
 

 

Exercises on text classification with (mostly) linear models 
 

Ion Androutsopoulos, 2024–25 
 
Submit as a group of 2–3 members (unless specified otherwise in the lectures) a report 
for exercise 11 (max. 10 pages, PDF format). Include in your report all the required 
information, especially experimental results. Do not include code in the report, but 
include a link to a Colab notebook containing your code. Make sure to divide fairly the 
work of your group to its members and describe in your report the contribution of each 
member. The contribution of each member will also be checked during the oral 
examination of your submission. For delayed submissions, one point will be subtracted 
per day of delay.  

 
1. Let < 𝛸!, 𝛸", 𝛸# > = < 0, 1, 0 > be the feature vector of an 
unseen object to be classified. We use a k-NN classifier, with 
two classes (C = 0, C = 1), k = 3, and the number of different 
features as the distance measure. The training dataset contains 
the four vectors (rows) of the table (excluding the first 
column). Which class will the unseen object be classified in?  
 
Answer: The first column of the table shows the distance (d) from the unseen object to the 
corresponding training instances. The k = 3 nearest neighbors are at distances 1 and 2. The 
majority class among the k nearest neighbors is C = 0. Hence, the unseen object will be 
classified in C = 0. 
 
2. Two training examples are inconsistent, if they have the same feature values, but different 
“correct” class labels. If there are no inconsistent training examples and we evaluate a k-NN 
classifier on the same dataset we used for training, then its accuracy will be: 

___  100% 
_Χ_ 100% if k = 1, but may not be 100% if k ≠ 1 
___  none of the above (the accuracy depends on the dataset). 

 
Answer: If k = 1, every test instance will be classified in the class of its closest training 
instance, and the closest training instance will be itself (or a copy of itself, with the same 
correct class label, since there are no inconsistencies), given that the test dataset is the same 
as the training dataset. Hence, for k = 1 every test instance will be classified correctly and the 
accuracy will be 100%.  
 
If k ≠ 1, each test instance will be classified in the majority class of its k nearest training (and 
test) instances, and the majority class may not be the correct one. Hence, for k ≠ 1 the 
accuracy may not be 100%. 
 
3. (a) Based on the training examples of the table, the entropy of C is: 
 
 _Χ_Η(C) = 1 ___H(C) = 0 ___H(C) = ½  
 
Answer: Based on the training examples, P(C=positive) = 
P(C=negative) = ½. Hence, C has two equally probable values 
and, therefore, its entropy is maximum. For two possible 
outcomes, the maximum entropy value is 1. You should be able to 
reach the same conclusion by computing the entropy of C using 
the definition of entropy.  
 
(b) Based on the training examples of the table, the highest information gain score is: 
 

d 0 1 0 C? 
2 1 0 0 0 
1 0 1 1 0 
3 1 0 1 1 
2 1 1 1 1 

Χ Υ Ζ C 
0 1 0 positive 
0 1 1 positive 
0 1 0 positive 
1 0 1 positive 
1 1 0 negative 
0 0 1 negative 
0 0 0 negative 
0 0 1 negative 



 

 

 ___IG(C, X)  _Χ_IG(C, Y) ___IG(C, Z) 
 
Answer: The training data show that if we learn that Y = 1, it is very likely (probability ¾) 
that C = positive; and if we learn that Y = 0, it is very likely (probability ¾) that C = 
negative. Hence, knowing the value of Y reduces the entropy of C, which was initially 
maximum. You should be able to reach the same conclusion by computing IG(C,Y). 
 
By contrast, the training data show that if we learn that X = 1, the probability of C = positive 
remains ½, equal to the probability of C = negative; and if we learn that Χ = 0, the 
probability of C = positive remains ½, equal to the probability of C = negative. Hence, 
whatever the value of X, learning X still leaves us with two equally probable outcomes 
C=positive and C=negative and a maximum entropy, i.e., knowing X does not reduce the 
entropy of C, which implies that IG(C,X) = 0. You should be able to reach the same 
conclusion by computing IG(C,X). 
 
Similarly, IG(C,Z) = 0. 
 
4. Confirm that IG(X; C) = IG(C; X) (slide 9). 
 
5. (a) Explain why supervised machine learning algorithms must be evaluated on different 
data than those used for training.  
 
