

Natural Language Processing with Convolutional Neural Networks

2024-25

Ion Androutsopoulos http://www.aueb.gr/users/ion/

Contents

- Quick background: Convolutional Neural Networks (CNNs) in Computer Vision.
- Image to text generation with CNN encoders and RNN decoders.
- Text processing with CNNs.

Averaging each pixel with its neighboring values blurs an image:

0000

From the blog post "Understanding Convolutional Neural Networks for NLP" of Denny Britz, 2015. <u>http://www.wildml.com/</u> <u>2015/11/understanding-</u> <u>convolutional-neural-</u> <u>networks-for-nlp/</u>

Feature Map

		Input					Ke	mel (Fi	ter)
-1	1	-1	-1	-1	-1	1	-1	1	-1
1	1	1	-1	-1	-1		1	1	1
-1	1	-1	-1	-1	-1		-1	1	-1
-1	-1	-1	1	-1	1				
-1	-1	-1	-1	1	-1				
-1	-1	-1	1	-1	1				

- **Input: black/white image** with pixel values -1 or +1.
- Check if the input contains any crosses and report where.

Input

Kernel (Filter)

Feature Map

-1	1	-1	-1	-1	-1
1	1	1	-1	-1	-1
-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1
-1	-1	-1	-1	1	-1
-1	-1	-1	1	-1	1

-1	1	-1
1	1	1
-1	1	-1

-1	1	-1	-1	-1	-1
1	1	1	-1	-1	-1
-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1
-1	-1	-1	-1	1	-1
-1	-1	-1	1	-1	1

-1	1	-1
1	1	1
-1	1	-1

Input

Kernel (Filter)

Feature Map

-1	1	-1	-1	-1	-1
1	1	1	-1	-1	-1
-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1
-1	-1	-1	-1	1	-1
-1	-1	-1	1	-1	1

-1	1	-1
1	1	1
-1	1	-1

-1	1	-1	-1	-1	-1
1	1	1	-1	-1	-1
-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1
-1	-1	-1	-1	1	-1
-1	-1	-1	1	-1	1

-1	1	-1
1	1	1
-1	1	-1

-1	1	-1	-1	-1	-1
1	1	1	-1	-1	-1
-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1
-1	-1	-1	-1	1	-1
-1	-1	-1	1	-1	1

Input						ĸ	ernel (F	ilte	r)		Featu	ıre Map		
-1	1	-1	-1	-1	-1	-1	1		-1	1				
1	1	1	-1	-1	-1	1	1		1		9	-1	1	
-1	1	-1	-1	-1	-1	-1	1		-1					
-1	-1	-1	1	-1	1					•				
-1	-1	-1	-1	1	-1									
-1	-1	-1	1	-1	1									

- Let X be the part of the input where we apply the kernel (filter).
- Let *W* be the kernel.
- The resulting **feature** of the feature map is: $\sum_{i=1}^{3} \sum_{j=1}^{3} W_{i,j} X_{i,j}$
- In practice, we would also use an **activation function** and **bias term**: $f(\sum_{i=1}^{3} \sum_{j=1}^{3} W_{i,j}X_{i,j} + b)$

		Inpu	ut			Kernel (Filter)	Feature Map
-1 1 -1 -1 -1 -1	1 1 -1 -1	-1 1 -1 -1 -1	-1 -1 -1 1 -1 1	-1 -1 -1 -1 1 -1	-1 -1 -1 1 -1 1	-1 1 -1 1 1 1 -1 1 -1	9 -1 1
-1 1 -1 -1 -1	1 1 -1 -1	-1 1 -1 -1 -1	-1 -1 -1 1 -1	-1 -1 -1 -1 1	-1 -1 -1 1 -1	-11-1111-11-1	9 -1 1 -1 -1 -1 -1 -5 1 -1 -1 5 -1 -5 5 -7

• We can think of the resulting **feature map as a new "image"** that indicates the **position(s) of the cross(es)** in the original image.

No need to have the crosses at particular parts of the image.

• The new "image" is **4x4 instead of 6x6**, because the **kernel could not slide outside the boundaries** of the original image.

- We can **pad** the surrounding of the image with zeros, to allow the kernel to slide outside the image boundaries.
- We can now obtain a **feature map** with the **same resolution as the input** image (6x6).

Input

Kernel (Filter)

Feature Map

0	0	0	0	0	0	0	0
0	-1	1	-1	-1	-1	-1	0
0	1	1	1	-1	-1	-1	0
0	-1	1	-1	-1	-1	-1	0
0	-1	-1	-1	1	-1	1	0
0	-1	-1	-1	-1	1	-1	0
0	-1	-1	-1	1	-1	1	0
0	0	0	0	0	0	0	0

Г	-1	1	-1
	1	1	1
	-1	1	-1

0	0	0	0	0	0	0	0
0	-1	1	-1	-1	-1	-1	0
0	1	1	1	-1	-1	-1	0
0	-1	1	-1	-1	-1	-1	0
0	-1	-1	-1	1	-1	1	0
0	-1	-1	-1	-1	1	-1	0
0	-1	-1	-1	1	-1	1	0
0	0	0	0	0	0	0	0
				_			
0	0	0	0	0	0	0	0
0 0	0 -1	0	0	0 -1	0 -1	0 -1	0 0
0 0 0	0 -1 1	0 1 1	0 -1 1	0 -1 -1	0 -1 -1	0 -1 -1	0 0 0
0 0 0	0 -1 1 -1	0 1 1	0 -1 1 -1	0 -1 -1 -1	0 -1 -1 -1	0 -1 -1 -1	0 0 0
0 0 0 0	0 -1 1 -1 -1	0 1 1 1 -1	0 -1 1 -1 -1	0 -1 -1 -1 1	0 -1 -1 -1 -1	0 -1 -1 -1 1	0 0 0 0
0 0 0 0 0	0 -1 1 -1 -1 -1 -1	0 1 1 -1 -1	0 -1 1 -1 -1 -1	0 -1 -1 -1 1 -1	0 -1 -1 -1 -1 -1 1	0 -1 -1 -1 1 -1	0 0 0 0 0

-1	1	-1
1	1	1
-1	1	-1

-1	1	-1	
1	1	1	
-1	1	-1	

0	-2		

Input

Kernel (Filter)

Feature Map

0	0	0	0	0	0	0	0
0	-1	1	-1	-1	-1	-1	0
0	1	1	1	-1	-1	-1	0
0	-1	1	-1	-1	-1	-1	0
0	-1	-1	-1	1	-1	1	0
0	-1	-1	-1	-1	1	-1	0
0	-1	-1	-1	1	-1	1	0
0	0	0	0	0	0	0	0

....

