
Text Classification with
Multi-Layer Perceptrons

2024–25

Ion Androutsopoulos
http://www.aueb.gr/users/ion/

http://www.aueb.gr/users/ion/

2

These slides are partly based on material from the books:

• Artificial Intelligence – A Modern Approach by S.
Russel and P. Norvig, 2nd edition, Prentice Hall, 2003,

• Artificial Intelligence by I. Vlahavas et al., 3rd edition,
University of Macedonia Press, 2006 (in Greek).

• Machine Learning by T. Mitchell, McGraw-Hill, 1997.

3

Contents

• Natural and artificial neural networks (NNs).
• Perceptrons, training them with SGD, limitations.
• Multi-Layer Perceptrons (MLPs) and backpropagation.
• MLPs for text classification, regression, window-based token

classiffication (e.g., for POS tagging, NER).
• Dropout, batch and layer normalization.
• Pre-training word embeddings with Word2Vec.
• Advice for training large neural networks.

4

Natural neural networks

• Neuron: cell of the brain.
– Cell body or soma: the main part, includes the nucleus.
– Dendrites receive signals from other neurons.
– Axon: transmits a single output to other neurons. Often much

longer than the diameter of the soma.
– Synapses: axon-dendrite interfaces, whose conductivities vary.

• Neural network: network of many neurons.

Im
age from

 the slides of R
ussel &

 N
orvig

’s book.

𝑤!

𝑤"
𝑤#

5

Artificial neural networks
• Artificial neuron:

– Input: real variables.
– Input weights: real variables (roughly synapses).
– Soma: computes the weighted sum of the inputs, then

applies an activation function to the sum.

soma

output

O
riginal im

age from
 the book of V

lahavas et al.

𝑆 =#
!

𝑤!𝑥! Φ(𝑆)

𝑥"

𝑥#𝑥#

𝑥!
…	

𝑤$𝑥$=1

6

>"#

!$%&#

!"

'"#

!$%&#

!"

'"#

!$%&#

!"

(#

'"#

(#

)"#

)*#

)"+)*#
"#$%&'(#,!"#$%&'(#,!

!

#)*+,-#$(./*01234$,0,# 5)*61234$,0,*7480/-81# 9)*6(9-8:(;/<*01234$,0,#

Activation functions

!"#
! ⋅−+
=Φ
!
!"#

step function
sign function

sigmoid
(logistic function)

The sigmoid is differentiable.

threshold T threshold T

Top im
ages from

 the book of V
lahavas et al. B

ottom
 im

age from
 The Little Book of D

eep
Learning, by F. Fleuret (https://fleuret.org/francois/lbdl.htm

l).

+1

0

𝛷(𝑆) 𝛷(𝑆) 𝛷(𝑆)

𝑆 𝑆 𝑆

+1

−1

+1

0

𝛼!

𝛼"

𝛼! > 𝛼"

The hyperbolic tangent (tanh) is very
similar to the sigmoid, but with values
from −1 to +1. Usually better, unless

we really want values in (0, 1).

tanh

+1

−1

https://fleuret.org/francois/lbdl.html

7

Activation functions – continued

ReLU and variants are popular choices.

Left im
age from

 http://datascience.stackexchange.com
/questions/5706/. R

ight im
age

and equations from
 The Little Book of D

eep Learning, by F. Fleuret
(https://fleuret.org/francois/lbdl.htm

l).

Rectified Linear Unit (ReLU)

http://datascience.stackexchange.com/questions/5706/
https://fleuret.org/francois/lbdl.html

8

Perceptron
• A single neuron, originally with sign activation function.

– Equivalently, step activation function.
– The Perceptron can be generalized (done later), to use a sigmoid

or other activation function.
– We can use several Perceptrons (e.g., to recognize a letter each).

>"#

!$%&#

!"

'"#

!$%&#

!"

'"#

!$%&#

!"

(#

'"#

(#

)"#

)*#

)"+)*#
"#$%&'(#,!"#$%&'(#,!

!

#)*+,-#$(./*01234$,0,# 5)*61234$,0,*7480/-81# 9)*6(9-8:(;/<*01234$,0,#

threshold T

O
riginal im

ages from
 the book of V

lahavas et al.

𝑤!

𝑤"
𝑤#

soma

output
𝑆 =#

!

𝑤!𝑥! Φ(𝑆)

𝑥"

𝑥#𝑥#

𝑥!
…	

+1

−1

𝛷(𝑆)

𝑆𝑤$𝑥$ = 1

We usually think of it as an algorithm, but it was a machine originally!

Slide from the presentation “Multilayer Neural Networks” of L. Bottou at the Deep
Learning Summer School 2015 (http://videolectures.net/deeplearning2015_montreal/).

9

10

Perceptrons as logical gates

Ø We cannot implement
every logical function with
a single Perceptron.

– E.g., we cannot implement
an XOR gate.

!
!"#A%&D()
*+),-.)

/0N)

2)+),)

2)+),)

3,)

34)

sign, with
Τ = 0.8

w1 = 0.5

w2 = 0.5

true: 1, false: -1

!
!"#$%&'()
*+),-.)

/0)

1)+)O)

1)+)O)

3O)

34)

sign, with
Τ = −0.3

w1 = 0.5

w1 = 0.5

!
!"#$%&'(!
)*+"#$%!

