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These slides are partly based on material from the books:

* Speech and Language Processing by D. Jurafsky and J.H.
Martin, 2" edition, Pearson Education, 2009,

Artificial Intelligence — A Modern Approach by S. Russel
and P. Norvig, 2" edition, Prentice Hall, 2003,

Machine Learning by T. Mitchell, McGraw-Hill, 1997,

Neural Network Methods for Natural Language Processing
by Y. Goldberg, Morgan & Claypool, 2017.

Foundations of Statistical Natural Language Processing by
C.D. Manning and H. Schutze, MIT Press, 1999,

and material from the Machine Learning course of A. Ng at
Stanford University.
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Example: spam filters

our highly successful mult1 — call for papers 9 th european
national company gives you an workshop on natural language
exclusive business that generation ... 1s a subfield of
generates an extra weekly natural language processing
income of up to $ 600 or more that generates texts in human
... anyone can easily make languages from non-linguistic
money ... if you wish to be data or knowledge ... for the
removed from our list ... systems to be successful ...

* Classifying messages in two classes.
— Spam (C = 1), ham (C = 0).
* More generally, n classes.

— Financial news, politics, sports news (possibly overlapping).
— Positive, negative, neutral, conflict sentiment (e.g., of tweets).



Spam filtering with supervised ML

examples of positive and negative
messages + correct classes

|

training phase

preprocessing *| learning algorithm
classification
______ function
preprocessing > classifier
Incoming message decision: positive or negative

use (or testing) phase



Text preprocessing

our highly successful mult1 —
national company gives you an
exclusive business that
generates an extra weekly
income of up to $ 600 or more
... anyone can easily make
money ... if you wish to be
removed from our list ...

call for papers 9 th european
workshop on natural language
generation ... 1s a subfield of
natural language processing
that generates texts in human
languages from non-linguistic
data or knowledge ... for the

<money:1, language:0,
natural:0, $:1, adult:0, call:0,
exclusive:1, successful:1,

systems to be successful ...

< money:0, language:1,
natural:1, $:0, adult:0, call:1,
exclusive:0, successful:1,
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» Alternatively the features may be word (or n-gram) frequencies,
TF-IDF scores, non-textual information (e.g., attachments, colors).
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Representing texts as bags of words

* Boolean vectors (contain 0, 1 values): which words of a
vocabulary occur or not in the text.

* Term frequency (7F) vectors: how frequent each
vocabulary word 1s 1n the text.
o Possibly divided by the number of tokens of the text.
o Or taking the logarithm of the frequency.

 TF-IDF vectors: for each vocabulary word w;, the

Ndoc ++i  Number of documents in a corpus.

IDF; = log(

DF; <. i Number of corpus documents containing w;.

o IDF, (1inverse document frequency) shows how rare w; 1s in
the language (not the particular text). Common words are not
informative in some tasks (e.g., information retrieval). 7



Feature selection

* For which words (or n-grams or ...) should we include
features 1n the vectors that represent the texts?

— Ist step: discard words (or n-grams) that do not occur at least k
times 1n the training data (e.g., k = 3).

— Usually thousands of words remain (many more n-grams).
— Large feature sets - efficiency and over-fitting problems.

— Alternative 1%t step: discard words (n-grams) with low TF-IDF
(computing both TF and IDF on the entire training set).

— But features (words, n-grams) with high TF-IDF may not
always help discriminate the classes we are interested 1n.
« How useful 1s each candidate feature X?
— How much information does knowing the value of X offer?

— How much is our uncertainty about the random variable C
(class) reduced if we know the value of X?



Information Gain (for discrete features)

* Entropy of Cif we learn that X =1:
H(C|X=1)==) P(C=c| X =1)-log, P(C=c| X =1)

* Entropy of C if we learn that X = 0:
H(C|X=0)==) P(C=c|X=0)-log, P(C=c| X =0)

* Information Gain (/G):

Expected decrease of H(C), if we learn the value of X.

IG(C,X)=IG(X.C)= H(C)-Y P(X =x) ,
O-Trr=ncix=y

expected value for every possible
value of X 9



Feature selection with I1G

« Compute the information gain IG(C, X) of each
candidate feature X.

— For example, X may show if the word “money” occurs (X = 1)
in the text or not (X = 0).

— Probabilities are estimated from training messages (e.g., with
Laplace smoothing).

e Select the features with the m highest IG(C, X) scores.

— For spam filtering, m = 1000 works reasonably well.

* Represent the texts as BOW vectors of m dimensions.
~Eg., <X, X, X5, ..., X,> = <0,1,1, ..., 0>

 Other similar feature selection measures exist (e.g., 1?).