0

-1

1

-1

-1

-1

-1

0

0

-1

1

-1

-1

-1

-1

0

0

-1

-1

-1

1

-1

1

0

0

-1

-1

-1

1

-1

1

0

0

-1

-1

-1

-1

1

-1

0

0

-1

-1

-1

-1

1

-1

0

0

-1

-1

-1

1

-1

1

0

0

-1

-1

-1

1

-1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-1

1

-1

-1

-1

-1

0

0

-1

1

-1

-1

-1

-1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

-1

-1

-1

0

0

1

1

1

-1

-1

-1

-1	1	-1
1	1	1
-1	1	-1

-2	0		
	-2	-2 0	-2 0

-1	1	-1
1	1	1
-1	1	-1

-2	0	-4	-2	-2
	-2	-2 0	-2 0 -4	-2 0 -4 -2

-1	1	-1
1	1	1
-1	1	-1

0	-2	0	-4	-2	-2
-2	9				

Input

Kernel (Filter)

Feature Map

0	0	0	0	0	0	0	0
0	-1	1	-1	-1	-1	-1	0
0	1	1	1	-1	-1	-1	0
0	-1	1	-1	-1	-1	-1	0
0	-1	-1	-1	1	-1	1	0
0	-1	-1	-1	-1	1	-1	0
0	-1	-1	-1	1	-1	1	0
0	0	0	0	0	0	0	0

-1	1	-1
1	1	1
-1	1	-1

0	-2	0	-4	-2	-2
-2	9	-1			

0	0	0	0	0	0	0	
-1	1	-1	-1	-1	-1	0	
1	1	1	-1	-1	-1	0	
-1	1	-1	-1	-1	-1	0	
-1	-1	-1	1	-1	1	0	_
-1	-1	-1	-1	1	-1	0	
-1	-1	-1	1	-1	1	0	
0	0	0	0	0	0	0	

-1	1	-1
1	1	1
-1	1	-1

0	-2	0	-4	-2	-2
-2	9	-1	1	-1	-2
0	-1	-1	-1	-5	0
-4	1	-1	-1	5	-2
-2	-1	-5	5	-7	4
-2	-2	0	-2	4	-2

- X: entire input image. F: feature map.
- W: kernel, but with rows and columns numbered -1, 0, 1.
- Feature map values: $F_{i,j} = \sum_{k=-1}^{1} \sum_{l=-1}^{1} W_{k,l} X_{i+k,j+l}$
- In practice: $F_{i,j} = f(\sum_{k=-1}^{1} \sum_{l=-1}^{1} W_{k,l} X_{i+k,j+l} + b)$

Convolution or cross-correlation?

- **Cross-correlation**: $F_{i,j} = \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} W_{k,l} X_{i+k,j+l}$ Optional study
- Convolution: $F_{i,j} = \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} W_{k,l} X_{i-k,j-l} = W * X$
- We are actually computing cross-correlations, not convolutions.
 - The cross-correlations we compute are equal to convolutions with the kernel (or the image) flipped both vertically and horizontally.
 - Convolution is like cross-correlation, but flips one of the two signals. We don't flip the kernel inside the *cross-correlation*, which is equivalent to giving the kernel already flipped to the *convolution*; the convolution will flip the kernel once more, ending up using the kernel without flipping.
 - So we actually compute **convolutions with flipped kernels** or **cross-correlations with the original kernels**.
 - The example kernels were symmetric, so no difference.
 - In CNNs (Convolutional Neural Networks), the kernels are learned, so we don't care if they are flipped in the "convolutions" we compute.
 - So we usually say **CNNs "compute convolutions"**, though we actually use the formulae of cross-correlations.

Two kernels

			Input					Two Kernels	Feature Map of Kernel 1 ("+")	Feature Map of Kernel 2 ("X")
0 0 0 0 0 0 0	0 -1 -1 -1 -1 -1 -1 0	0 1 1 -1 -1 -1 0	0 -1 -1 -1 -1 -1 -1 0	0 -1 -1 -1 1 -1 1 0	0 -1 -1 -1 1 -1 0	0 -1 -1 -1 1 -1 1 0	0 0 0 0 0 0	-1 1 -1 1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1		
0 0 0 0 0 0	0 -1 1 -1 -1 -1 -1 -1 0	0 1 1 -1 -1 -1 0	0 -1 -1 -1 -1 -1 -1 -1	0 -1 -1 -1 1 -1 1 0	0 -1 -1 -1 -1 1 -1	0 -1 -1 -1 -1 -1 1 0	0 0 0 0 0	-1 1 -1 1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 1 1 1 1	0	-2

- We now want to check the input image for crosses and "X"s.
- We use **two kernels**, one for crosses, one for "X"s.

Two kernels

			Input					Tw	0
0	0	0	0	0	0	0	0	-1	
0	-1	1	-1	-1	-1	-1	0	1	
0	1	1	1	-1	-1	-1	0	-1	
0	-1	1	-1	-1	-1	-1	0		
0	-1	-1	-1	1	-1	1	0	1	
0	-1	-1	-1	-1	1	-1	0	-1	
0	-1	-1	-1	1	-1	1	0	1	
0	0	0	0	0	0	0	0		
_									
0	0	0	0	0	0	0	0	-1	
0	-1	1	-1	-1	-1	-1	0	1	
0	1	1	1	-1	-1	-1	0	-1	
0	-1	1	-1	-1	-1	-1	0		
0	-1	-1	-1	1	-1	1	0	1	ſ

-1

1

0

0

-1

-1

-1

1

-1

1

0

0

-1

-1

-1

1

-1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-1

-1

0

0

-1

1

-1

-1

-1

-1

0

0

-1

1

-1

-1

-1

-1

0

-1

-1

0

0

1

1

1

-1

-1

-1

0

0

1

1

1

-1

-1

-1

0

-1

-1

0

0

-1

1

-1

-1

-1

-1

0

0

-1

1

-1

-1

-1

-1

0

1

-1

0

0

-1

-1

-1

-1

1

-1

0

0

-1

-1

-1

-1

1

-1

0

-1

1

0

0

-1

-1

-1

1

-1

1

0

0

-1

-1

-1

1

-1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-1	1	-1
1	1	1
-1	1	-1
1	-1	1
-1	1	-1

-1

1

-1

1

-1

1

1

-1

1

-1 1 1 1 0 -2 -1 1 -1 1 -1 -1 1 -1 1 -1 -1 1 1 -2 -2 1 1 0 4 -1 1 -1 1 -1 1 1 -1 -1 -1 1 1 -1 -1 1 1 1 -2 0 -2 1 0 -2 4 -1 -1

Feature Map of Kernel 1 ("+")

Feature Map of Kernel 2 ("X")

Two kernels

We can think of the two feature maps as two "channels" of the new image, one for "+" info, one for "X" info.