&!'!"(!

)*+!

sign, with
Τ = 0

O
riginal im

ages from
 the

book of V
lahavas et al.

11

Two-level XOR implementation

!
!"#$%&'()
*+),-.)

/0)

1)+)O)

1)+)O)

3O)

34)

προσήμου
Τ = −0.3

w1 = 0.5

w1 = 0.5

!
!"#A%&D()
*+),-.)

/0N)

2)+),)

2)+),)

3,)

34)

προσήμου
Τ = 0.8

w1 = 0.5

w2 = – 0.5

!
!"#A%&D()
*+),-.)

/0N)

2)+),)

2)+),)

3,)

34)

προσήμου
Τ = 0.8

w1 = – 0.5

w2 = 0.5

true: 1, false: -1

Ø Every logical function
can be implemented by a
two-layer network of
Perceptrons (exercise).

implements:
x1 AND (NOT x2)

implements:
(NOT x1) AND x2

sign, with
Τ = 0.8

sign, with
Τ = 0.8

O
riginal im

ages from
 the

book of V
lahavas et al.

sign, with
Τ = −0.3

12

The Perceptron is a linear separator

• Like logistic regression, a single Perceptron can learn only linear separators
(exercise). For non-linear separators, we need Multi-Layer Perceptrons.

• An MLP with 1 hidden layer can compute (in principle, also learn) any
mapping between discrete spaces with finite dimensions.

• For continuous spaces, very roughly speaking: with 1 hidden layer we can
compute (in principle, also learn) almost any bounded continuous function;
with 2 hidden layers we can compute almost any bounded function.

• But we may need a very large, unknown number of neurons in the hidden
layers, we may end up memorizing the training dataset (exercise), and we may
not actually manage to learn (find) the target function.

AND

x1

x2

1

1

-1
-1

+

–

–

–
XOR

x1

x2

1

1

-1
-1

+

–

–

+

?

Perceptron’s original learning algorithm
1. Start with random weights 𝑤.
2. Set 𝑖 ← 1 and 𝑠 ← 0.
3. Let 𝑡(") be the correct output for the i-th training

instance and 𝑜(") the current output for that instance.
4. Set , with:
5. Update the weights:
6. If there is a next training instance, set and go

to step 3.
7. If 𝑠 had not converged and max number of scans

(epochs) of training data not exceeded go to step 2.

! "!" " # $← +
!

!! !← +

! " ! " ! "! "! ! !
" " "# # $ % &η← + ⋅ − ⋅

• In the simplest case, η is a small positive constant.

! " ! " #! " $ # % &! !
!" # $ %= ⋅ −
!

13

14

Perceptron with sigmoid or other Φ
• More generally, when using a Perceptron with activation

function Φ instead of step/sign:

• For sigmoid , .

• And since , the weights update rule
becomes:

! " ! " ! " ! "#! " ! "! ! ! !
" " " " " " "

" "
$ % # $ $η
← + ⋅Φ ⋅ −Φ ⋅

∑ ∑

!"
! −+
=Φ
!
!"# !" # " # "$ " ##! ! !Φ =Φ ⋅ −Φ

! " ! "! !
" "

"
$ %

=Φ

∑

! " ! " ! " ! " ! "!# " ! "
!

" " " " "
! !# # $ $ % $ &η← + ⋅ ⋅ − ⋅ − ⋅

Derivation of the update rule
• Squared error loss on the current training instance:

! " ! " # ! " ! " #$ $! " ! " ! "
!

" " " "
" !

!
$ % & % $ '

= − = −Φ

!

w1

w0

! "!" #!

For each training
instance, we have a

different hyper-
surface Ei.

Random initial weights. Loss on
current training instance is 𝐸!(𝑤).

Which direction to modify 𝑤?
!!

Image source:
http://en.wikipedia.org/wiki/Gradient_descent

The gradient 𝜵𝑬𝒊 𝒘 is a
vector showing the direction we
need to modify 𝒘 to obtain the

steepest increase of 𝑬𝒊 𝒘 .

At each iteration, take a step to
the direction −𝜵𝑬𝒊 𝒘 :

Simplest case: 𝜼 is a small
positive constant. Stochastic
gradient descent to minimize
the total squared error loss.

! "!" " # "η← − ⋅∇
! ! !

15

16

Derivation of the update rule

!

" # " # " #" # $%%%$ $ $! ! !
!

" #

$ % $ % $ %$ %
% % %

∂ ∂ ∂
∇ =

∂ ∂ ∂

! ! !
!

"

() ()
! " ! "

! " ! " ! " ! " ! " ! "
! "

! " ! " #!

! !

" "
!!" " " " " ""

! ! !!
!! !

$ %& # $ % # ' $ % %
$ $

∂ −Φ∂ = −Φ ⋅ = − − ⋅Φ ⋅ ∂ ∂

∑∑ ∑

() !

" # " # " # " # " #" # " # $ %&&&%
!

" " " " "
" # ##
$ % & ' % E E E∇ = − − ⋅Φ ⋅∑!

Weights update rule:
! " ! " ! " ! "! " ! " #! "! ! ! !

!" " # " " $ % " & &η η← − ⋅∇ = + ⋅ − ⋅Φ ⋅ ⋅
! ! ! ! ! ! !

! " ! " ! " ! "! " #! "
!