* We can also use SVD to get fewer new features.
10



Example of 1G-selected Boolean features

Wordof X, | P(X;=1) P(X,=1|C=0) |P(X;=1|C=1)
| 0.484105 0.216129 0.828157
$ 0.257947 0.040322 0.538302
language 0.247956  <10.440322 0.002070
money 0.163487 <J0.001612 0372670 >
remove 0.146230 0.001612 0.333333
free 0.309718 0.104838 0.573498
university 0.219800 0.374193 0.022774

11




Word embeddings of business terms

(produced with word2vec, here projected to 2D using UMAP)
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Large image from Loukas et al., “EDGAR-CORPUS: Billions of Tokens Make The World Go Round”, EcoNLP
workshop, EMNLP 2021 (https://aclanthology.org/2021.econlp-1.2/). Small image from Mikolov et al., “Linguistic

Regularities in Continuous Space Word Representations”. NAACL 2013 (https://aclanthology.org/N13-1090/). For a
quick intro to UMAP (and t-SNE) check: https://www.youtube.com/watch?v=6BPI§ 1 wGGPS.
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Word sense embeddings

(produced by a method that produces dense, sense-specific word
embeddings, then projected to 2 dimensions)

invention conversation Réfiter
— varide idﬁgﬁr magazine
AUEMPL! psathod hrase meaning translatio
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desire fact man microsoft
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Most words have multiple & _ : In a financial discussion, we
senses. Word embeddings (a i, s Wi - would like “bank” to move
sing.le ppint per word) end up e a ﬁ closer to its financial sense,

being in the middle of the W, Wi away from its river sense.
points that would correspond § @ "™ i \We’|] address this problem

to their multiple senses. | st i later (e.g., with RNNs)

Image source: http://www.socher.org/uploads/Main/MultipleVectorWordEmbedding.png
Huan et al. 2012, “Improving Word Representations via Global Context and Multiple Word Prototypes”.
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Word embeddings from PMI scores

* Represent each word as a vector (“word embedding”).

o Here the vector shows how often the word co-occurs with
every other word of a vocabulary.

pilot = (PMI(pilot, air), PMI(pilot, tree), PMI(pilot, door) ...)

o The co-occurrence scores in the vector are often Pointwise
Mutual Information (PMI) scores:

P(w, w;) < How likely is it for w to i

= E co-occur with the i-th
asessnsanssanastioens PMI(WWL) log P (W) P (Wl) Vocabulary W()rd? :

E ImprOVed normallZCdPMI E -...............................................:
definitions also exist. :

ST “eo-occur” may mean in the same sentence, or in a window
of n words, or connected with dependencies (produced by a
dependency parser) etc.

* We can use SVD to obtain embeddings of fewer dimensions.
* Word similarity = similarity of word embeddings (e.g., cosine).

14



Dimensionality reduction with SVD

" X11 X1n 21,1 Z1,k
X21 X2n Z21 Zo Kk
X = . N /= . .
_xm,l xm,n_ _Zm,l Zm,k_

Each instance (row) is initially a
vector of n original features.

New form of the instances. Each instance (row)
is now a vector of k < n new features.

* Diagonalization with SVD: X = UDV

o D rect. diagonal. Values on diagonal: singular values in decreasing order.

o U (mxm),V (nxXn) orthonormal (rows/columns unit-length & orthogonal).
 Approximation of X: X = UDV

o D diagonal (kxk). Values on the diagonal: k largest singular values of D.

o U (mxk) and V(kxn). Hence X is still mxn.

 Approximation of X: Z = UD
o Zis (mxk) with k < n. Dot-products between rows of X preserved.

o In practice, we use Z = U \/5 or Z = U. See Goldberg for more details.
15



Embeddings of biomedical terms

Table 1 Closest words to the 30 most frequent words of the BioASQ question answering task, using
the cosine similarity of the dense vectors to measure proximity. Relevant (closely related) words are
shown in bold, possibly relevant in normal font, and irrelevant (or misspelled) words in strikeout.
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See http://bioasqg.org/news/bioasg-releases-continuous-space-word-vectors-obtained-applying-word2vec-

pubmed-abstracts
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Centroids of word embeddings

We can represent each text T (word sequence) wy, W, ... W, as
the centroid of its word embeddings:

ey L TH
— 7 W; = Z|V| TF( . T)
i=1 j=1 LW

Or (better) taking into account the IDF scores of the words:

Z'V' w; - TF(w;, T) - IDF (w;)
> TF(w;, T) - IDF (w))

'ﬂl

We can classify texts by classifying their centroids.

Better (but more complex) methods to encode each text as a
dense vector exist (e.g., using deep neural nets).

17



k nearest neighbors (k~-NN)

During training, simply store the
vectors of the training examples.
To classify an unseen instance,
find the closest k training
instances (e.g., k= 5) and classify
in their majority class.
Distance weighting (better): each
neighbor has a vote whose weight
1 1
decreases (¢.g., X ~ or ;) as the
distance (d) from the instance
being classified increases.