Input

_	0	0	0	0	0	0	0
ſ	0	-1	1	-1	-1	-1	-1
I	0	1	1	1	-1	-1	-1
L	0	-1	1	-1	-1	-1	-1
	0	-1	-1	-1	1	-1	1
	0	-1	-1	-1	-1	1	-1
	0	-1	-1	-1	1	-1	1
	0	0	0	0	0	0	0

0

-1

1

-1

-1

-1

-1

0

0

-1

-1

-1

1

-1

1

0

0

-1

-1

-1

-1

1

-1

0

0

1

1

1

-1

-1

-1

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

-1

-1

0

-1

-1

-1

0

-1

1

-1

-1

-1

-1

0

-1	1	-1
1	1	1
-1	1	-1
1	-1	1
-1	1	-1
-	-	-

Two Kernels

0	-2	0	-4	-2	-2
-2					

Feature Map of Kernel 1 ("+")

-2 4	4	-2	2	0	0

Feature Map of Kernel 2 ("X")

0	0	-1	1	
-1	0	1	1	
-1	0	-1	1	ſ
-1	0			
1	0	1	-1	
-1	0	-1	1	
1	0	- 1	- 1	

0 0

0

0

0

0

0

0

-1	1	-1	
1	1	1	
-1	1	-1	
1	-1	1	
1 -1	-1 1	1 -1	

0	2	0	4	2	2
0	-2	0	-4	-2	-2
-2	9				

-2	4	-2	2	0	0
4	-7				

)	0	0	0	0	0	0
)	-1	1	-1	-1	-1	-1
)	1	1	1	-1	-1	-1
)	-1	1	-1	-1	-1	-1
)	-1	-1	-1	1	-1	1
)	-1	-1	-1	-1	1	-1
)	-1	-1	-1	1	-1	1
· ·	0	0	0	0	0	0

-1	1	-1
1	1	1
-1	1	-1
1	-1	1
-1	1	-1

_						
Г	0	-2	0	-4	-2	-2
I	-2	9	-1			
I						
I						
I						
I						

Г	-2	4	-2	2	0	0
L	4	-7	3			
L						
Т						

0	0	0	0	0	0
-1	1	-1	-1	-1	-1
1	1	1	-1	-1	-1
-1	1	-1	-1	-1	-1

-1

-1

-1

0

1

-1

1

0

-1

1

-1

0

1

-1

1

0

1 -1	1 1	1 -1
1	-1	1
-1	1	-1
1	-1	1

-1 1

-1

0	-2	0	-4	-2	-2
-2	9	-1	1	-1	-2
0	-1	-1	-1	-5	0
-4	1	-1	-1	5	-2
-2	-1	-5	5	-7	4
-2	-2	0	-2	4	-2

-2	4	-2	2	0	0
4	-7	3	-3	-1	0
-2	3	-1	-1	3	-2
2	-3	-1	3	-7	4
0	-1	3	-7	9	-6
0	0	-2	4	-6	4
	-2 4 -2 2 0 0	-2 4 4 -7 -2 3 2 -3 0 -1 0 0	-2 4 -2 4 -7 3 -2 3 -1 2 -3 -1 0 -1 3 0 0 -2	-2 4 -2 2 4 -7 3 -3 -2 3 -1 -1 2 -3 -1 3 0 -1 3 -7 0 0 -2 4	-2 4 -2 2 0 4 -7 3 -3 -1 -2 3 -1 -1 3 2 -3 -1 3 -7 0 -1 3 -7 9 0 0 -2 4 -6

Two input channels too

		Input C	Channe	1					Inpu	ut Chanr	nel 2					Tw	o Two-ch	hanne	l Kernels		Feature Map of Kernel 1 ("+")	Feature Map of Kernel 2 ("X")
	0 -1 -1 -1 -1 -1 -1 0	0 1 1 -1 -1 -1 0	0 -1 -1 -1 -1 -1 -1 0	0 -1 -1 0,9 -1 0,9 0,9	0 -1 -1 -1 -1 0,9 -1 0	0 -1 -1 -1 0,9 -1 0,9 0	0 0 0 0 0 0	0 -1 0,9 -1 -1 -1 -1 0	0 0,9 0,9 -1 -1 -1 0	0 -1 0,9 -1 -1 -1 -1 -1 0	0 -1 -1 -1 1 -1 1 0	0 -1 -1 -1 -1 1 -1 0	0 -1 -1 -1 1 -1 1 1 0	0 0 0 0 0 0 0	-1 1 -1 1 1	1 1 -1 1 -1	-1 1 -1 1 -1 1	& &	-1 1 1 1 -1 1 -1 1 -1 -1 1 1 -1	-1 1 -1 1 1		
0 0 0 0 0	0 -1 -1 -1 -1 -1	0 1 1 -1 -1 -1	0 -1 1 -1 -1 -1 -1 -1 -1	0 -1 -1 0,9 -1 0,9	0 -1 -1 -1 -1 0,9 -1	0 -1 -1 -1 0,9 -1 0,9	0 0 0 0 0	0 -1 0,9 -1 -1 -1 -1	0 0,9 0,9 -1 -1 -1 -1	0 -1 0,9 -1 -1 -1 -1 -1	0 -1 -1 -1 1 -1 1 -1	0 -1 -1 -1 -1 1 -1	0 -1 -1 -1 1 -1 1 1	0 0 0 0 0 0	-1 1 -1 1 -1 1	1 1 1 -1 1 -1	-1 1 -1 1 -1 1	& &	-1 1 1 1 -1 1 1 -1 -1 -1 1 1 -1	-1 1 -1 1 -1	-0,1	-3,9

• The **input image** now also has **two channels** (e.g., from grayscale and depth cameras). **Each kernel** now operates on **both input channels**.

• It has **two slices**, one per input channel (c = 1, c = 2).

- We have **two kernels**, so the **output** also has **two channels**.
- At the output feature map of kernel $W^{(m)}$, the value at cell (i, j) is:

$$F_{i,j,m} = \sum_{k=-1}^{1} \sum_{l=-1}^{1} \sum_{c=1}^{2} W_{k,l,c}^{(m)} X_{i+k,j+l,c}$$

• In practice, we would also have an activation function and bias term.