Answer: If evaluated on the training dataset, an algorithm that simply memorizes the training 
instances and their correct class labels would obtain an accuracy score of 100%, without this 
score being indicative of how well it would perform on unseen instances. More generally, a 
supervised learning algorithm often performs better (due to overfitting) on the training 
dataset than on unseen data.  
 
(b) A researcher submitted a conference paper that described a named entity recognizer 
(NER) that used supervised machine learning. The paper reported experiments with different 
feature sets. For each feature set, the NER had been trained on a training corpus (the same for 
all feature sets) and had been tested on a separate test corpus (the same for all feature sets). 
The paper listed test F1 results for each feature set, which were used to select the best feature 
set. With the best feature set, the NER of the paper had better F1 (and other) scores on the test 
corpus, compared to other NER systems that had been trained and evaluated on the same 
training and test corpora, respectively. However, the reviewers rejected the paper, noting that 
the test results were unreliable and that the comparison to the other systems was wrong, 
because the test set was in effect also used during training. Were the reviewers right or not? 
Explain why. If they were right, what should the researcher do to address the problem?  
 
Answer: The reviewers were right to complain, because the researcher selected the feature 
set that led to the best results on the test dataset, i.e., the test dataset was used for feature 
selection, which in effect is part of training (or at least configuring) the system. The chosen 
feature set may contain features that work well for the particular test set (especially if the test 
set is small), but may not work that well on other test sets; in effect, the system may have 
overfitted the particular test set. The researcher should select the feature set that leads to the 
best results on a held-out part of the training set (or perform a cross-validation on the 
training set to select the feature set), and then evaluate the NER (with the chosen feature set) 
on the test set. 

 



 

 

6. The dots of the figure are a sample 
from a population that actually follows the 
function y = f(x), whose curve is the solid 
line.1 Due to noise (e.g., introduced by the 
measurements), the dots are not exactly on 
the solid line. We wish to learn from the 
sample a function y = h(x) that will 
approximate the (unknown to us) true f(x).  
 
(a) Explain why linear regression would 
not lead to a good h(x). 
 
Answer: Linear regression learns straight 
lines (more generally, planes or 
hyperplanes). In our case, the target curve 
y = f(x) cannot be approximated well by a 
single straight line. 
 
(b) How could we learn a better h(x) using k-NN regression (or variant)? What would we do 
during training? After training, given an x, how would we obtain y = h(x);  
 
Answer: During training, we would simply store all the coordinates (x, y) of the instances 
(dots) of the sample. After training, given an x’, we would retrieve the k (training) instances 
of the sample whose x values are closest to x’ and we would return their average y. We could 
also assign weights to the y values of the k neighbors (e.g., inversely proportional to the 
distance from the neighbor’s x to x’).  
 
7. Derive the weights update rule of least squares linear regression, when using stochastic 
gradient descent. 
 
Answer: With stochastic gradient descent, the weights of least squares linear regression are 
updated as follows: 

 
𝑤((⃗ 	← 	𝑤((⃗ − 𝜂	 ∙ 𝛻$%%⃗ 𝐸'(𝑤((⃗ ), where 𝐸'(𝑤((⃗ ) = 	

!
"
4𝑓$%%⃗ 6𝑥⃗(')8 −	𝑦('):

"
 

 
and: 

𝛻$%%⃗ 𝐸'(𝑤((⃗ ) = 	 〈
𝜕𝐸'(𝑤((⃗ )
𝜕𝑤*

,
𝜕𝐸'(𝑤((⃗ )
𝜕𝑤!

, ⋯ ,
𝜕𝐸'(𝑤((⃗ )
𝜕𝑤+

, ⋯ ,
𝜕𝐸'(𝑤((⃗ )
𝜕𝑤,

〉 

For 𝑙 ∈ {0, … , 𝑛}: 
𝜕𝐸'(𝑤((⃗ )
𝜕𝑤+

=	 4𝑓$%%⃗ 6𝑥(')8 −	𝑦('): ∙ 𝑥+
(') 

Hence: 
𝛻$%%⃗ 𝐸'(𝑤((⃗ ) = 	 4𝑓$%%⃗ 6𝑥(')8 −	𝑦('): ∙ 〈𝑥!