" " " "
! !# # $ % # & &η← + ⋅ − ⋅Φ ⋅ ⋅

! !
For each weight:

! " ! " # ! " ! " #

$

$ $! " ! " ! "
!

"
#

!
!

$ % & ' & % E
=

= − = −Φ

!

! " ! " ! " ! "! " #! "! ! ! !" # $ % %= − − ⋅Φ ⋅ ⋅
! ! !

Hence:

0

17

Multi-layer Perceptron (MLP)
!

!"

#"

$"

%"

&"

'"

("

)"

*"

+!%"

+#%" +$%"
+!&"

+%)"

+%*"

+&)"

+&*"

+')"

+'*"

+()"

+(*"

+$("

+!("

+#("

+$'"

+#'"

+!'"

+$&"

+#&"

,!"

,#"

,$"

-)"

-*"

./0/123".456237" ./0/123".86237"

9:7;6"./0/123"

O
riginal im

age from
 the

book of V
lahavas et al.

input layer (often only minor
computation, e.g., scaling)

output layer

hidden layerE.g., TF-IDF feature
vector of a text.

Probabilities
of classes.

18

Backpropagation
!

!"

#"

$"

%"

&"

'"

("

)"

*"

+!%"

+#%" +$%"
+!&"

+%)"

+%*"

+&)"

+&*"

+')"

+'*"

+()"

+(*"

+$("

+!("

+#("

+$'"

+#'"

+!'"

+$&"

+#&"

,!"

,#"

,$"

-)"

-*"

./0/123".456237" ./0/123".86237"

9:7;6"./0/123"

O
riginal im

age from
 the

book of V
lahavas et al.

input layer output layer

hidden layer

compute the output for each input

backpropagate derivatives to adjust weights

• Initialize all the weights to small random values.
o E.g., sample from a zero-centered Gaussian with small σ.
o Better initializations exist (see DL course).
o Normalize the features too (see “Important tricks” of Part 2).

• In each epoch, for each training example (or mini-batch):
o Compute the output <o1, o2, …> for the training example.

o For each weight 𝑤"#, compute 𝝏𝑬𝝏𝒘𝒊𝒋, where 𝐸 the loss on the

training example. We compute derivatives right to left.

o Update each weight as: 𝒘𝒊𝒋 ← 𝒘𝒊𝒋 − 𝜼 2
𝝏𝑬
𝝏𝒘𝒊𝒋

 , i.e., for all the

weights together: 𝑾 ←𝑾− 𝜼 2 𝜵𝑾𝑬
o Hence, we use SGD (or variants). No guarantee SGD will

find the best solution, but it (often) works in practice!
19

Backpropagation

20

Example of computation graph
Example and figure from Stanford’s

“CNNs for Visual Recognition” (2016,
F.-F. Li, A. Karpathy, J. Johnson)

http://cs231n.github.io/optimization-2/

• Forward pass: 𝑥, 𝑦, 𝑧 = −2,5, −4 , 𝑞 = 3, 𝑓 = −12
• Imagine we wish to minimize 𝒇 using SGD.

o In a more realistic scenario, 𝒇 would be a loss function, and
𝒙, 𝒚, 𝒛 the weights vector.

𝑥
𝑦
𝑧
←

𝑥
𝑦
𝑧
− 𝜂𝛻𝑓 𝑥, 𝑦, 𝑧 =

𝑥
𝑦
𝑧
− 𝜂

𝜕𝑓
𝜕𝑥
𝜕𝑓
𝜕𝑦
𝜕𝑓
𝜕𝑧

We need:
)*
)+,)*),,)*)-

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 𝑧 = 𝑞𝑧

21

Backpropagation in the graph
Example and figure from Stanford’s

“CNNs for Visual Recognition” (2016,
F.-F. Li, A. Karpathy, J. Johnson)

http://cs231n.github.io/optimization-2/

• Backpropagation: We compute derivatives right to left.
o

)*
)* = 1 by definition.

o
)*
). = 𝑧. And for this 𝑥, 𝑦, 𝑧 	input, 𝑧 = −4.

o During the forward pass, we need to save the outputs of all
the nodes (e.g., here we need the value of 𝑧).

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 𝑧 = 𝑞𝑧

22

Backpropagation in the graph
Example and figure from Stanford’s

“CNNs for Visual Recognition” (2016,
F.-F. Li, A. Karpathy, J. Johnson)

http://cs231n.github.io/optimization-2/

• Backpropagation: We compute derivatives right to left.
o

)*
)* = 1 by definition.

o
)*
). = 𝑧. And for this 𝑥, 𝑦, 𝑧 	input, 𝑧 = −4.

o
)*
)- = 𝑞. And for this 𝑥, 𝑦, 𝑧 	input, 𝑞 = 3.

o
)*
), =

)*
).

).
), =

)*
). 	 2 1. And here)*). is −4.

o
)*
)+ =

)*
).

).
)+ =

)*
). 	 2 1. And here)*). is −4.