Two input channels too

Input Channel 1	Input Channel 2	Two Two-channel Kernels	Feature Map of Kernel 1 ("+")	Feature Map of Kernel 2 ("X")
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0,1 -4	-3,9 7,8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0,1 -4 -0,1	-3,9 7,8 -3,9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0,1 -4 -0,1 -7,9 -4 -4 -4	-3,9 7,8 -3,9 3,9 0 0 7,8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0,1 -4 -0,1 -7,9 -4 -4 -4 17,5	-3,9 7,8 -3,9 3,9 0 0 7,8

Two input channels too

		Inp	ut Chan	nel 1							Input Ch	annel 2					т	wo Two	-chanr	nel Kerr	nels			Fe	ature N	ap of K	ernel 1	("+")		Feat	ure Map	o of Ker	mel 2 ("	X")	
0 0 0 0 0 0	0 -1 1 -1 -1 -1 -1	0 1 1 -1 -1 -1	0 -1 -1 -1 -1 -1 -1	0 -1 -1 -1 0,9 -1 0,9	0 -1 -1 -1 -1 0,9 -1	0 -1 -1 -1 0,9 -1 0,9	0 0 0 0 0	0 0 0 0 0 0 0	0 -1 0,9 -1 -1 -1 -1	9 0	0 0 0,9 -1 0,9 0,9 0,9 -1 -1 -1 -1 -1 -1 -1	0 -1 -1 -1 -1 1 -1 1	0 -1 -1 -1 -1 -1 1 -1	0 -1 -1 -1 1 -1 1 1	0 0 0 0 0 0	-1 1 -1 1 -1	1 1 -1 1 -1	-1 1 -1 1 -1 1	&	-1 1 -1 1 -1 1	1 1 -1 1 -1	-1 1 -1 1 -1 1		-0,1 -4	-4 17,5	-0,1 -2	-7,9	-4	-4	-3,9 7,8	7,8 -13,7	-3,9 5,8	3,9	0	0
0	0	0	0	0	0	0	0	0	0		0 0	0	0	0	0				-				-												
•	0	0	0	0	0	0	0	0	0		0 0	0	0	0	0	-1	1	-1		-1	1	-1													
0	-1	1	-1	-1	-1	-1	0	0	-1	. 0),9 -1	-1	-1	-1	0	1	1	1	&	1	1	1		-0,1	-4	-0,1	-7,9	-4	-4	-3,9	7,8	-3,9	3,9	0	0
0	1	1	1	-1	-1	-1	0	0	0,9	9 0),9 0,9	-1	-1	-1	0	-1	1	-1		-1	1	-1		-4	17,5	-2	1,9	-2	-4	7,8	-13,7	5,8	-5,9	-2	0
0	-1	1	-1	-1	-1	-1	0	0	-1	0),9 -1	-1	-1	-1	0									-0,1	-2	-2	-2	-9,8	-0,1	-3,9	5,8	-2	-2	5,8	-3,9
0	-1	-1	-1	0,9	-1	0,9	0	. 0	-1		-1 -1	1	-1	1	0	1	-1	1		1	-1	1		-7,9	1,9	-2	-2	9,7	-4	3,9	-5,9	-2	5,8	-13,7	7,8
0	-1	-1	-1	-1	0,9	-1	0	0	-1	-	-1 -1	-1	1	-1	0	-1	1	-1	&	-1	1	-1		-4	-2	-9,8	9,7	-13,7	7,7	0	-2	5,8	-13,7	17,5	-11,7
0	-1	-1	-1	0,9	-1	0,9	0	0	-1		-1 -1	1	-1	1	0	1	-1	1		1	-1	1		-4	-4	-0,1	-4	7,7	-4	0	0	-3,9	7,8	-11,7	7,8
o –	0	0	0	0	0	0	0		0		0 0	0	0	0					-				-												

- We now have a mechanism, a "convolutional layer", that maps an input image of any number of channels to a new output "image" of any number of channels (feature maps).
 - The kernels will have as many slices as the input channels.
 - The number of kernels will be equal to the number of output channels.
- We can stack multiple convolutional layers.
 - Each one will operate on the "image" produced by the previous layer.
 - All kernels will be randomly initialized and learned via backpropagation.

Max-pooling

Feature Map of Kernel 1 ("+")

Feature Map of Kernel 2 ("X")

Max-Pooling (2,2) with Stride (2,2)

																	-			
-0,1	-4	-0,1	-7,9	-4	-4		-3,9	7,8	-3,9	3,9	0	0	1	17,5			1	7,8		
-4	17,5	-2	1,9	-2	-4		7,8	-13,7	5 <u>,</u> 8	-5,9	-2	0	1							
-0,1	-2	-2	-2	-9,8	-0,1		-3,9	5,8	-2	-2	5,8	-3,9	1				Í			
-7,9	1,9	-2	-2	9,7	-4		3,9	-5,9	-2	5,8	-13,7	7,8	1							
-4	-2	-9,8	9,7	-13,7	7,7		0	-2	5,8	-13,7	17,5	-11,7	1							
-4	-4	-0,1	-4	7,7	-4		0	0	-3 <u>,</u> 9	7,8	-11,7	7,8	1							
						•														
						_											_			
-0,1	-4	-0,1	-7,9	-4	-4		-3,9	7,8	-3,9	3,9	0	0	1	17,5	1,9		1	7,8	5,8	
-4	17,5	-2	1,9	-2	-4		7,8	-13,7	5,8	-5 <u>,</u> 9	-2	0	1							
-0,1	-2	-2	-2	-9,8	-0,1		-3,9	5,8	-2	-2	5,8	-3,9	1							
-7,9	1,9	-2	-2	9,7	-4		3,9	-5,9	-2	5,8	-13,7	7,8	1							
-4	-2	-9,8	9,7	-13,7	7,7		0	-2	5 <i>,</i> 8	-13,7	17,5	-11,7	1							
-4	-4	-0,1	-4	7,7	-4		0	0	-3,9	7,8	-11,7	7,8	1							
						•							•							
-0,1	-4	-0,1	-7,9	-4	-4	1	-3,9	7,8	-3,9	3,9	0	0	1	17,5	1,9	-2	1	7,8	5,8	0
-4	17,5	-2	1,9	-2	-4		7,8	-13,7	5,8	-5,9	-2	0	1		-				·	
-0,1	-2	-2	-2	-9,8	-0,1	1	-3,9	5,8	-2	-2	5 <u>,</u> 8	-3,9	1							
-7,9	1,9	-2	-2	9,7	-4		3,9	-5,9	-2	5,8	-13,7	7,8	1					<u></u>		
-4	-2	-9,8	9,7	-13,7	7,7		0	-2	5,8	-13,7	17,5	-11,7	1							
-4	-4	-0.1	-4	7.7	-4		0	0	-3.9	7.8	-11 7	78	1							

- We keep the **max value of each window**, separately from each channel.
- The stride determines how much the window shifts vertically & horizontally.