In regression problems (real-
valued responses), return the
(weighted) average value of the k
neighbors.

new
istance

18



Examples of distance measures

 Kuclidian distance:

xl,xj) \/(xll le) + ot (K — me)

* Cosine similarity: %7
SiMeos(5Y) = =151

* For Boolean feature vectors, how many of the features of
the two vectors are different:

d(')_éiD')_éj) — zl{xir e xjr}
r=1

« Feature (attribute) weighting: the differences are
weighted depending on the importance of the features:

d(x,x)=> IG(C,X,) 1{x, =x,}
r=1

20



Pros and cons of A-NN

Computationally cheap during training.

— We simply store the training instances (lazy).

But expensive in terms of memory.
— We store all the training instances.

Computationally expensive when classifying.

— In the simplest form of A~~-NN, we need to compute the
distance of each unseen instance to every training instance.

— There are approximations that reduce this cost considerably.

— See http://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-
how-to-search-in-high-dimensional-spaces/ and https://github.com/spotify/annoy.

It can approximate any separating hyperplane.
— Some other algorithms can only learn linear separators.
Non parametric learning method:

— We do not learn the values of a fixed number of parameters.



vV Vv °
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Clustering with k-means

® o)
o O
0 0 2 -
o o e
@) @ Do )
2.0 :
OO DDD.
step 1 step 2

8,

7

step 3

O
a8

step 4

Start with £ random centroids (one per desired cluster).

Place each instance into the cluster with the closest centroid.

Re-compute the centroids. Repeat until convergence.

Unsupervised learning. Can be made semi-supervised (how?).

Produces hard clusters, unlike EM’s P(C = i|)_(> ).

Tries to minimize the sum of the distances of the instances to the
centroids of their clusters.

May find a local minimum. Sensitive to the initial random centroids.

Restart several times with different initial random centroids.

3uLIAISN[d  SUBIW-3/IIM /310 _IpadIyim ud//:dyy :woy sagew]
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Clustering documents and/or words

* We can cluster documents (e.g., their TF-IDF vectors).
o For example, hoping to get a view of their topics.

o More elaborate topic modeling methods (e.g., LDA) exist.

* We can cluster word embeddings.

o For example, to replace words by their clusters in BOW
representations of documents (fewer features).

23



Linear regression

y 20r
For points above o o
the line of f(x):
y>=w;x +wy.

UOISSAIZAT JBAUI]

/yim /810 eIpadiim ud//:dny :00Inos afew|

For points below
the line of f{x): e
y < W] X + W0.

-éO 0 2l0 4.0 6.0 g0 x
* We try to learn f(x) from a sample (dots).

o Example: f(x) may show how fluent a sentence, which has been
assigned a fluency score x by a language model, will actually
be considered by native speakers of the language.

* We only consider linear hypotheses (functions):

V=S (X)=wx+w,

* Hence, we search for the best w4, wy,. e



Linear regression — continued

* If we have two features x, x,, our linear hypotheses are
planes in the 3D space:

= fw2,w1,w0 (x,,x,) =W, x, +wx, +w,

* If we have n features x4, ..., x,,, our linear hypotheses
are hyper-planes in a space of n + 1 dimensions:

Yy = fwn,...,wo (X,..., X, ) =W X, +...wWXx, +W,

:ZWZ—XI :<WO,W1,...,Wn>'<xo,xl,...xn>

I:O A T
: f (x ) xXx=W"'X Treating each
. oL Ve, vector as a
For simplicity, always: x,=1. T single-column
matrix.

e We search for the best w.

25



Squared error loss

 The search space contains all the possible w.

« To assess each w, we may use the squared error loss:

EGR) = 2L/ ()= T

X is the i-th the training example,
y (@ is the correct (desired) output for ¥,
m 1s the number of training examples.

* “Least squares linear regression’:
— Regression (not classification), with linear hypotheses.

— Minimizing the squared error loss.

26



The search space

EG) == 2 LG =y F

The curve of E(w) is . We search for the
convex, hence 1t has ) _, )
no local minima. . weights w for which

. E(w), i.e., the total !

. squared error on the :

i training data,is
minimum.

Image source:
http://en.wikipedia.org/wiki/
Gradient descent
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Gradient descent
EG) = /(0= T

Start with random Weights w. s ;
Compute E(W) on the training { The gradient VE(W) is a vector

data. Which way to modify w? | showing the direction we need to
i modify W to obtain the steepest

\ W I increase of E(w). Hence,

— . — VE(W) is the direction that leads

/%/\\\\ to the steepest decrease of E(W).

YAy Ay . LRI R R R R RS R

: / / /,f" ,,////ﬁ \\\\\ \ \"\ At each iteration, modify w by

( ( Pl )y ) ] ) ) | | taking a step to the direction i
ewm ) P o e

WNEGY 2 ) ) - - -
E(@(:%\&j //// w<w—n-VE(Ww)

o i In the simplest case, g 1s a
\\\ — wy i small positive constant.