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 𝑧 = 𝑞𝑧

incoming gradient local gradient

23

Plug-and-play gates

+

𝑥

𝑦

𝑞

𝜕𝑓
𝜕𝑞

𝜕𝑓
𝜕𝑥

=
𝜕𝑓
𝜕𝑞
𝜕𝑞
𝜕𝑥

=
𝜕𝑓
𝜕𝑞
	 2 1

𝜕𝑓
𝜕𝑦

=
𝜕𝑓
𝜕𝑞
𝜕𝑞
𝜕𝑦

=
𝜕𝑓
𝜕𝑞
	 2 1

class PlusGate:
 forward(x, y):

return x+y

backward(!"
!#

):

 return <!"
!#

, !"
!#

>

∗

q

z

𝑤

𝜕𝑓
𝜕𝑤

𝜕𝑓
𝜕𝑞

=
𝜕𝑓
𝜕𝑤

𝜕𝑤
𝜕𝑞

=
𝜕𝑓
𝜕𝑤

	 2 𝑧

𝜕𝑓
𝜕𝑧

=
𝜕𝑓
𝜕𝑤

𝜕𝑤
𝜕𝑧

=
𝜕𝑓
𝜕𝑤

	 2 𝑞

class StarGate:
 forward(q, z):
 return q * z

 backward(!"
!$

):

 return <!"
!$
	 # 𝑧, !"

!$
	 # 𝑞>

24

More compact notation of NNs

𝑥/

𝑥0

𝑥1

𝑥2

𝛷 𝑠& = Φ #
!'&

(

𝑤!,&𝑥!

𝑛1

𝑛3

𝑛0

𝑛/

𝛷 𝑠* = Φ #
!'&

(

𝑤!,*𝑥!

𝛷 𝑠+ = Φ #
!'&

(

𝑤!,+𝑥!

𝛷 𝑠, = Φ #
!'&

(

𝑤!,,𝑥!

𝑤&,&

𝑤(,,

𝑤(,+

𝑤(,&
𝑤*,&

𝑤+,,

Input instance (e.g., TF-IDF
feature vector of a text)

… …

25

More compact notation of NNs

𝑥/

𝑥0

𝑥1

𝑥2

𝛷 𝑠&

𝛷 𝑠*

𝛷 𝑠+

𝛷 𝑠,

𝑤&,&

𝑤(,,

𝑤(,+

𝑤(,&
𝑤*,&

𝑤+,,

𝑠&
𝑠*
𝑠+
…
𝑠,

=

𝑤&,&𝑥& +𝑤*,&𝑥* +⋯+𝑤(,&𝑥(
𝑤&,*𝑥& +𝑤*,*𝑥* +⋯+𝑤(,*𝑥(
𝑤&,+𝑥& +𝑤*,+𝑥* +⋯+𝑤(,+𝑥(

…
𝑤&,,𝑥& +𝑤*,,𝑥* +⋯+𝑤(,,𝑥(

𝑠&
𝑠*
𝑠+
…
𝑠,

=

𝑤&,& 𝑤*,& … 𝑤(,&
𝑤&,* 𝑤*,* … 𝑤(,*
𝑤&,+ 𝑤*,+ … 𝑤(,+
… … … …
𝑤&,, 𝑤*,, … 𝑤(,,

𝑥&
𝑥*
𝑥+
…
𝑥(

𝑠 = 𝑊�⃗�

�⃗� =

𝜊&
𝜊*
𝜊+
…
𝜊,

=

𝛷(𝑠&)
𝛷(𝑠*)
𝛷(𝑠+)
…

𝛷(𝑠-)

= 𝛷 𝑠 = 𝛷 𝑊𝑥

𝑛1

𝑛3

𝑛0

𝑛/

… … We learn 𝑾 with
backpropagation.

26

More compact notation of NNs
𝑥/

𝑥0

𝑥1

𝑥2
𝑊(&)

𝑛/,1

𝑛/,3-

𝑛/,0

𝑛/,/

�⃗�(&) =

𝜊&,&
𝜊&,*
…
𝜊&,,!

= 𝛷 𝑠(&) = 𝛷 𝑊(#)𝑥

… …

𝑜&,&

𝑜&,*

𝑜&,+

𝑜&,,!

27

More compact notation of NNs
𝑥/

𝑥0

𝑥1

𝑥2
𝑊(&)

𝑛/,1

𝑛/,3-

𝑛/,0

𝑛/,/

𝑊(*)

𝑛0,1

𝑛0,3.

𝑛0,0

𝑛0,/

�⃗�(#) =

𝜊#,#
𝜊#,&
…
𝜊#,'%

= 𝛷 𝑠(#) = 𝛷 𝑊(#)�⃗�

… … …

𝑜*,&

𝑜*,*

𝑜*,+

𝑜*,,"

�⃗�(&) =

𝜊&,#
𝜊&,&
…
𝜊&,'&

= 𝛷 𝑠(&) = 𝛷 𝑊(&)�⃗�(#)

We learn 𝑾(𝟏),𝑾(𝟐)
with backpropagation.

28

Regression example

𝑥/

𝑥0

𝑥1

𝑥2
𝑊(&)

𝑛/,1

𝑛/,3-

𝑛/,0

𝑛/,/

𝑊(*)

𝑛0,1

𝑛0,3.

𝑛0,0

𝑛0,/

�⃗�(&) = tanh 𝑊(&)�⃗�

… … …

𝑜*,&

𝑜*,*

𝑜*,+

𝑜*,,"

�⃗�(*) = 𝑊(*)�⃗�(&)

𝑙1

𝑙3.