Max-pooling

Fea	ture Ma	ap of Ke	ernel 1	("+")			Feat	ure Maj	p of Ke	rnel 2 ("X")			I	Max-Po	ooling (2,2) wi	th Stride	e (2,2)	
-0,1	-4	-0,1	-7,9	-4	-4	1	-3,9	7,8	-3,9	3,9	0	0		17,5	1,9	-2		7,8	5,8	0
-4	17,5	-2	1,9	-2	-4		7,8	-13,7	5,8	-5,9	-2	0		1,9				5,8		
-0,1	-2	-2	-2	-9,8	-0,1		-3,9	5,8	-2	-2	5,8	-3,9								
-7,9	1,9	-2	-2	9,7	-4		3,9	-5,9	-2	5,8	-13,7	7,8								
-4	-2	-9,8	9,7	-13,7	7,7		0	-2	5,8	-13,7	17,5	-11,7								
-4	-4	-0,1	-4	7,7	-4		0	0	-3,9	7,8	-11,7	7,8								
						-							•							
						_														
-0,1	-4	-0,1	-7,9	-4	-4		-3,9	7,8	-3,9	3,9	0	0		17,5	1,9	-2		7,8	5,8	0
-4	17,5	-2	1,9	-2	-4		7,8	-13,7	5,8	-5,9	-2	0		1,9	-2	9,7		5,8	5,8	7,8
-0,1	-2	-2	-2	-9,8	-0,1		-3,9	5,8	-2	-2	5,8	-3,9		-2	9,7	7,7		0	7,8	17,5
-7,9	1,9	-2	-2	9,7	-4		3,9	-5,9	-2	5,8	-13,7	7,8					•			
-4	-2	-9,8	9,7	-13,7	7,7		0	-2	5,8	-13,7	17,5	-11,7								
-4	-4	-0,1	-4	7,7	-4		0	0	-3,9	7,8	-11,7	7,8								

• Max-pooling layers are usually placed between stacked convolutional layers.

Stacking convolution, pooling, dense layers

- Max-pooling gradually reduces the resolution at higher layers, allowing us to use more channels (for the same total number of trainable parameters/layer).
- It also helps increase more quickly the receptive field.

		Inp	out Cha	nnel 1						Inpu	ut Chan	nel 2					т	vo Two	-chann	el Kern	els		Fe	ature N	lap of K	ernel 1	("+")		Feat	ure Maj	p of Ke	rnel 2 ("X")				Max-Po	oling (2	l,2) with	Stride	(2,2)	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	1	-1	1	-1	1	-1																				
0	-1	1	-1	-1	-1	-1	0	0	-1	0,9	-1	-1	-1	-1	0	1	1	1	&	1	1	1	-0,1	-4	-0,1	-7,9	-4	-4	-3,9	7,8	-3,9	3,9	0	0	- F	17,5	1,9	-2		7,8	5,8	0
0	1	1	1	-1	-1	-1	0	0	0,9	0,9	0,9	-1	-1	-1	0	-1	1	-1		-1	1	-1	-4	17,5	-2	1,9	-2	-4	7,8	-13,7	5,8	-5,9	-2	0		1,9	-2	9,7	1	5,8	5,8	7,8
D	-1	1	-1	-1	-1	-1	0	0	-1	0,9	-1	-1	-1	-1	0				•				-0,1	-2	-2	-2	-9,8	-0,1	-3,9	5,8	-2	-2	5,8	-3,9		-2	9,7	7,7		0	7,8	17,5
0	-1	-1	-1	0,9	-1	0,9	0	0	-1	-1	-1	1	-1	1	0	1	-1	1		1	-1	1	-7,9	1,9	-2	-2	9,7	-4	3,9	-5,9	-2	5,8	-13,7	7,8	-				_			
D	-1	-1	-1	-1	0,9	-1	0	0	-1	-1	-1	-1	1	-1	0	-1	1	-1	&	-1	1	-1	-4	-2	-9,8	9,7	-13,7	7,7	0	-2	5,8	-13,7	17,5	-11,7								
D	-1	-1	-1	0,9	-1	0,9	0	0	-1	-1	-1	1	-1	1	0	1	-1	1		1	-1	1	-4	-4	-0,1	-4	7,7	-4	0	0	-3,9	7,8	-11,7	7,8								
n '	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				•	-			-																			

- Each feature of the max-pooled feature maps is derived from (is "looking at") 4 features of the pre-pooled feature maps, and 16 features of the input.
- By stacking convolution and pooling layers, we can get features that are increasingly aware of larger parts of the input (larger "receptive field").

in Dive

Stacking convolution, pooling, dense layers

- The features of the top feature maps are concatenated to a single vector and passed to a dense (fully connected) layer or an MLP (with hidden layers).
 - To recognize the digit (0-9) in an image, the dense layer (or output layer of the MLP) would have 10 neurons with softmax, and we would use cross-entropy loss.
 - To output the **coordinates of the eyes** in images (or video frames) of faces, the **dense layer** (or output layer of the MLP) could have **4 neurons** (x1, y1, x2, y2) with no activation function, and we could use the **mean squared error** as loss. (But better, more advanced models can be used...)
 - The training examples would be digit or face images (or video frames) annotated with the correct responses (digits or coordinates of the eyes).
- In practice we would also include **dropout** layers and **residuals**.

hitecture

ustrated

in Dive

What do the layers learn?

- The kernels of lower layers tend to detect low-level features (e.g., edges of different directions). The kernels of higher layers tend to detect higher-level features (e.g., eyes, ears).
- Pre-trained kernels of lower levels can be useful in many different tasks.
 Figure from the recommended book "Deep Learning with Python" by F. Chollet, Manning Publications, 1st edition. Also covers Keras. Optionally consult Chapter 5 (Deep Learning for Computer Vision) for ways to visualize what CNN layers learn. <u>https://www.manning.com/books/deep-learning-with-python</u>

https://www.manning.com/books/deep-learning-with-python-second-edition

Re-using pretrained layers

- In practice, we start with a CNN pre-trained on a very large dataset.
 - o Often ImageNet, 1.4 million images, 1,000 classes (e.g., dogs, cats).
- We replace the top layers with a task-specific classification/regression layer.
 - We train the task-specific layer on task-specific data, keeping the pre-trained convolutional layers frozen (no weight updates in the frozen layers).
 - We may then **gradually unfreeze some of the convolutional layers too** (weight updates in both the task-specific layers and the unfrozen convolutional layers).