('), ⋯ , 𝑥+
('), ⋯ 𝑥,

(')〉 = 
 

= 4𝑓$%%⃗ 6𝑥⃗(')8 −	𝑦('): ∙ 𝑥(')	 
 
and the weights update rule is: 
 

𝑤((⃗ 	← 	𝑤((⃗ − 𝜂 ∙ 4𝑓$%%⃗ 6𝑥⃗(')8 −	𝑦('): ∙ 𝑥⃗(') 
 
8. Derive the weights update rule of logistic regression, when using batch gradient ascent. 

 
1 Figure from http://en.wikipedia.org/wiki/Local_regression. 



 

 

 
Answer: With batch gradient ascent, the weights of logistic regression are updated as follows 
(using natural logarithms): 

 
𝑤((⃗ 	← 	𝑤((⃗ + 𝜂 ∙ 𝛻$%%⃗ 𝑙(𝑤((⃗ )	 

where: 

𝑙(𝑤((⃗ ) = 	F𝑦(')
-

'.!

𝑙𝑛 𝑃6𝑐/I𝑥('); 𝑤((⃗ 8 + 61 − 𝑦(')8 𝑙𝑛 𝑃6𝑐0I𝑥⃗('); 𝑤((⃗ 8				(1) 

 
and: 

𝑃(𝑐/|𝑥⃗; 𝑤((⃗ ) = 	1 61 + 𝑒0$%%⃗ 1⃗8⁄  (2) 
𝑃(𝑐0|𝑥⃗; 𝑤((⃗ ) = 	 𝑒0$%%⃗ 1⃗ 61 + 𝑒0$%%⃗ 1⃗8N 	(3) 

 
Using (2) and (3) in (1), we obtain: 
 

𝑙(𝑤((⃗ ) = 	F𝑦(')𝑙𝑛
-

'.!

P1 P1 + 𝑒0$%%⃗ 1⃗(")QN Q + 61 − 𝑦(')8𝑙𝑛 P𝑒0$%%⃗ 1⃗(") P1 + 𝑒0$%%⃗ 1⃗(")QN Q = 

=F−𝑦(')𝑙𝑛 P1 + 𝑒0$%%⃗ 1⃗(")Q + 𝑙𝑛 P𝑒0$%%⃗ 1⃗(")Q − 𝑙𝑛 P1 + 𝑒0$%%⃗ 1⃗(")Q − 𝑦(')𝑙𝑛 P𝑒0$%%⃗ 1⃗(")Q
-

'.!

+ 𝑦(')𝑙𝑛 P1 + 𝑒0$%%⃗ 1⃗(")Q 

=	F𝑙𝑛 P𝑒0$%%⃗ 1⃗(")Q − 𝑙𝑛 P1 + 𝑒0$%%⃗ 1⃗(")Q − 𝑦(')𝑙𝑛 P𝑒0$%%⃗ 1⃗(")Q	
-

'.!

 

 
The gradient is: 

 

𝛻$%%⃗ 𝑙(𝑤((⃗ ) = 	 〈
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𝜕𝑤*
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and for 𝑙 ∈ {0, … , 𝑛}: 

 
𝜕𝑙(𝑤((⃗ )
𝜕𝑤+

=	−F
𝑒0$%%⃗ 1⃗(") ∙ 𝑥+

(')
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(')
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(')
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-

'.!
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= −FR
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-
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Hence, the weights update rule is: 

𝑤+ ←	𝑤+ + 𝜂 ∙F4	𝑦(') − 𝑃6𝑐/I𝑥⃗(')8:	𝑥+
(')

-

'.!

 

 



 

 

9. We trained a logistic regression classifier on the 
training instances (dots) of the figure.  There are two 
classes (black, white) and two features (𝑥!, 𝑥"). If we 
evaluate the classifier on the training (same) instances, 
will it classify all the training instances correctly? If 
yes, why? If not, what can we do to help the classifier 
classify correctly all the training instances? 
 
Answer: Logistic regression classifiers are linear 
separators. They learn a straight line (in our case) or a 
hyperplane (more generally), and then classify unseen 
instances by computing whether or not they fall above 
or below the straight line (or hyperplane). The 
instances (dots) of the figure are not linearly separable (no straight line separates all the 
black from all the white dots). Hence, a logistic regression classifier cannot learn to separate 
them all (classify them all correctly), even if it is trained on the same instances.  
 