𝑙0

𝑙/

…

𝑡&

Input instance (e.g., TF-IDF
feature vector of a text)

𝑡*

𝑡+

𝑡,"

Correct output (e.g.,
personality traits)

𝑙 =
1
2#
0'&

,"

𝑙0* =
1
2#
0'&

,"

𝑜*,0 − 𝑡0
*Squared error loss at

current training example

https://en.w
ikipedia.org/w

iki/B
ig

_Five_personality_traits

29

Regression example – more compact

�⃗�
𝑊(&) tanh

𝑊(*)
id

�⃗�(&) = tanh 𝑊(&)�⃗�

�⃗�(*)

�⃗�(*) = 𝑊(*)�⃗�(&)

𝑆𝑞𝐸𝑟𝑟 𝑡

Input instance (e.g., TF-IDF
feature vector of a text)

Correct output (e.g.,
personality traits)

�⃗�(&)

Or as a computation graph:

�⃗�

𝑊(&)

tanh

𝑊(*)

∗
�⃗�(*)

𝑆𝑞𝐸𝑟𝑟

𝑡

�⃗�(&)
∗

𝑠(&)
E

𝜕𝐸
𝜕𝑊(&)

𝜕𝐸
𝜕𝑊(*)

𝜕𝐸
𝜕𝐸 = 1

𝜕𝐸
𝜕�⃗�(*)

=

𝜕𝐸

𝜕𝑜&
(*)

…
𝜕𝐸

𝜕𝑜,"
(*)

=
𝑜&
(*) − 𝑡&
…

𝑜,"
(*) − 𝑡,"

= �⃗�(*) − 𝑡

Φ 𝑠 = 𝑠
(identity)

Squared error loss
for the current

training instance.

30

Classification example

𝑥/

𝑥0

𝑥1

𝑥2
𝑊(&)

𝑛/,1

𝑛/,3-

𝑛/,0

𝑛/,/

𝑊(*)

𝑛0,1

𝑛0,3.

𝑛0,0

𝑛0,/

�⃗�(&) = tanh 𝑊(&)�⃗�

… … …

𝑜*,&

𝑜*,*

𝑜*,+

𝑜*,,"

�⃗�(*) = softmax 𝑊(*)�⃗�(&)

Input instance (e.g., TF-IDF
feature vector of a text)

How probable the system believes it is that
the input belongs in each one of 𝒌𝟐 classes.

31

Softmax

𝑊(*)�⃗�(&) = 𝑠(*) =

𝑠*,&
𝑠*,*
…
𝑠*,,"

softmax 𝑊(*)�⃗�(&) = softmax 𝑠(*) = softmax

𝑠*,&
𝑠*,*
…
𝑠*,,"

=

exp 𝑠*,&
∑0'&
," exp 𝑠*,0
exp 𝑠*,*

∑0'&
," exp 𝑠*,0

…
exp 𝑠*,,"

∑0'&
," exp 𝑠*,0

Output of the last layer, without an
activation function. Confidence scores,
one for each class. We want to convert
them to probabilities summing to 1.

Softmax also moves the largest of its
inputs towards 1 and the other inputs
towards 0. Intuitively a soft argmax!

32

Classification example

𝑥/

𝑥0

𝑥1

𝑥2
𝑊(&)

𝑛/,1

𝑛/,3-

𝑛/,0

𝑛/,/

𝑊(*)

𝑛0,1

𝑛0,3.

𝑛0,0

𝑛0,/

�⃗�(&) = tanh 𝑊(&)�⃗�

… … …

𝑜*,&

𝑜*,*

𝑜*,+

𝑜*,,"

�⃗�(*) = softmax 𝑊(*)�⃗�(&)

𝑙1

𝑙3.

𝑙0

𝑙/

…

𝑡&

Input instance (e.g., TF-IDF
feature vector of a text)

𝑡*

𝑡+

𝑡,"

Correct output (𝑡* = 1 means the
single correct class is the 𝑗-th one)

𝑙 = −#
0'&

,"

𝑡0 log 𝑜*,0Cross entropy loss
at the current

training instance

33

Classification example – more compact

�⃗� 𝑊(&) tanh
𝑊(*)

smax

�⃗�(&) = tanh 𝑊(&)�⃗�

�⃗�(*)

�⃗�(*) = softmax 𝑊(*)�⃗�(&)

𝐶𝑟𝐸𝑛𝑡 𝑡

Input instance (e.g., TF-IDF
feature vector of a text)

�⃗�(&)

Correct output (correct class
prediction, 1-hot vector)

Cross-entropy loss
during training

Or as a computation graph:

�⃗�

𝑊(&)

tanh

𝑊(*)

∗
�⃗�(*)

𝐶𝑟𝐸𝑛𝑡

𝑡

�⃗�(&)
∗

𝑠(&)
L

𝜕𝐿
𝜕𝑊(&)

𝜕𝐿
𝜕𝑊(*)

𝜕𝐿
𝜕𝐿

= 1

smax

34

Extracting contract elements

I. Chalkidis, I. Androutsopoulos, A. Michos, “Extracting Contract Elements”, ICAIL 2017,
http://nlp.cs.aueb.gr/pubs/icail2017.pdf.

Identify start/end dates,
duration, contractors, amount,

legislations refs, jurisdiction
etc. Similar to Named Entity

Recognition (NER).

