𝜕𝑜"

⋮ ⋮ ⋮ ⋮
𝜕𝑠!
𝜕𝑜*

𝜕𝑠"
𝜕𝑜*

…
𝜕𝑠+
𝜕𝑜*

⋮ ⋮ ⋮ ⋮
𝜕𝑠!
𝜕𝑜3

𝜕𝑠"
𝜕𝑜3

…
𝜕𝑠+
𝜕𝑜3⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑠!
𝜕𝐸
𝜕𝑠"
⋮
𝜕𝐸
𝜕𝑠+⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝑤!,! 𝑤!," … 𝑤!,+
𝑤",! 𝑤"," … 𝑤",+
⋮ ⋮ ⋮ ⋮
𝑤*,! 𝑤*," … 𝑤*,+
⋮ ⋮ ⋮ ⋮

𝑤3,! 𝑤3," … 𝑤3,+⎦
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑠!
𝜕𝐸
𝜕𝑠"
⋮
𝜕𝐸
𝜕𝑠+⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 

 

𝐽'(⃗
0 𝜕𝐸
𝜕𝑠

= 𝑊0 𝜕𝐸
𝜕𝑠

 
 
Note: We prefer to use matrix operators, which can be efficiently computed using highly 
optimized algorithms and GPUs, rather than relying on our own for-loops (e.g., in our own 
Python scripts) to compute individual elements of matrices, which is much slower. 
  
(iv) Show that for a matrix-vector multiplication node 𝑊�⃗� = 𝑠, %&

%4
= %&

%/⃗
⊗ �⃗�, where ⊗ 

denotes the outer product.2 
 

 
Answer: Recall that we use the following notation for the elements of 𝑊: 
 

𝑊 =

⎣
⎢
⎢
⎢
⎡
𝑤!,! 𝑤",! … 𝑤3,!
𝑤!," 𝑤"," … 𝑤3,"
𝑤!,1 𝑤",1 … 𝑤3,1
… … … …
𝑤!,+ 𝑤",+ … 𝑤3,+⎦

⎥
⎥
⎥
⎤
 

 
The gradient that we need to compute is: 

 
 

2 See https://en.wikipedia.org/wiki/Matrix_multiplication#Outer_product.  

https://en.wikipedia.org/wiki/Matrix_multiplication#Outer_product


 

 

𝜕𝐸
𝜕𝑊

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑤!,!

𝜕𝐸
𝜕𝑤",!

…
𝜕𝐸

𝜕𝑤3,!
𝜕𝐸
𝜕𝑤!,"

𝜕𝐸
𝜕𝑤","

…
𝜕𝐸

𝜕𝑤3,"
𝜕𝐸
𝜕𝑤!,1

𝜕𝐸
𝜕𝑤",1

…
𝜕𝐸

𝜕𝑤3,1… … … …
𝜕𝐸
𝜕𝑤!,+

𝜕𝐸
𝜕𝑤",+

…
𝜕𝐸

𝜕𝑤3,+⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
Let us consider separately a single derivative %&

%5!,%
 (a single element of the gradient). By the 

chain rule of derivatives, we obtain:  
 

𝜕𝐸
𝜕𝑤*,,

=G
𝜕𝐸
𝜕𝑠6

𝜕𝑠6
𝜕𝑤*,,

+

6-!

 

 
According to the equations for 𝑠 = 𝑊�⃗� in part (iii) of the exercise: 
 

𝑠6 = 𝑤!,6𝑜! +𝑤",6𝑜" +⋯+𝑤*,6𝑜* +⋯	+ 𝑤3,6𝑜3 
 
Hence:	

𝜕𝑠6
𝜕𝑤*,,

= 0,	for	𝑙 ≠ 𝑗 

and:  
 

𝜕𝐸
𝜕𝑤*,,

=G
𝜕𝐸
𝜕𝑠6

𝜕𝑠6
𝜕𝑤*,,

+

6-!

=
𝜕𝐸
𝜕𝑠,

𝜕𝑠,
𝜕𝑤*,,

 

Given that: 
 

𝑠, = 𝑤!,,𝑜! +𝑤",,𝑜" +⋯+𝑤*,,𝑜* +⋯	+ 𝑤3,,𝑜3 
 

we obtain: 
 

𝜕𝑠,
𝜕𝑤*,,

= 𝑜* 

Hence:  
 

𝜕𝐸
𝜕𝑤*,,

=
𝜕𝐸
𝜕𝑠,

𝜕𝑠,
𝜕𝑤*,,

=
𝜕𝐸
𝜕𝑠,

𝑜* 

 
Going back to the overall gradient: 
 



 

 

𝜕𝐸
𝜕𝑊

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑤!,!

𝜕𝐸
𝜕𝑤",!

…
𝜕𝐸

𝜕𝑤3,!
𝜕𝐸
𝜕𝑤!,"

𝜕𝐸
𝜕𝑤","

…
𝜕𝐸

𝜕𝑤3,"
𝜕𝐸
𝜕𝑤!,1

𝜕𝐸
𝜕𝑤",!

…
𝜕𝐸

𝜕𝑤3,1
⋮ ⋮ ⋮ ⋮
𝜕𝐸
𝜕𝑤!,+

𝜕𝐸
𝜕𝑤",+

…
𝜕𝐸

𝜕𝑤3,+⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑠!

𝑜!
𝜕𝐸
𝜕𝑠!

𝑜" …
𝜕𝐸
𝜕𝑠!