By using more features, however, the instances may 
become linearly separable. For example, with the 
following transformation: 

 

the instances are moved to a new, 3-dimensional vector 
space where they are linearly separable (2nd figure, 
also from the book of Russel & Norvig). Hence, a 
logistic regression classifier could learn to classify them 
all correctly, provided that we apply the transformation 
above. 
 
10. A student trained a logistic regression classifier with (batch) gradient ascent. To speed up 
the training, the student used a large constant η value in the weights update rule, hoping that 
this way the gradient ascent would need fewer steps. However, the gradient ascent no longer 
converged; it seemed to be oscillating between two values. Why did this happen? 
 
Answer: Because of the large η value, the gradient ascent possibly went over the maximum 
(overshot it), then made another (large) step towards the opposite direction (overshooting 
again the maximum) etc. Reducing the value of η at each step would probably have helped in 
this case. 
 
11. Develop a sentiment classifier for a kind of text of your choice (e.g., tweets, product or 
movie reviews). Use an existing sentiment analysis dataset with at least two classes (e.g., 
positive/negative or positive/negative/neutral).2 The classes should be mutually exclusive, i.e., 
this is a single-label multi-class classification problem. You may use Boolean, TF, or TF-IDF 
features corresponding to words or n-grams, and/or other features. You may apply any feature 
selection (or dimensionality reduction) method you consider appropriate. You may also want 
to try using centroids of pre-trained word embeddings.3 You can write your own code to 
produce feature vectors, perform feature selection (or dimensionality reduction) and train the 
classifier (e.g., using SGD, in the case of logistic regression), or you can use existing 

 
2 See, for example, the Large Movie Review Dataset (http://ai.stanford.edu/~amaas/data/sentiment/), 
the Cornell Movie Review Data (http://www.cs.cornell.edu/people/pabo/movie-review-data/, included 
in NLTK), or the Twitter Sentiment Analysis Dataset (https://www.kaggle.com/c/twitter-sentiment-
analysis2/data, you need to create a Kaggle account).  
3 Pre-trained word embeddings are available, for example, from http://nlp.stanford.edu/projects/glove/, 
https://fasttext.cc/docs/en/crawl-vectors.html, https://code.google.com/archive/p/word2vec/.   

2 2
1 2 1 2( ) , , 2F x x x x x=

 

Figure from the book of Russel and Norvig. 

http://ai.stanford.edu/~amaas/data/sentiment/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
https://www.kaggle.com/c/twitter-sentiment-analysis2/data
https://www.kaggle.com/c/twitter-sentiment-analysis2/data
http://nlp.stanford.edu/projects/glove/
https://fasttext.cc/docs/en/crawl-vectors.html
https://code.google.com/archive/p/word2vec/


 

 

implementations.4 You should experiment with at least logistic regression (or multinomial 
logistic regression, if you have more than two classes) and optionally (if you are keen and 
have free time) additional learning algorithms (e.g., k-NN). Make sure that you use separate 
training, development, and test subsets. Tune the feature set and hyper-parameters (e.g., 
regularization weight λ in logistic regression) on the development subset. Include 
experimental results of a baseline majority classifier, i.e., a classifier that always assigns the 
most frequent class of the training data.  Include in your report: 
 

• Precision, recall, F1, precision-recall AUC scores, for each class and classifier, 
separately for the training, development, and test subsets. Use three separate tables 
for the training, development, and test results. In each table, use a separate row for 
each classifier (or baseline), and show the precision, recall, F1, PR-AUC scores of the 
classes in columns (four columns per class).  

• Macro-averaged precision, recall, F1, precision-recall AUC scores (all computed by 
averaging the corresponding scores of the previous bullet over the classes), for each 
classifier, separately for the training, development, and test subsets.5 Show these 
results by adding four more columns to the tables of the previous bullet.  

• For each classifier, two learning curves (like slides 53, 56) showing macro-averaged 
F1 computed on (i) the increasingly larger (e.g., 10%, 20%, etc.) subset of the 
training set the classifier has encountered, (ii) the (always entire) development subset. 
Show a separate diagram for each classifier, with two curves in each diagram.  

• A short description of the methods and datasets you used, including statistics about 
the datasets (e.g., average document length, number of training/dev/test documents, 
vocabulary size) and a description of the preprocessing steps that you performed. 