35

Window-based NER example

yesterday language tech announced that…

𝑖-th word of the text being classified

�⃗�! =

0
0
1
0
…
0

�⃗�!+# =

1
0
0
0
…
0

�⃗�!,# =

0
0
0
0
…
1

3-word window (often larger)

1-hot vectors (|𝑉|×1) of the
words in the window. (𝑉 is

the vocabulary size).

𝑒! =

2.4
−3
9.3
5.1
…
3.9

𝑒!+# =

1.8
2.3
−1.4
3.7
…

−1.1

𝑒!,# =

2.2
3.8
1.2
−6.4
…
7.1

Embeddings (𝑑×1) of the
words in the window. (𝑑
is the dimensionality of
the word embeddings).

Let 𝑬 be a matrix (𝑑×|𝑉|) that
contains all the embeddings of

the vocabulary as columns. Then:
𝑒!+# = 𝐸�⃗�!+#, 𝑒! = 𝐸�⃗�!, …

36

Window-based NER example

�⃗�"</

1-hot vectors of the
words of the window

We learn 𝑾(𝟏),𝑾(𝟐) with backpropagation. We can also learn (or modify)
the word embeddings 𝑬 during backpropagation! But when we don’t have
large training datasets (e.g., corpus manually annotated with B-I-O tags), it
may be better to use pre-trained embeddings, which can be obtained from
large non-annotated corpora (e.g., via Word2Vec, GloVe, to be discussed).

�⃗�"

�⃗�"=/

𝐸

𝐸

𝐸

𝑒"</

𝑒"

𝑒"=/

Embeddings of the
words of the window

+

Sum or concatenation
of the embeddings

tanh
𝑊(*) smax

�⃗�(&) = tanh 𝑊(&)𝑒

�⃗�(*)

�⃗�(*) = softmax 𝑊(*)�⃗�(&)

𝐶𝑟𝐸𝑛𝑡 𝑡
�⃗�(&)

Correct output (e.g., correct
B-I-O tag, 1-hot vector)

𝑊(&)

𝑒

We can use the same window-based approach for POS-tagging, chunking, …

37

Cross-entropy loss

yesterday language tech announced that…

Word being classified.

�⃗� =

𝑃- 𝐶 = 𝑐#
𝑃- 𝐶 = 𝑐&
𝑃- 𝐶 = 𝑐.

…
𝑃- 𝐶 = 𝑐'

=

0.05
0.12
0.08
…
0.14

3-word window (often larger).

Probability estimates produced
by the classifier for the class of

the word “tech”.

𝑡 =

𝑃 𝐶 = 𝑐#
𝑃 𝐶 = 𝑐&
𝑃 𝐶 = 𝑐.

…
𝑃 𝐶 = 𝑐'

=

0
1
0
…
0

The correct “probabilities” for
the class of “tech”. A 1-hot

vector.

𝐻>/ 𝐶 = −K
"?/

3

𝑃 𝐶 = 𝑐" log0 𝑃2 𝐶 = 𝑐" = − log0 𝑃2 𝐶 = 𝑐0

The log-likelihood of the
correct class according to the
classifier (with a minus sign).

38

Dropout
𝑥/

𝑥0

𝑥1

𝑥2
𝑊(&)

𝑛/,1

𝑛/,3-

𝑛/,0

𝑛/,/

𝑊(*)

𝑛0,1

𝑛0,3.

𝑛0,0

𝑛0,/

… … …

𝑜*,&

𝑜*,*

𝑜*,+

𝑜*,,"

Dropout at the input layer.
E.g. 𝑝/012 = 0.2.

Dropout at the output of a hidden
layer. E.g., 𝑝/012 = 0.5.

39

Dropout
• For each training instance (or mini-batch), we drop

(remove) each neuron of the layer where dropout is applied
with probability 𝒑𝒅𝒓𝒐𝒑 = 𝟏 − 𝒑𝒌𝒆𝒆𝒑.
o Helps the neural net avoid relying too much on particular

neurons (or inputs). A form of regularization. Works well!
o Gradients also do not flow through dropped neurons.
o Alternative explanation: we train an ensemble of networks,

containing all the pruned networks that dropout creates.
• During testing, we multiply the output of each neuron (of

the layer where dropout was applied) by 𝒑𝒌𝒆𝒆𝒑, so that the
neuron’s expected output value will be as in training.
o Or we divide the output by 𝒑𝒌𝒆𝒆𝒑 during training instead.
o We don’t drop neurons during testing (only during training).

40

Batch normalization

𝑥/

𝑥0

𝑥1

𝑥2

𝛷 𝑠&

𝛷 𝑠*

𝛷 𝑠+

𝛷 𝑠,

𝑤&,&

𝑤(,,

𝑤(,+

𝑤(,&
𝑤*,&

𝑤+,,
𝑛1

𝑛3

𝑛0

𝑛/

… …

At each layer, instead of:

𝑠# =K
"?/

2

𝑤",#	𝑥"

we use:
�̅�[=

𝑔[
𝜎[

𝑠[− 𝜇[+ 𝑏[

• 𝜇#, 𝜎# are the mean and std.
dev. of 𝒔𝒋 in the mini-batch.

• 𝑔#, 𝑏# are learned parameters
(constant after training).

• 𝛷 now applied to �̅�#.