Weights update rule
E(w) = Z[fl (37(”) »OT

*d

VE() = <aE(w) OB aE(w) aE(w)>

8w0 ow, 8Wl ow

5E(W S ye O(f, (X =)
ZI: f (x()) y() -
= [

,/
s

) a(z ijj(i) _ y(i))
=D G-y —=
i=1

ow,
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Weights update rule — continued

E(w) == Z[ﬂ(f(’)) yOT

-
/’ ‘\

_ [ EGW) E(i) aE(w) aE(w)>

———————
\\\\\\\\
2 N\

4

4
PR

Hence et

VE(i#) = Zf(ic’“)) y<”]< e, )
= 3 ) - 0] E
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Weights update rule — continued

Hence, the weights update rule:

w<«w—n-VE(w)

becomes:
m
DY VAt
=1

and each individual weight 1s updated as follows:

W w = ) L) = y] X"
i=1

31



Batch gradient descent

(not used 1n practice)

1. Start with random weights w.
2. While E(w) has not converged (or VE (W) > ¢):
3. Update the weights:

m
+(7) (1) (1)
W, < W, _U'Z[fw(x )—y ] x
i=I
4. Go to step 2.
In the simplest case, # 1s a small positive constant. In

more elaborate versions, # 1s adjusted (e.g., decreased) at
each 1teration.
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Stochastic gradient descent (SGD)

. Start with random weights w.

2. Shuffle the training instances. Seti < 1 and s « 0.

_ 1 (i -
. Compute £, (w) = E[fw (Xx?)y—yP7
only for the current (i-th) training example.
- Obtained b t
- SestEW) the partial derivatives...
. Update the weighits: w<«— w—17-VE (W)
- (i) ()7 + ()
1.6, W, <— W, _77°[fw(x l )_y l ]°xl l
. If a (i+1)-th training example exists, set 7 <— i + 1
and go to step 3.

. If s has not converged and max number of scans

(“epochs”) of training data not exceeded, go to step 2.
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Stochastic gradient descent — continued

* Much smaller computational cost.

— Loss computed on a single training example per step. In
practice (esp. with GPUs) on a mini-batch of training examples.
* The update steps do not always go towards the
minimum of the total error E(w). Each step goes
towards the minimum of the local error E;(w).

— With larger mini-batches the gradient of E;(w) is closer to
that of E(w), which often allows using a larger learning rate.

« SGD may not reach the exact minimum of E(w).

— It may start wandering around the minimum, but 1n practice, it
arrives close enough, much faster than batch GD.

— Optionally see https://en.wikipedia.org/wiki/Stochastic_gradient descent for
improvements (e.g., momentum, AdaGrad, Adam).
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Closed-form solution

* A closed-form solution to obtain directly the weights
that minimize the squared error loss also exists.

EG) = > [ fuE) =T

* Set VE(w) = 0 and solve for w.
* The solutionis: W~ =(X'X)' XY

where: o m T ENON

x=|"




Closed-form solution — continued

» The closed-form solution requires inverting (X X).

— May be time-consuming 1f we have a very large number
of training examples and features.

* Gradient descent (or SGD) can also be used 1n
problems where there is no closed-form solution.

— We will encounter such problems shortly.

36



Linear separators

1 . For points

* Fortwo features x;, x,, | .- above the line:
we search for a straight w-x >0
line that separates the \
¢ 1 For points
WO CIaSSes. : et e below the line:

__ . X <0

w,x, + wx;, +w, =0

* For more features x;, x,, ..., x,, we search for a hyper-
plane that separates the two classe}g.

wx +...+wx +w, = E wx, =w-x=0

e (lassification decision: [=0%.....
) R Setting again x, = 1.
C =sign(w- X)
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Linear separators— continued

* We often want the classifier to also return a probability-
like certainty score.

— How probable is it for a document with vector X to belong in
the positive or negative class?

* The signed distance d_(x) from the separating hyper-
plane 1s not a good certainty score.

HVVH ........ Without wy.
— Not confined to [0, 1].

— For large (positive or negative) distances, we want the
certainty to approach 1.

— For small distances, we want the certainty to approach 0.
38



S1igmoid (logistic) function

e In our case, f will be the

unsigned (and usually
unnormalized) distance from

the separating hyper-plane:

>

I =w-X
Probability for x to belong
in the positive class:

P(c, | %)= —

—W-X

l+e
Probability to belong in the

negative class: P(c_|X)=1-P(c, | X)

g(?)

-

307

/1M /310" eIpadIyim ud//:dyy :901n0s d3ew]

uonounj onsI
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Logistic regression classifiers

—Vv-p’c’

B} 1
P(c+\x)=1+e —, P(c_|¥)=1-P(c, \x)_Hew

 During training, they select the W that makes the
classifier more confident that the training examples
belong 1n their correct classes.

— They maximize the (conditional) likelihood of the examples.