 
12. [Optional] (a) Let < 𝛸!, 𝛸", 𝛸# > = < 0, 1, 0 > be the feature 
vector of a text to be classified. We use a multivariate Bernoulli 
Naive Bayes classifier, with two classes (C = 0, C = 1), and the 
training data of the table. What will be the decision of the 
classifier? Use Laplace estimates for 𝑃(𝑋'|𝐶). All the features Xi 
are Boolean. 
 
Answer: 
 
 𝑃(𝐶 = 1|𝑋! = 0, 𝑋" = 1, 𝑋# = 0) ≅ 

𝑃(𝐶 = 1)
𝑃(𝑋! = 0, 𝑋" = 1, 𝑋# = 0)

∙ 𝑃(𝑋! = 0|𝐶 = 1) ∙ 𝑃(𝑋" = 1|𝐶 = 1) ∙ 𝑃(𝑋# = 0|𝐶 = 1)

≅
1
2N

𝑃(𝑋! = 0, 𝑋" = 1, 𝑋# = 0)
∙
0 + 1
2 + 2

∙
1 + 1
2 + 2

∙
0 + 1
2 + 2

=
1
2N

𝑃(𝑋! = 0, 𝑋" = 1, 𝑋# = 0)
∙
1
4
∙
2
4
∙
1
4

 

  
 

4 Consider scikit-learn (http://scikit-learn.org/stable/), Weka (http://www.cs.waikato.ac.nz/ml/weka/), 
LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/). 
5 In single-label multi-class classification (often also called simply multi-class classification), micro-
averaged precision, micro-averaged recall, and micro-averaged F1 are all equal to accuracy. Check 
https://towardsdatascience.com/multi-class-metrics-made-simple-part-ii-the-f1-score-ebe8b2c2ca1. 

X1 Χ2 Χ3 C 
1 0 0 0 
0 1 1 0 
1 0 1 1 
1 1 1 1 

 

http://scikit-learn.org/stable/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://towardsdatascience.com/multi-class-metrics-made-simple-part-ii-the-f1-score-ebe8b2c2ca1


 

 

 
𝑃(𝐶 = 0|𝑋! = 0, 𝑋" = 1, 𝑋# = 0) ≅ 

𝑃(𝐶 = 0)
𝑃(𝑋! = 0, 𝑋" = 1, 𝑋# = 0)

∙ 𝑃(𝑋! = 0|𝐶 = 0) ∙ 𝑃(𝑋" = 1|𝐶 = 0) ∙ 𝑃(𝑋# = 0|𝐶 = 0)

≅
1
2N

𝑃(𝑋! = 0, 𝑋" = 1, 𝑋# = 0)
∙
1 + 1
2 + 2

∙
1 + 1
2 + 2

∙
1 + 1
2 + 2

=
1
2N

𝑃(𝑋! = 0, 𝑋" = 1, 𝑋# = 0)
∙
2
4
∙
2
4
∙
2
4

 

 
Hence, the decision will be C = 0. 
  
13. [Optional] Let <Χ1, Χ2, Χ3, Χ4> = <b, d, b, a> be the 
feature vector of an object to be classified. We use a 
multivariate Bernoulli Naive Bayes classifier, with three 
classes (C = 1, C = 2, C = 3), and the training data of the 
table. What will be the decision of the classifier? Use Laplace 
estimates for  P(Xi|C). Each feature Xi has four possible 
values: a, b, c, d. 
 
Answer: From the training data, we see that 𝑃(𝐶 = 1) =
𝑃(𝐶 = 2) = 𝑃(𝐶 = 3) = 3/9, i.e., the priori probabilities 
do not influence the decision. 
 
Using Laplace estimates, we obtain:  
 
𝑃(𝑋! = 𝑏|𝐶 = 1) = "/!

#/2
= #

3
   𝑃(𝑋" = 𝑑|𝐶 = 1) = */!

#/2
= !

3
 

𝑃(𝑋# = 𝑏|𝐶 = 1) = !/!
#/2

= "
3
   𝑃(𝑋2 = 𝑎|𝐶 = 1) = !/!

#/2
=	 "

3
 

and: 
 
𝑃(𝑋! = 𝑏|𝐶 = 2) = !/!

#/2
= "

3
   𝑃(𝑋" = 𝑑|𝐶 = 2) = */!

#/2
= !