See https://arxiv.org/pdf/1607.06450.pdf for batch vs. layer normalization. The
latter is better for RNNs (next part), where layers are time-steps.

https://arxiv.org/pdf/1607.06450.pdf

41

Layer normalization

𝑥/

𝑥0

𝑥1

𝑥2

𝛷 𝑠&

𝛷 𝑠*

𝛷 𝑠+

𝛷 𝑠,

𝑤&,&

𝑤(,,

𝑤(,+

𝑤(,&
𝑤*,&

𝑤+,,
𝑛1

𝑛3

𝑛0

𝑛/

… …

At each layer, instead of:

𝑠# =K
"?/

2

𝑤",#	𝑥"

we use:
�̅�[=

𝑔[
𝜎

𝑠[− 𝜇 + 𝑏[
• 𝜇, 𝜎 are the mean and std.

dev. of 𝐬𝟏, … , 𝒔𝒌 in the layer.
• 𝑔#, 𝑏# are learned parameters

(constant after training).
• 𝛷 applied to �̅�#.

With dropout, batch/layer normalization, residuals (to be discussed) and other
additions, strictly speaking we no longer have an “MLP”. Some people prefer “Feed

Forward Neural Network” (FFNN), but “MLP” still often used as synonym.

Pretraining word embeddings with Word2Vec
(skip-gram version)

𝑤D = "[ilm"

𝑡 − 𝑐 𝑡 + 𝑐𝑡 𝑡 + 𝑖

𝑤D=" = "famous"?
𝑤D=" = "directed"?
𝑤D=" = "starring"?
𝑤D=" = ⋯?

42

• Every word 𝒘 of the vocabulary has two vectors:
𝑤(()), 𝑤(+,-)

o The vectors are randomly initialized. We learn them.
o For every token 𝒘𝒕 at position 𝒕 of a corpus and every

position 𝒕 + 𝒊 (𝒊 ≠ 𝟎) within a window [𝒕 − 𝒄, 𝒕 + 𝒄]
around position 𝑡:

o We want to be able to predict which vocabulary word
occurs at position 𝒕 + 𝒊 by multiplying 𝒘𝒕

(𝒊𝒏)and 𝒘𝒕=𝒊
(𝒐𝒖𝒕).

Word2Vec (skip-gram version)

𝑤D = "[ilm"

𝑡 − 𝑐 𝑡 + 𝑐𝑡 𝑡 + 𝑖

𝑤D=" = "famous"?
𝑤D=" = "directed"?
𝑤D=" = "starring"?
𝑤D=" = ⋯?

𝑃 𝑤D="|𝑤D = softmax 𝑤D="
(KLD) 2 𝑤D

("M)

=
exp 𝑤D="

(KLD) 2 𝑤D
("M)

∑N∈P exp 𝑤(KLD) 2 𝑤D
("M)

In the skip-gram version of Word2Vec, the
central word of each window “predicts”

the other words of the window. In the
CBOW version, the context (sum of the

embeddings of the other words of the
window) “predicts” the central word.

prediction

43

Word2Vec (skip-gram version)
• We learn the 𝒘(𝒊𝒏), 𝒘(𝒐𝒖𝒕) by maximizing the probability

assigned to the 𝒘𝒕2𝒊 that actually occurs at each position 𝒕 + 𝒊, i.e.,
we maximize the likelihood of the correct predictions:

O𝐸(!4), O𝐸(567) = argmax
8 #$,8(&'()

#
7'&29

:;9

	 #
;9<!<9,!=>

ln 𝑃 𝑤72!|𝑤7

o Matrices 𝑬 𝒊𝒏 , 𝑬(𝒐𝒖𝒕) contain in their columns all the in and out
vectors (word embeddings) of all vocabulary words.

o 𝑻 is the corpus size, 𝒕 is the center of the sliding window.
o For each 𝒕	value, we get 𝟐𝒄 training examples.
o For batch gradient ascent, we would do steps:

O𝐸(!4), O𝐸(567) ← O𝐸(!4), O𝐸(567) + 𝜂∇𝐿
o In practice, we use SGD (or variants), i.e., we use the likelihood

𝑳𝒊	of a mini-batch of training examples (e.g., all 2𝑐 of a window):
O𝐸(!4), O𝐸(567) ← O𝐸(!4), O𝐸(567) + 𝜂∇𝐿!

44

L

Word2Vec (skip-gram) as a shallow NN

𝑤D = "[ilm"

𝑡 − 𝑐 𝑡 + 𝑐𝑡 𝑡 + 𝑖

𝑤D=" = "famous"?
𝑤D=" = "starring"?
𝑤D=" = ⋯?

𝑃 𝑤D="|𝑤D = softmax 𝑤D="
(KLD) 2 𝑤D

("M)

prediction

45

�⃗�!,#(𝑤!
(#%)) = softmax 𝐸 '(! 	*	 𝑤!

(#%) = softmax 𝐸 '(! 	*	 𝐸(#%)	�⃗�!

𝐸("M)

�⃗�7

×
𝑤3

(!4)

�⃗�7,!
𝐶𝑟𝐸𝑛𝑡

𝑡7,!

× 𝐿7,!

𝜕𝐿3,!
𝜕𝐸 153 	7	

𝜕𝐿3,!
𝜕𝐿3,!