L) = PO oy ™ |50, 5 )

*
A d
.
.
.
A d
“
*

The correct classes of the The feglture vectors of the
training examples. training examples.
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Maximizing the likelihood

* Assuming that the training examples arc independent
and sampled from the same population:

L(W) _ P(y(l),. (m) ‘ —>(1) —>(m) —*)
=[P 1575
i=1

» Instead of maximizing L (W), easier to maximize the
(conditional) log-likelihood:

[(w) =log L(w) = Zlog P(y" | X" w)

41



Maximizing the likelihood — continued

* If we represent the classes as y = 1 (positive class) and
y = 0 (negative class), then:

P(y|¥;w) = P(c, | X;w)" - P(c_| ;W)™

— For y =1 (positive): P(y = 1|x; W) = P(c,|x;w) =

1+e WX
— For y = 0 (negative): P(y = 0|x; w) = P(c_|x;w) =

1+e WX

. Hence

[(W) = ZlogP(c Z05w)" +log P(c_ R )"

_Z y“) logP(c 395w +(1-y)log P(c_ KY;

For each training example, we minimize the cross-entropy...

W)

42



Maximizing the likelihood — continued

* With batch gradient ascent: We now maximize :
i l(W), instead of

W< W+n-VI(p) . minimizing EW).

we obtain the Weights update rule:

Wy <&w,+n- Z[J’(l) P(c, | X)) x,"

* In practice, we use stochastlc gradient ascent.

o Or stochastic gradient descent (SGD, or variant), if we
minimize the cross-entropy of each training example.

e No closed-form solution.
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Regularization (very important)

* Instead of maximizing the log-likelihood alone:

__________________________

I(W) Zlog P(y(l) i _b(l) ) regulalillzation

(“lasso
. regression”)
we usually add a regularlzatlon term:  usesthe LI |
noi}“\rrzii r?dcllin%
—_ —_ ' _— _ w
l (W) T /1 W — l (W) ﬂ/ Z Wl instela((l). Itl
- . leads to,
L2 regularization (“ridge regression”) . sparser w.

to reward W vectors with many small Welghts
* Lower risk of over-fitting the training data:

— Intuitively, if many weights are small (or zero), we do not rely
much on the corresponding features. With fewer features, less
likely to over-fit the training data.

— A > 0. Value usually tuned on held-out/development data.
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Important tricks

* For each attribute X;, assuming normal distribution:

X. Xi —Hiw. Mean and standard
l * deviation of X; in
the training data.

* Also important: start with random small weights.

o E.g., sample them from a zero-centered Gaussian with small o.

o See the material of the Deep Learning course for alternative/better weight
initialization schemes.
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Multinomial Logistic Regression

* Extension for multiple (non-overlapping) classes c,, ..., cx.

— Intuitively, we learn a separate linear separator for each class
¢j, with its own weights vector wj;.

Prigglt?%lty ------ . N e different weights
. P (C‘ J | X ) — % vector per class
belongs 1n ¢; W
normalization factor -~ Z €
J'=

* Alternative view: we compute a score z; = Wi - x for each
exp(z;)
Zjl exp(z;r)
scores to turn them into probabilities that sum up to 1.

to the

class c;, and we apply the softmax function

* We train by maximizing the conditional log-likelihood.

— Same as minimizing the cross-entropy of the training examples.
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Multinomial Logistic Regression

Interpreting a Linear Classifier

- g= f(x,W) = Wx + b

car classifier

airplane classiﬁe/ &
- | | Array of 32x32x3 numbers

deer classifier (3072 numbers tOtaI)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - 58 April 6, 2017

From Stanford’s course “Convolutional Neural Networks for Visual Recognition”, F.F. Li, J.
Johnson, S. Yeung, 2017. http://cs23 1n.stanford.edu/slides/2017/cs231n 2017 lecture2.pdf




Evaluating classifiers

* Accuracy (correct decisions/total decisions) 1s not always a
g00d evaluation measure!

o If we have two classes and one 1s much more frequent (e.g.,
80% of instances), a majority classifier that always classifies
in the most frequent class will have an accuracy of 80%!

e Precision of a class:

o How many of the instances classified in the class (true
positives + false positives) are true members of the class
(true positives).

- TP
Precision = Recall = P

IP+FP TP+ FN
 Recall of a class:

o How many of the true members of a class (true positives +
false negatives) are classified in the class (true positives).
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Evaluating classifiers — continued

+ F-measure: . _ (8* +1)-Precision - Recall

#° B*-Precision + Recall
o Combination of precision and recall (weighted harmonic mean).
o For f =1, equal importance to precision and recall. (But the

harmonic mean 1s closer to the min of the two values than the arithmetic mean.)

* Averaging precision or recall over n classes:
o Macro-averaging (equal weight assigned to all classes):

. ] & . ] &
MacroPrecision = — Z Precision, ~ MacroRecall = — Z Recall,
n -

n i

o Micro-averaging (frequent classes treated as more important):

7P 7P
i=1

MicroPrecision =

. MicroRecall = —=
> TP +FP > TP +FN,
i=1

i=l
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Precision-recall diagrams

In many algorithms, we can opt for higher precision at the expense
of lower recall, or vice versa by tuning a threshold.