3
 

𝑃(𝑋# = 𝑏|𝐶 = 2) = #/!
#/2

= 2
3
   𝑃(𝑋2 = 𝑎|𝐶 = 2) = !/!

#/2
=	 "

3
 

and: 
 
𝑃(𝑋! = 𝑏|𝐶 = 3) = */!

#/2
= !

3
   𝑃(𝑋" = 𝑑|𝐶 = 3) = "/!

#/2
= #

3
 

𝑃(𝑋# = 𝑏|𝐶 = 3) = */!
#/2

= !
3
   𝑃(𝑋2 = 𝑎|𝐶 = 3) = */!

#/2
=	 !

3
 

Hence: 

𝑃(𝑋! = 𝑏|𝐶 = 1) ∙ 	𝑃(𝑋" = 𝑑|𝐶 = 1) ∙ 𝑃(𝑋# = 𝑏|𝐶 = 1) ∙ 𝑃(𝑋2 = 𝑎|𝐶 = 1) =
3 ∙ 1 ∙ 2 ∙ 2
7 ∙ 7 ∙ 7 ∙ 7

 

𝑃(𝑋! = 𝑏|𝐶 = 2) ∙ 	𝑃(𝑋" = 𝑑|𝐶 = 2) ∙ 𝑃(𝑋# = 𝑏|𝐶 = 2) ∙ 𝑃(𝑋2 = 𝑎|𝐶 = 2) =
2 ∙ 1 ∙ 4 ∙ 2
7 ∙ 7 ∙ 7 ∙ 7

 

𝑃(𝑋! = 𝑏|𝐶 = 3) ∙ 	𝑃(𝑋" = 𝑑|𝐶 = 3) ∙ 𝑃(𝑋# = 𝑏|𝐶 = 3) ∙ 𝑃(𝑋2 = 𝑎|𝐶 = 3) =
1 ∙ 3 ∙ 1 ∙ 1
7 ∙ 7 ∙ 7 ∙ 7

 

Therefore, the decision is 𝐶 = 2. 

  

X1 Χ2 Χ3 Χ4 C 
a b b a 1 
b a a b 1 
b b a b 1 
a a b b 2 
a b b b 2 
b a b a 2 
c d d c 3 
d c c d 3 
d d c d 3 

 



 

 

14. [Optional] We use a multivariate Bernoulli Naive Bayes classifier, with two classes (C = 
0, C = 1) and m Boolean (binary) features 𝑋!, … , 𝑋-, which decides C = 1 if: 

𝑃(𝐶 = 1) ∙_𝑃(𝑋' = 𝑥'|𝐶 = 1)
-

'.!

≥ 𝛫 

and C = 0 otherwise. Κ is a constant. Show that this classifier is a linear separator.  Hint: If 
we represent by 𝑡' the outcome denoted by 𝑋' = 1 (e.g., the occurrence of a particular word), 
then: 
 

𝑃(𝑋' = 𝑥'|𝐶 = 1) = 𝑃(𝑡'|𝐶 = 1)1" ∙ [1 − 𝑃(𝑡'|𝐶 = 1)]!01" 
 
Recall, also, that log(𝑎 ∙ 𝑏) = log 𝑎 + log 𝑏 and log 𝑎4 = 𝑏 ∙ log	 𝑎. 
 
Answer: The classifier decides C = 1 if and only if (iff): 

𝑙𝑜𝑔[𝑃(𝐶 = 1) ∙_𝑃(𝑋' = 𝑥'|𝐶 = 1)
-

'.!

] 	≥ 𝑙𝑜𝑔𝐾	 

which is equivalent to: 

𝑙𝑜𝑔 𝑃(𝐶 = 1) +F𝑙𝑜𝑔𝑃(𝑋' = 𝑥'|𝐶 = 1)
-

'.!

≥ 𝑙𝑜𝑔	 𝛫 

and: 

𝑙𝑜𝑔 𝑃(𝐶 = 1) +F𝑙𝑜𝑔{𝑃(𝑡'|𝐶 = 1)1" ∙ [1 − 𝑃(𝑡'|𝐶 = 1)!01"	]}
-

'.!

≥ 𝑙𝑜𝑔	 𝛫 

and: 

𝑙𝑜𝑔 𝑃(𝐶 = 1) +F𝑥' ∙ 𝑙𝑜𝑔 𝑃(𝑡'|𝐶 = 1) + (1 − 𝑥') ∙ 𝑙𝑜𝑔[1 − 𝑃(𝑡'|𝐶 = 1)]
-

'.!