𝑜3

𝜕𝐸
𝜕𝑠"

𝑜!
𝜕𝐸
𝜕𝑠"

𝑜" …
𝜕𝐸
𝜕𝑠"

𝑜3

𝜕𝐸
𝜕𝑠1

𝑜!
𝜕𝐸
𝜕𝑠1

𝑜" …
𝜕𝐸
𝜕𝑠1

𝑜3
⋮ ⋮ ⋮ ⋮

𝜕𝐸
𝜕𝑠+

𝑜!
𝜕𝐸
𝜕𝑠+

𝑜" …
𝜕𝐸
𝜕𝑤/'

𝑜3⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 

 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐸
𝜕𝑠!
𝜕𝐸
𝜕𝑠"
𝜕𝐸
𝜕𝑠1
⋮
𝜕𝐸
𝜕𝑠+⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

[𝑜! 𝑜" … 𝑜3] =
𝜕𝐸
𝜕𝑠

⊗ �⃗� 

 
9. Repeat exercise 11 of Part 2 (text classification with mostly linear classifiers), now using 
an MLP classifier implemented (by you) in Keras/TensorFlow or PyTorch.3 You may use 
different features in the MLP classifier than the ones you used in exercise 11 of Part 2. Tune 
the hyper-parameters (e.g., number of hidden layers, dropout probability) on the development 
subset of your dataset. Monitor the performance of the MLP on the development subset 
during training to decide how many epochs to use. Include experimental results of a baseline 
majority classifier, as well as experimental results of your best classifier from exercise 11 of 
Part 2, now treated as a second baseline. Include in your report: 
 

• Curves showing the loss on training and development data as a function of epochs 
(slide 49). 

• Precision, recall, F1, precision-recall AUC scores, for each class and classifier, 
separately for the training, development, and test subsets, as in exercise 11 of Part 2. 

• Macro-averaged precision, recall, F1, precision-recall AUC scores (averaging the 
corresponding scores of the previous bullet over the classes), for each classifier, 
separately for the training, development, and test subsets, as in exercise 11 of Part 2. 

• A short description of the methods and datasets you used, including statistics about 
the datasets (e.g., average document length, number of training/dev/test documents, 
vocabulary size) and a description of the preprocessing steps that you performed. 

 
You may optionally wish to try ensembles. One possibility is to use k separate MLP 
classifiers, corresponding to your k best checkpoints (k best epochs in terms of development 
loss), and aggregate their decisions by majority voting. Another possibility is to use temporal 
averaging, i.e., use a single MLP classifier, whose weights are the average of the weights of 
the k best checkpoints.  
 
10. Develop a part-of-speech (POS) tagger for one of the languages of the Universal 
Dependencies treebanks (http://universaldependencies.org/), using an MLP (implemented by 
you) operating on windows of words (slides 35–36).  Consider only the words, sentences, and 
POS tags of the treebanks (not the dependencies or other annotations). Use Keras/TensorFlow 

 
3 See http://keras.io/, https://www.tensorflow.org/, http://pytorch.org/. 

http://universaldependencies.org/
http://keras.io/
https://www.tensorflow.org/
http://pytorch.org/


 

 

or PyTorch to implement the MLP. You may use any types of word features you prefer, but it 
is recommended to use pre-trained word embeddings. Make sure that you use separate 
training, development, and test subsets. Tune the hyper-parameters (e.g., number of hidden 
layers, dropout probability) on the development subset. Monitor the performance of the MLP 
on the development subset during training to decide how many epochs to use. Include 
experimental results of a baseline that tags each word with the most frequent tag it had in the 
training data; for words that were not encountered in the training data, the baseline should 
return the most frequent tag (over all words) of the training data. Include in your report: 
 

• Curves showing the loss on training and development data as a function of epochs 
(slide 49). 

• Precision, recall, F1, precision-recall AUC scores, for each class (tag) and classifier, 
separately for the training, development, and test subsets, as in exercise 11 of Part 2. 

• Macro-averaged precision, recall, F1, precision-recall AUC scores (averaging the 
corresponding scores of the previous bullet over the classes), for each classifier, 
separately for the training, development, and test subsets, as in exercise 11 of Part 2. 

• A short description of the methods and datasets you used, including statistics about 
the datasets (e.g., average sentence length, number of training/dev/test sentences and 
words, vocabulary size) and a description of the preprocessing steps. 

 
You may optionally wish to try ensembles, as in exercise 9 above. 
 
11. (a) We use the window-based 
neural network named entity 
recognizer (NER) of the slide on the 
right, with 300-dimensional word 
embeddings, to recognize three 
types of named entities (persons, 
organizations, locations). We use B-
I-O tags (BPerson, IPerson, 
BOrganization etc., with a single O 
tag). The size of the vocabulary is 
|𝑉| = 100,000. The “+” node concatenates the embeddings of the three words in the window. 
The hidden layer contains 500 neurons (with tanh activation functions). What are the 
dimensions of matrices 𝐸,𝑊(!),𝑊(")? Fully justify your answers.  
 
12 [optional] Repeat exercise 3 of Part 1 (n-gram language models and context-aware 
spelling correction) now using an MLP language model, instead of an n-gram language 
model. The MLP takes as input the concatenation of the word embeddings of the n previous 
words, and outputs a probability distribution over the vocabulary as a prediction for the next 
word. Compare the WER and CER scores you obtain using the MLP language model to those 
you had obtained with the bigram and trigram language models of Part 1. 
 
 