O
O

E.g., in Logistic Regression, classify as spam iff P(C = 1|x) >t

For different values of the threshold t, we obtain different pairs of
precision-recall scores (on test data).

The larger the area under the curve (AUC of Precision-Recall curve, a.k.a.
Average Precision) the better the system. (AP can be slightly different in IR.)

For multiple classes, we can average AP over classes, obtaining Mean
Average Precision (MAP).

Precision
Q Q Q Q
o o N P

Q
ES

e
w

o
S

i i i i i i i i i .
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

(=]
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ROC curves

Instead of Precision-Recall curves, it 1s also common to
plot Receiver Operating Characteristic (ROC) curves.

o True Positive Rate = ——— — Sensitivity = Recall of
- TP+FN
positive class
.po FP TN ege o
o False Positive Rate = =1 - =1 — Specificity
FP+TN TN+FP

= 1 — Recall of negative class
o The larger the AUC (of ROC curve) the better the system.

2

£ 0.6

L

=3 —— NetChop C-term 3.0
= 0.4 —— TAP + ProteaSMM-i
[ - ProteaSMM-i

0.2

| l 1 l 1 l A l |
0 0.2 0.4 0.6 0.8 1
False positive rate 51

Image source: https://en.wikipedia.org/wiki/Receiver operating characteristic#/media/File:Roccurves.png
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https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Advice for using supervised learning
(based on lectures of Andrew Ng)

* With most supervised learning algorithms, the loss on the
training data 1s lower than the loss on the development (or
test) data.

— Traimning loss: Performance on the same data we used for
traming.

— Dev loss: Performance on different data than the data used
for training (but from the same population).

* The training loss 1s roughly a lower bound of the dev loss.

* Comparing the training loss to the dev loss we can also see
how much we overfit the training data.
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Diagnostics: overfitting

dev loss

desirable loss

training loss

number of training examples

\ 4
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Diagnostics: overfitting

* [f we observe that:

— The training loss increases (becomes worse) rapidly as we add
more training examples.

— The dev loss decreases (becomes better) rapidly as we add
more training examples.

— Most importantly: there 1s a big difference between the two.

* The system 1s probably overfitting the training data:

— It performs much better on the training data than on the dev
data, because 1t learns peculiarities of the training data.

— Easier to happen with few training examples (and large
numbers of features).

— The more the training examples, the more difficult it becomes
for the system to overfit them. The system generalizes better
and, hence, performs better on dev data.
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Diagnostics: overfitting

* What may help reduce the overfitting:
< More training data.
= Fewer (and better) features (e.g., feature selection).

= Simpler models (e.g., linear classifiers instead of A~~-NN,
linear instead of non-liner SVM, simpler neural nets).

& Stronger regularization (c.g., larger 4 in logistic regression).
May be better than using simpler models.

 What may not be worth doing, especially 1f the
training loss is below the desirable performance level:
$ Spending time to think of (or collect data for) more features.

$ Repeating the experiments with more complex models .
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Diagnostics: underfitting

dev loss
\
—

training loss

desirable loss

number of training examples

\ 4



Diagnostics: underfitting

* [f we observe that:

— The training loss increases (becomes worse) very slowly as we
add new training examples.

— The dev loss decreases (becomes better) very slowly as we
add more training examples.

— Most importantly: very small difference between the two, but
we are still above the desired level of performance.

* It may be that the search space 1s too narrow:

— The function we need to learn is not in the family of
functions we are searching in.

— The search space does not contain functions that can
generalize well enough.
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Diagnostics: underfitting

 What may help:

< More (and better) features (additional information, feature
combinations, like ANDs of features in logistic regression).

© More complex models (¢.g., non-linear rather than linear SVM,
more complex neural net) or ensembles of classifiers (e.g.,
trained with different learning algorithms, or using different
kinds of features, or trained on different training subsets).

= Weaker regularization (e.g., smaller A in logistic regression).

* What will probably not help:

$ More training data (on its own).

$ Fewer features (c.g., feature selection).
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Decomposing the generalization error

Set of all possible best P0§5ib|€
functions FunCIIon
in the universe V3

e approxiation

1
' S~ error

. i € Sf////(///()/
best functiong 10,7 eryy
~ b x (/
, in Ff§ W
Considered TRany

function family F A
f (Dtra.in )

function oup-algo
frainsef

: Overtfitting 1s often a sign of
: high variance. Underfitting is :
i often a sign of high bias.

From the presentation “Introduction to Machine Learning” of P. Vincent at the Deep
Learning Summer School 2015 (http://videolectures.net/deeplearning2015 montreal/).



Additional optional reading slides.
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Naive Bayes

« Example: incoming message represented as:

X =(X,.X,,...X,)=(0,1,...,1)

e (lassification function:

h()?):l,iff >

e Using Bayes’ rule (forc =0 or ¢ = 1)'

nm
...................
----
L 5 "
. »
* ‘e
.
‘ .,

0..
L
&y

P(C=c|X)= M -

----------------------------------------------------------------------------------------------------------------------------------------------------------

We need to estimate the probabilities of all the combinations X;. 1o Xy eey
x,, | c. Too many and many will not occur 1n the training data.

u
'-----------------------------------------------------------------------------------------------------------------------------------------------—- ----------



Conditional independence assumption

* Naive Bayes classifiers assume that X, ..., X, are
conditionally independent given the value of C.