Figure from the recommended book "Deep Learning with Python" by F. Chollet, Manning Publications, 1st edition. Also covers Keras. <u>https://www.manning.com/books/deep-learning-</u> <u>with-python</u> <u>https://www.manning.com/books/deep-learning-with-python-second-edition</u>

Re-using pretrained layers

Figure from the recommended book "Deep Learning with Python" by F. Chollet, Manning Publications, 1st edition. Also covers Keras. <u>https://www.manning.com/books/deeplearning-with-python</u> <u>https://www.manning.com/books/deeplearning-with-python-second-edition</u>

Figure 5.19 Fine-tuning the last convolutional block of the VGG16 network

Data augmentation

Figure 5.11 Generation of cat pictures via random data augmentation

- We can **increase the number of task-specific training examples** by adding artificial training examples.
 - For example, we can **rotate**, **squeeze**, **flip** etc. the task-specific **training images**.
 - **Big improvements** usually.
- How do we do data augmentation for NLP?

Figure from the recommended book "Deep Learning with Python" by F. Chollet, Manning Publications, 1st edition. Also covers data augmentation in Keras. <u>https://www.manning.com/books/deep-learning-with-python</u> <u>https://www.manning.com/books/deep-learning-with-python-second-edition</u>

(a) General

⁽b) Biomedical

Image captioning

Optional study

Possible applications:

- Image retrieval via captions.
- Eyesight problems.
- Drafting medical reports.

Figure 1: Example of a caption produced by the model of Vinyals et al. (2017) for a non-biomedical image (1a) and an example of a PEIR Radiology image with its associated caption (1b).

From I. Pavlopoulos, V. Kougia, I. Androutsopoulos, "A Survey on Biomedical Image Captioning". <u>https://www.aclweb.org/anthology/W19-1803/</u>

Biomedical image to text generation

Optional

study

- CNN converts each patch to a vector, producing "visual features".
- MLP ("MLC") predicts tags (classes) given the visual features.
- The word embeddings of the tags are "semantic features".
- Sentence-level LSTM produces sentence embeddings ("topics").
 - A stop control (classifier) decides when to stop producing sentences.
 - At each time-step, attention over visual and semantic features.
- For each sentence embedding, word-level LSTM produces words.
 B. Jing, P. Xie, E.P. Xing, "On the Automatic Generation of Medical Imaging Reports", ACL 2018 (<u>http://www.aclweb.org/anthology/P18-1240</u>).

2

		Embe	eddings	
Words	Subject	Positive	Stress	Quantity
I	1	0	0	0
like	0	1	0	0
this	0	0	0	0
movie	0	0	0	0
very	0	0	1	0
much	0	0	0	1
!	0	0	1	0

Let's **pretend** that we know what the **dimensions** of the word **embeddings represent**, and that the dimensions are **binary**.

Filter	for "I like	e", "we adm	nire"
1	0	0	0
0	1	0	0

Filter fo	or "very m	nuch", "so r	nuch"
0	0	1	0
0	0	0	1

0

		Embo	eddings	
Words	Subject	Positive	Stress	Quantity
I	1	0	0	0
like	0	1	0	0
this	0	0	0	0
movie	0	0	0	0
very	0	0	1	0
much	0	0	0	1
!	0	0	1	0

Let's **pretend** that we know what the **dimensions** of the word **embeddings represent**, and that the dimensions are **binary**.

Filter for "I like", "we admire"				
1	0	0	0	
0	1	0	0	

Filter for "very much", "so much"					
0	0	1	0		
0	0	0	1		

	Embeddings						
Words	Subject	Positive	Stress	Quantity			
Ι	1	0	0	0			
like	0	1	0	0			
this	0	0	0	0			
movie	0	0	0	0			
very	0	0	1	0			
much	0	0	0	1			
!	0	0	1	0			

Filter for "I like", "we admire"				
1	0	0	0	
0	1	0	0	

Filter for "very much", "so much"				
0	0	1	0	
0	0	0	1	

	Embeddings					
Words	Subject	Positive	Stress	Quantity		
I	1	0	0	0		
like	0	1	0	0	2	
this	0	0	0	0		
movie	0	0	0	0		
very	0	0	1	0		
much	0	0	0	1		
!	0	0	1	0	0	

Filter for "I like", "we admire"				
1	0	0	0	
0	1	0	0	

Filter for "very much", "so much"				
0	0	1	0	
0	0	0	1	

	Embeddings					
Words	Subject	Positive	Stress	Quantity		
Ι	1	0	0	0		
like	0	1	0	0	$\begin{bmatrix} 2\\ 0 \end{bmatrix}$	
this	0	0	0	0		
movie	0	0	0	0		
very	0	0	1	0		
much	0	0	0	1	0	
!	0	0	1	0	0	

Filter for "I like", "we admire"				
1	0	0	0	
0	1	0	0	

Filter for "very much", "so much"				
0	0	1	0	
0	0	0	1	

		Emb	eddings		
Words	Subject	Positive	Stress	Quantity	Best scores of the two filters
Ι	1	0	0	0	anywhere in the sentence.
like	0	1	0	0	·······
this	0	0	0	0	
movie	0	0	0	0	global
very	0	0	1	0	max
much	0	0	0	1	pooling
!	0	0	1	0	

Filter for "I like", "we admire"				
1	0	0	0	
0	1	0	0	

Filter for "very much", "so much"				
0	0	1	0	
0	0	0	1	

Convolutional Neural Networks

Convolutions on text – closer to reality

	Embeddings			
Words	d_1	d_2	d_3	d_4
I	<i>x</i> _{1,1}	<i>x</i> _{1,2}	<i>x</i> _{1,3}	<i>x</i> _{1,4}
like	<i>x</i> _{2,1}	<i>x</i> _{2,2}	<i>x</i> _{2,3}	<i>x</i> _{2,4}
this	<i>x</i> _{3,1}	<i>x</i> _{3,2}	<i>x</i> _{3,3}	<i>x</i> _{3,4}
movie	<i>x</i> _{4,1}	<i>x</i> _{4,2}	<i>x</i> _{4,3}	<i>x</i> _{4,4}
very	<i>x</i> _{5,1}	<i>x</i> _{5,2}	$x_{5,3}$	<i>x</i> _{5,4}
much	<i>x</i> _{6,1}	<i>x</i> _{6,2}	<i>x</i> _{6,3}	<i>x</i> _{6,4}
!	<i>x</i> _{7,1}	<i>x</i> _{7,2}	<i>x</i> _{7,3}	<i>x</i> _{7,4}

ReLU(wx + b) $x^{T} = \langle x_{1,1}, x_{1,2}, x_{1,3}, \dots, x_{2,3}, x_{2,4} \rangle$