≥ 𝑙𝑜𝑔	 𝛫 

 
Setting 𝐾! = 𝑙𝑜𝑔 𝑃(𝐶 = 1), 𝐾",' = 𝑙𝑜𝑔 𝑃(𝑡'|𝐶 = 1), 𝐾#,' = 𝑙𝑜𝑔 𝑃[1 − 𝑃(𝑡'|𝐶 = 1)], 𝐾2 =
𝑙𝑜𝑔𝐾, the previous criterion becomes: 
 

𝛫! +F[𝑥' ∙ 𝐾",'

-

'.!

+ (1 − 𝑥') ∙ 𝐾#,'] ≥ 𝐾2 

which is equivalent to: 

𝛫! +F𝐾#,'

-

'.!

− 𝐾2 +F𝑥' ∙ (𝐾",' − 𝛫#,')	
-

'.!

≥ 0 

 
Setting 𝑤* = 𝛫! +∑ 𝐾#,'-

'.! − 𝐾2 and 𝑤' = (𝐾",' − 𝐾#,'), the criterion for C = 1 becomes: 
 

𝑤* +F𝑤' ∙ 𝑥' 	
-

'.!

≥ 0 

 
Hence, the classifier is a linear separator. 
 
15. [Optional] Show that an SVM can compute the XOR function. Use 1, –1 to represent true 
and false, respectively. For example, given the input < −1, 1 >, the output should be 1; and 
given < −1,−	1 >, the output should be –1. Assume that the SVM transforms each input 𝑥 =
	< 𝑥!, 𝑥" > of the original vector space to 𝐹⃗(𝑥) =	< 𝑥!, 𝑥!𝑥" > (in the new vector space). 
Plot the points < 𝑥!, 𝑥!𝑥" > of the new vector space that correspond to all the possible inputs 
< 𝑥!, 𝑥" > of XOR. Draw the separator (straight line) that the SVM would learn in the new 



 

 

vector space. What is the margin in the new vector space? Draw the corresponding separating 
lines in the original vector space. (Simplified exercise 20.12 of Russel & Norvig, 2nd Edition.) 
 
Answer: The truth table of XOR is the following. 
 

x1 x2 XOR(x1, x2) 
-1 -1 -1 
-1 1 1 
1 -1 1 
1 1 -1 

 
We wish to separate the two input vectors <x1, x2> with positive XOR(x1, x2) from the two  
input vectors with negative XOR(x1, x2). In the original vector space, the four vectors are not 
linearly separable, as shown below:  
 
 

 

 

 

 

 

 

We extend the truth table to include the new feature 𝑥!	𝑥" of 𝐹⃗(𝑥⃗) 	=	< 𝑥!, 𝑥!	𝑥" >: 

x1 x2 x1x2 XOR(x1, x2) 

-1 -1 1 -1 

-1 1 -1 1 

1 -1 -1 1 

1 1 1 -1 

 

The transformed four vectors < 𝑥!, 𝑥!	𝑥" > are linearly separable in the new vector space, as 
shown below. The transformed vectors with negative XOR(x1, x2) are now on the half-plane 
𝑥!𝑥" ≥ 1 and the transformed vectors with positive XOR(x1, x2) are now on the half-plane 
𝑥!𝑥" ≤ −1. The maximum margin linear separator is the straight line 𝑥!𝑥" = 0 and its 
margin is 2. 
  

(+1) (-1) 

(-1) (+1) 

1 

-1 

0 
x1 

x2 

1 -1 



 

 

 
 
 

 

 

 

 

 

 

 
The half-plane 𝑥!𝑥" ≥ 0 (negative class) of the new vector space corresponds to the shaded 
areas of the original vector space. The half-plane 𝑥!𝑥" ≤ 0 (positive class) of the new vector 
space corresponds to the rest of the original vector space.  
 
 

 

 

 

 
 
 
 
 
 
 

(-1,1): -1 (1,1): -1 

(-1,-1): 1 (1,-1):  1 

1 

-1 

0 
x1 

x1x2 
 

(+1) 

(+1) 

1 

0 

(-1) 

-1 

(-1) 

x1 

x2 

1 -1 