— Usually not true, but NB text classifiers often work well!
P(T( = <x1 ,xz,...,xm> | C =c) =
PX,=x "X, =x,n..nX =x |C=c)=
P(X,=x,|C=c¢)-....P(X =x |C=c)=
ﬁP(XZ. =x, |C =c)

i1

— This 1s the multivariate Naive Bayes. For text classification,

the multinomial Naive Bayes works better (see references).
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Naive Bayes classifiers — continued

 Then:
P(C=1)- HP(X =x.|C=1)

 —

P

P(C 0)- HP(X—x|C 0)

/B@i’f

* We discard the denominators, because they are the same.

 Now all the probabilities arc easy to estimate from the
training messages (e.g., using Laplace smoothing).
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Pros and cons of Naive Bayes
 Computationally cheap:

— For NV training examples, m features,

— O(mN) steps during training to estimate the P(X;|C)
probabilities,

— O(m) steps at classification time to compute the product
of P(X;|C) probabilities.

 Low memory requirements:
— O(m) counters needed for the P(X|C) estimates.

* Also very easy to implement.
* Often works well, but may not be a top-performer.

— Often used 1n spam filters. Very good results in
sentiment detection with bigram features. o



Lexicon features for sentiment analysis

Optional
reading

Sentiment

Images and feature examples (next slide) from the MSc thesis and presentation of M.
Karampatsis “Social media sentiment analysis”, AUEB, 2014 (http://nlp.cs.aueb.gr/theses.html). 65



Lexicon features for sentiment analysis

« A simplistic approach to use them for entire messages:

— Max, min, avg score of the lexicon’s words 1n the message.
— Sum of positive (negative) scores of words 1n the message.

« How to construct our own sentiment lexicons?
— Collect frequent words from a corpus (e.g., tweets, reviews).
— Treat each word as a mini-classifier.

— Scores per word: 1ts precision, recall, F1 per class (e.g.,
positive, negative), computed on manually classified reviews.

— Also works with n-grams (bigrams are good for sentiment).
— See J&M for other approaches (e.g., label propagation).

* Another trick for sentiment analysis: prepend NOT _to
words after a negation (up to next punctuation).
e “didn’t like it, but...” = “didn’t NOT like NOT it, but...”

66



Optional

Searching for feature subsets = ‘eading

So far we evaluated each feature separately.
— With /G or similar measures (e.g., 7).

But two features may convey almost the same information.
— It may be the case that “money” and “rich” always co-occur.
— They may both have high IG scores, but one 1s redundant.

Or two (or more) features may be bad on their own (low /G
scores), but their combination may be a good predictor.
We can treat the problem as a state space search:
o E.g., initial state: use all (or none of) the candidate features.
o Transition operator: remove (or add) a candidate feature.

o Loss function: error rate (on held out/development data) when
the feature subset of the particular state 1s used.

We can use heuristic search algorithms:
o E.g., hill climbing, beam search, simulated annealing, GAs, ... 67



' - : - T Optonal ]
Semi-supervised classification | reading

* We often have training examples that are labeled with
the correct answers, and others that are unlabeled.

— E.g., manually separated spam/ham messages or positive/
negative/neutral tweets and many more unlabeled.

* We can train a classifier on the labeled examples ().
— E.g., train a Naive Bayes classifier.
* We can then (try to) improve the classifier using the

unlabeled examples (U) with labels generated by the
previously trained form of the classifier.

— This 1s a form of Expectation Maximization (EM).

— It does not always work well in practice. We may end up
learning different classes than the ones we intended to.
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____________________________

Optional
reading

Semi'SUPGI’Vised learning with NB

 Initial training of a Naive Bayes classifier, with Boolean
features and |C]| classes, on the labeled examples (L).

o | if the j-th labeled example

<1 + Z P belongs in class i; otherwise 0.

B =1
P(C l)~ |C| | |, ,,,,,,,, Number of labeled

examples.

............... How many labeled examples

Laplace gmoothmg || « of class i have X, = x,?
.-..:":" ........... 1 + pl ; * I{X],l — xl}
P(X, = x, | C =i 2t =1 .
2+ ) p. ;
I How many labeled

examples of class i
do we have?
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Optional
reading

Semi-supervised learning with NB L..rading
» E-step: Predict the classes of the unlabeled examples,
using the previously trained classifier (its previously
learned parameters P(C = i) and P(X, = x; | C =1)).

— Each unlabeled example 1s assigned a probabilistic label (a
probability distribution over the classes).