A bigram filter					
<i>w</i> _{1,1}	<i>w</i> _{1,2}	<i>W</i> _{1,3}	<i>W</i> _{1,4}		
<i>w</i> _{2,1}	<i>W</i> _{2,2}	W _{2,3}	<i>W</i> _{2,4}		

$$w = \langle w_{1,1}, w_{1,2}, w_{1,3}, \dots, w_{2,3}, w_{2,4} \rangle$$

b

Convolutions on text – closer to reality

	Embeddings			
Words	d_1	d_2	d_3	d_4
I	<i>x</i> _{1,1}	<i>x</i> _{1,2}	<i>x</i> _{1,3}	<i>x</i> _{1,4}
like	<i>x</i> _{2,1}	<i>x</i> _{2,2}	<i>x</i> _{2,3}	<i>x</i> _{2,4}
this	<i>x</i> _{3,1}	<i>x</i> _{3,2}	<i>x</i> _{3,3}	<i>x</i> _{3,4}
movie	<i>x</i> _{4,1}	<i>x</i> _{4,2}	<i>x</i> _{4,3}	<i>x</i> _{4,4}
very	<i>x</i> _{5,1}	<i>x</i> _{5,2}	<i>x</i> _{5,3}	<i>x</i> _{5,4}
much	<i>x</i> _{6,1}	<i>x</i> _{6,2}	<i>x</i> _{6,3}	<i>x</i> _{6,4}
!	<i>x</i> _{7,1}	<i>x</i> _{7,2}	<i>x</i> _{7,3}	<i>x</i> _{7,4}

A bigram filter

$$w_{1,1}$$
 $w_{1,2}$
 $w_{1,3}$
 $w_{1,4}$
 $w_{2,1}$
 $w_{2,2}$
 $w_{2,3}$
 $w_{2,4}$

ReLU(wx + b) $x^{T} = \langle x_{2,1}, x_{2,2}, x_{2,3}, \dots, x_{3,3}, x_{3,4} \rangle$

$$w = \langle w_{1,1}, w_{1,2}, w_{1,3}, \dots, w_{2,3}, w_{2,4} \rangle$$

b

Now applying three bigram filters

	Embeddings			
Words	d_1	d_2	d_3	d_4
I	<i>x</i> _{1,1}	<i>x</i> _{1,2}	<i>x</i> _{1,3}	<i>x</i> _{1,4}
like	<i>x</i> _{2,1}	<i>x</i> _{2,2}	x _{2,3}	<i>x</i> _{2,4}
this	<i>x</i> _{3,1}	<i>x</i> _{3,2}	<i>x</i> _{3,3}	<i>x</i> _{3,4}
movie	<i>x</i> _{4,1}	<i>x</i> _{4,2}	<i>x</i> _{4,3}	<i>x</i> _{4,4}
very	<i>x</i> _{5,1}	<i>x</i> _{5,2}	<i>x</i> _{5,3}	<i>x</i> _{5,4}
much	<i>x</i> _{6,1}	<i>x</i> _{6,2}	<i>x</i> _{6,3}	<i>x</i> _{6,4}
!	<i>x</i> _{7,1}	<i>x</i> _{7,2}	<i>x</i> _{7,3}	<i>x</i> _{7,4}

$$h_{2} = \text{ReLU}(Wx + b) \in \mathbb{R}^{3 \times 1}$$
$$x^{T} = \langle x_{2,1}, x_{2,2}, \dots, x_{3,3}, x_{3,4} \rangle \in \mathbb{R}^{1 \times 8}$$

$$W = \begin{bmatrix} w_{1,1,1} & w_{1,1,2} & w_{1,1,3} & \dots & w_{1,2,3} & w_{1,2,4} \\ w_{2,1,1} & w_{2,1,2} & w_{2,1,3} & \dots & w_{2,2,3} & w_{2,2,4} \\ w_{3,1,1} & w_{3,1,2} & w_{3,1,3} & \dots & w_{3,2,3} & w_{3,2,4} \end{bmatrix} \in \mathbb{R}^{3 \times 8} \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \in \mathbb{R}^{3 \times 1}$$

Applying 3 bigram filters

Words	d_1	d_2	d_3	d_4	
I	<i>x</i> _{1,1}	<i>x</i> _{1,2}	<i>x</i> _{1,3}	<i>x</i> _{1,4}	-
like	<i>x</i> _{2,1}	<i>x</i> _{2,2}	<i>x</i> _{2,3}	<i>x</i> _{2,4}	$h_2 = \langle h_{2,2} \rangle$
this	<i>x</i> _{3,1}	<i>x</i> _{3,2}	<i>x</i> _{3,3}	<i>x</i> _{3,4}	
movie	<i>x</i> _{4,1}	<i>x</i> _{4,2}	<i>x</i> _{4,3}	<i>x</i> _{4,4}	
very	<i>x</i> _{5,1}	<i>x</i> _{5,2}	<i>x</i> _{5,3}	<i>x</i> _{5,4}	
much	<i>x</i> _{6,1}	<i>x</i> _{6,2}	<i>x</i> _{6,3}	<i>x</i> _{6,4}	
!	<i>x</i> _{7,1}	x _{7,2}	<i>x</i> _{7,3}	x _{7,4}	

$$h_2 = \left< h_{2,1}, h_{2,2}, h_{2,3} \right>^T \in \mathbb{R}^{3 \times 1}$$

 $W = \begin{bmatrix} w_{1,1,1} & w_{1,1,2} & w_{1,1,3} & \dots & w_{1,2,3} & w_{1,2,4} \\ w_{2,1,1} & w_{2,1,2} & w_{2,1,3} & \dots & w_{2,2,3} & w_{2,2,4} \\ w_{3,1,1} & w_{3,1,2} & w_{3,1,3} & \dots & w_{3,2,3} & w_{3,2,4} \end{bmatrix} \in \mathbb{R}^{3 \times 8} \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \in \mathbb{R}^{3 \times 1}$

Applying 3 bigram filters

				$h^{max} =$	$\left(\max(h_{*,1}), \max(h_{*,2}), \max(h_{*,3})\right)^T$
	Embeddings				global max
Words	d_1	d_2	d_3	d_4	pooling realure vector sent to a r classifier.
Ι	<i>x</i> _{1,1}	<i>x</i> _{1,2}	<i>x</i> _{1,3}	x _{1,4}	$h_1 = \langle h_{1,1}, h_{1,2}, h_{1,3} \rangle_T^T$ regressor, etc.
like	<i>x</i> _{2,1}	<i>x</i> _{2,2}	<i>x</i> _{2,3}	x _{2,4}	$h_2 = \left< h_{2,1}, h_{2,2}, h_{2,3} \right>^{l}$
this	<i>x</i> _{3,1}	<i>x</i> _{3,2}	<i>x</i> _{3,3}	<i>x</i> _{3,4}	$h_3 = \left< h_{3,1}, h_{3,2}, h_{3,3} \right>^T$
movie	<i>x</i> _{4,1}	x _{4,2}	<i>x</i> _{4,3}	x _{4,4}	$h_4 = \left< h_{4,1}, h_{4,2}, h_{4,3} \right>^T$
very	<i>x</i> _{5,1}	x _{5,2}	<i>x</i> _{5,3}	x _{5,4}	
much	<i>x</i> _{6,1}	<i>x</i> _{6,2}	<i>x</i> _{6,3}	x _{6,4}	
!	<i>x</i> _{7,1}	x _{7,2}	<i>x</i> _{7,3}	x _{7,4}	$h_7 = \langle h_{7,1}, h_{7,2}, h_{7,3} \rangle'$