= 1

smax

𝐸 KLD 	R
𝜕𝐿3,!
𝜕𝐸 !4

distribution
over 𝑉

1-hot vector
of 𝑤*

a dense layer input embedding activation
function of the

single dense layer

Word2Vec (skip-gram with negative sampling)

𝑤D = "[ilm"

𝑡 − 𝑐 𝑡 + 𝑐𝑡 𝑡 + 𝑖

𝑤3,! = "famous" (true, positive)
𝑟3,! = "medical"	(random,	negative)

When the vocabulary 𝑽 is
large, computing the softmax

is very time-consuming. A
more efficient alternative is

negative sampling, a kind of
contrastive learning.

prediction

We construct positive (+) and negative (−)
examples, using the word 𝑤3,! that actually

occurs at position 𝑡 + 𝑖, and random words 𝑟3,!
that do not actually occur at position 𝑡 + 𝑖.

max
U 01 ,U(234)

K
D?/=V

R<V

	 K
<VW"WV,"XY

ln 𝑃 +|𝑤D=", 𝑤D + ln𝑃 −|𝑟D=", 𝑤D

We try to learn to assign high probabilities to the correct classes. In
practice, we use multiple random words 𝑟3,! at each position 𝑡 + 𝑖.

46

Word2Vec (skip-gram with negative sampling)

max
U 01 ,U(234)

K
D?/=V

R<V

	 K
<VW"WV,"XY

ln 𝑃 +|𝑤D=", 𝑤D + ln 1 − 𝑃 +|𝑟D=", 𝑤D

We no longer try to produce a probability
distribution over the vocabulary for the

words 𝑤3,! that may occur at 𝑡 + 𝑖.
47

sigmoid as in logistic regression

We are given 𝒘𝒕 and a particular
𝑤3,! or 𝑟3,! and we need to decide if

it is a positive or negative case.

𝑤D = "[ilm"

𝑡 − 𝑐 𝑡 + 𝑐𝑡 𝑡 + 𝑖

𝑤3,! = "famous" (true, positive)
𝑟3,! = "medical"	(random,	negative)

#
7'&29

:;9

	 #
;9<!<9,!=>

ln 𝜎 𝑤72!
(567) ` 𝑤7

(!4) + ln 1 − 𝜎 𝑟72!
(567) ` 𝑤7

(!4)

prediction

Loss as a function of epochs

49

Figure from the recommended book “Deep Learning with Python” by F. Chollet,
Manning Publications, 2nd edition. The 1st edition is freely available.

https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python-second-edition

https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python-second-edition

Practical advice for training deep NNs
• Check simple baselines: (e.g., majority, random, …)

o If you can’t beat them, you may have bugs, data problems, …
o Look at how data are tokenized, pre-processed, ...
o Examine misclassification errors (e.g., extreme/frequent cases).

• Get the training and validation loss to start falling:
o Tune the learning rate and the mini-batch size.
o Use appropriate models (e.g., for sequences, images, …).

• Reach the overfitting behavior of the previous slide.
o The training and validation loss (or metric) both fall up to a

point, then the training loss continues to improve ideally
reaching near zero, the validation loss deteriorates.

o Increase capacity (e.g., layers, neurons per layer), …
• Then dropout, early stopping, batch/layer norm, …
• Check Chollet’s Chapter 5 for more advice…

50

Regularizing a high-capacity model

51

Figure from the recommended book “Deep Learning with Python” by F. Chollet,
Manning Publications, 2nd edition. The 1st edition is freely available.

https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python-second-edition

https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python-second-edition

52

Recommended reading
• M. Surdeanu and M.A. Valenzuela-Escarcega, Deep

Learning for Natural Language Processing: A Gentle
Introduction, Cambridge Univ. Press, 2024.
• Chapters 5–9.
• https://clulab.org/gentlenlp/text.html
• Also available at AUEB’s library.

• Y. Goldberg, Neural Network Models for Natural Language
Processing, Morgan & Claypool Publishers, 2017.
o Mostly chapters 3–5 and 10. Available at AUEB’s library.

• Jurafsky & Martin’s, Speech and Language Processing is
being revised (3rd ed.) to include Deep Learning methods.
o http://web.stanford.edu/~jurafsky/slp3/

https://clulab.org/gentlenlp/text.html
http://web.stanford.edu/~jurafsky/slp3/

53

Other recommended resources
• For an introduction to Keras/Tensorflow and practical DL for

NLP and vision, see F. Chollet’s Deep Learning in Python,
Manning Publications, 1st edition, 2017.
• The 1st edition is freely available and sufficient for this course.

https://www.manning.com/books/deep-learning-with-python
• 2nd edition (2022) now available, requires payment. Highly recommended.

• Useful maths background: T. Parr και J. Howard, The Matrix
Calculus You Need for Deep Learning.
o https://explained.ai/matrix-calculus

• PyTorch tutorials: https://pytorch.org/tutorials/
• C. Manning’s (Stanford) NLP with Deep Learning course.

o http://web.stanford.edu/class/cs224n/. Videos on YouTube.
• See also the recommended books of Part 0 (Introduction).

https://www.manning.com/books/deep-learning-with-python
https://explained.ai/matrix-calculus
https://pytorch.org/tutorials/
http://web.stanford.edu/class/cs224n/