 $W = \begin{bmatrix} w_{1,1,1} & w_{1,1,2} & w_{1,1,3} & \dots & w_{1,2,3} & w_{1,2,4} \\ w_{2,1,1} & w_{2,1,2} & w_{2,1,3} & \dots & w_{2,2,3} & w_{2,2,4} \\ w_{3,1,1} & w_{3,1,2} & w_{3,1,3} & \dots & w_{3,2,3} & w_{3,2,4} \end{bmatrix} \in \mathbb{R}^{3 \times 8} \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \in \mathbb{R}^{3 \times 1}$

Stacked CNNs for classification/regression

$$h^{max} = \left(\max\left(h_{*,1}^{(4)}\right), \max\left(h_{*,2}^{(4)}\right), \dots, \max\left(h_{*,m}^{(4)}\right) \right)^{T} \in \mathbb{R}^{1 \times m}$$

$$for all max pooling for classification/regression
global max pooling for classification/regression
$$for all h_{*,1}^{(4)} = \left(\max\left(h_{*,1}^{(4)}\right), \max\left(h_{*,2}^{(4)}\right), \dots, \max\left(h_{*,m}^{(4)}\right) \right)^{T} \in \mathbb{R}^{1 \times m}$$
Feature vector sent to a document classifier or regressor
(e.g., MLP).
Feature vector sent to a document classifier or regressor
(e.g., MLP).

$$for all h_{1}^{(4)} = \left(h_{2}^{(4)} + h_{3}^{(4)} + h_{5}^{(4)} + h_{5}^{(4)} + \dots + h_{n-1}^{(4)} + h_{n}^{(4)} + pad \right)$$

$$for all h_{1}^{(4)} = \left(h_{2}^{(4)} + h_{3}^{(2)} + h_{3}^{(2)} + h_{4}^{(2)} + h_{5}^{(2)} + \dots + h_{n-1}^{(2)} + h_{n}^{(2)} + pad \right)$$

$$for all h_{1}^{(4)} = \left(h_{1}^{(4)} + h_{3}^{(4)} + h_{5}^{(4)} + h_{5}^{(4)} + \dots + h_{n-1}^{(4)} + h_{n}^{(4)} + pad \right)$$

$$for all h_{1}^{(4)} = \left(h_{1}^{(4)} + h_{3}^{(4)} + h_{5}^{(4)} + \dots + h_{n-1}^{(4)} + h_{n}^{(4)} + pad \right)$$

$$for all h_{1}^{(4)} = \left(h_{1}^{(4)} + h_{3}^{(4)} + h_{5}^{(4)} + \dots + h_{n-1}^{(4)} + h_{n}^{(4)} + pad \right)$$

$$for all h_{1}^{(4)} = \left(h_{1}^{(4)} + h_{3}^{(4)} + h_{5}^{(4)} + \dots + h_{n-1}^{(4)} + h_{n}^{(4)} + pad \right)$$

$$for all h_{1}^{(4)} = \left(h_{1}^{(4)} + h_{3}^{(4)} + h_{5}^{(4)} + \dots + h_{n-1}^{(4)} + h_{n}^{(4)} + pad \right)$$

$$for all h_{1}^{(4)} = \left(h_{1}^{(4)} + h_{3}^{(4)} + h_{5}^{(4)} + \dots + h_{n-1}^{(4)} + h_{n}^{(4)} + h_{n}$$$$

$$h_i^{(1)} = \operatorname{ReLU}\left(W^{(1)}[x_{i-1}; x_i; x_{i+1}] + b^{(1)}\right) + x_i \in \mathbb{R}^{m \times 1}$$
$$h_i^{(j)} = \operatorname{ReLU}\left(W^{(j)}\left[h_{i-1}^{(j-1)}; h_i^{(j-1)}; h_{i+1}^{(j-1)}\right] + b^{(j)}\right) + h_i^{(j-1)} \in \mathbb{R}^{m \times 1}$$

Residual (shortcut) connection, needed when stacking many CNNs (or RNNs).

Stacked CNNs for token classification

$$h_i^{(1)} = \operatorname{ReLU}\left(W^{(1)}[x_{i-1}; x_i; x_{i+1}] + b^{(1)}\right) + x_i \in \mathbb{R}^{m \times 1}$$
$$h_i^{(j)} = \operatorname{ReLU}\left(W^{(j)}\left[h_{i-1}^{(j-1)}; h_i^{(j-1)}; h_{i+1}^{(j-1)}\right] + b^{(j)}\right) + h_i^{(j-1)} \in \mathbb{R}^{m \times 1}$$

CNNs/RNNs that produce word embeddings from character embeddings

(CNN-based character-level word representation)

(LSTM-based character-level word representation)

Figure 2: Character-level word representations. This figure is also adapted from Reimers and Gurevych (2017a).

Z. Zhai, D.Q. Nguyen and K. Verspoor, "Comparing CNN and LSTM Character-Level Embeddings in BiLSTM-CRF Models for Chemical and Disease Named Entity Eecognition". 9th Int. Workshop on Health Text Mining and Information Analysis, Brussels, Belgium, 2018. <u>http://aclweb.org/anthology/W18-5605</u>

Recommended reading

- Y. Goldberg, *Neural Network Models for Natural Language Processing*, Morgan & Claypool Publishers, 2017.
 Mostly Chapter 13.
- Jurafsky and Martin's, Speech and Language Processing is being revised (3rd edition) to include DL methods.
 - <u>http://web.stanford.edu/~jurafsky/slp3/</u> (free draft)
- F. Chollet, *Deep Learning in Python*, 1st edition, Manning Publications, 2017.
 - 1st edition freely available (and sufficient for this course): <u>https://www.manning.com/books/deep-learning-with-python</u>
 - See Chapter 6 for CNNs in Computer Vision.
 - 2nd edition (2022) now available, requires payment. Highly recommended.

Recommended reading – continued

- A. Zhang et al., *Dive into Deep Learning*.
 - Freely available at: <u>https://d21.ai/</u>
 - See Chapter 6 for CNNs.
- See also the recommended reading and resources of the previous parts (NLP with MLPs, RNNs) of this course.