Predicted probability that We have previously learned these parameters from
the unlabeled example the labeled training examples.
belongs 1n class i. Vge geta

o8,
[ ®e
. Ce
. .,
oooooo
.
° .,

prediction for every class. oo .
S P(C=i)-| | P(X,=x,|C=i)
_ _ VY — \\ _ /=1
p, =PC=i|X=(x,....X,) = —== e
! \ e P(X = (X, ,xm>)
The p, ; values of the labeled k " m
examples do not change. , _
They remain 0 or 1. 2 P(C=1i") HP(XZ =x|C = 1)
=1 =1



Optional
reading

 M-step: Re-train the classifier (re-learn its parameters),
now using both the labeled and the unlabeled examples.
— Re-learn the P(C = i) and P(X, = x, | C = i) parameters.

|L|+U] <« Count the j-th example to the extent that we
1+ Z D ; believe it belongs in class i.

P(C=i)~ = . Count both the labeled and
| C |+ |L| +|U [*" unlabeled examples.

........... How many examples of
ILIHU| at clasg, i have le = )ii? Count
. — cach example to the extent

1+ Z Pi; X ! X} we believe it belongs in

_ — ) ~ J=1 class 1.
P(X,=x,|C=i)~ — |
o ... How many examples of class i
+ Pi are there? Count each example
j=1 to the extent we believe it

. belongs in class i.
* Repeat E, M until convergence.

— It’s a form of hill climbing to maximize the likelihood of the data... -



Optional

The Newton-Raphson method _reading

* Finds the roots (zeroes) of t g(x)

differentiable functions.
 Find x such that:
g(x)=0

At each iteration:

Ay _ g(x,)-0 — e
g'(x,)=—
Ax X —X

* Hence, the update rule 1s:x

/1M /310" eIpadIyim ud//:d)y :901n0s d3ew]

g(x,)
g'(x,)

n+l < xn o

 Works well and fast, 1f we start
near a root...

72



The Newton-Raphson method — continued

___________________________

. Optional
* In our case, we want: . reading

GV =VEGH =0

* The update rule becomes:

— — 1, — —
W, < W, —H; (W,)VE(W) |
where the matrix A, (Hessian matrix) contains as

elements /£, ; all the partial second derivatives:
O°E (W)
ow,0w
 Works well, if we start near the minimum.

* Impractical for neural nets, where the weights are
billions (billions x billions 2" derivatives)
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Optional
reading

r
1
1
1
1
1
1
1
1
L.

1.5

1 1

05 o

* With an appropriate transformation, an originally non-linearly
separable dataset may become linearly separable.

— In general, this is always possible, provided that we move to a vector space
with sufficiently large dimensionality.

— In the example above: }_7:(55) = <x12 , x22 ,N2Xx,x, >
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. . Optional
Support Vector Machines | reading

SV Ms search 1in the new vector support
vec Ol‘S

space for a hyperplane that
separates the examples, with i)
the maximum margin. N
— The separating hyperplane e fg
(bold line) 1s 1n the middle of

the margin (space between the ™ "°

two tangential hyperplanes). -
— Maximizing the margin leads

to better generalization over 02 e

the entire population. . F

. 0 9—atBe o — N

— Support vectors (definition to 0 02 047706 08 LA

be revised): the vectors of the &3 :

examples lying on the two Two parallel hyperplanes

. ach 1eV1n% perfect
tangential hyperplanes. separation, fangential to margin

at least a training example
(of a different class) each.
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. . Optional
Support Vector Machines | reading

Equation of the separating

hyperplane:
w-F(x)+b=0

For simplicity, we require the

tangential hyperplanes to have
the following equations:

Ww-F(X)+b=xl
(Easy to rescale w, b to obtain +1.)
Then the margin is: 2/ HVT/H

Minimization problem:

R ! 0O 02 04 06 08 1
min L[5 2

X

Wb D |
such that: We require all the training

(w-F(X,)+b)-y, =1+ examples to be on the correct

. N\ sides and outside the margin.
a training example

its correct class (here +/-1) 76



Optional

Relaxed problem __reading |
* We allow an error (slack) ¢; ! erroncous .

vectors

at each training example X;.
* Relaxed problem:

1
min [ +C 2.4

S.1:
(w-F(X,)+b)-y; 21-¢,
;=0
 We optimize the sum of the

margin and the total slack. R A J— TE

: : By allowing an error (slack) per training :

— The constant C is tuned on example, we may obtain a larger :
a

held-out data. It controls the i  margin, and we may also fin

i separating hyperplane even when the
trade-off between large : training data are not linearly separable :

margin and low total slack. : (e.g., when using a linear SVM).




Optional

Support Vectors . reading
* Solving the optimization | O ootorg ®-rreen. ®  These are also
A e support vectors.

problem leads to:
=D a,y,F (X))
J

where a; # 0 only if (=) X;
is a support vector.

* Hence, the separating

hyperplane 1s:
PE@b=0 R
Or: .................................. lgnored at ClaSSlﬁcatlon :
.............. : time (unlike £&-NN) because

ZCZ yJF(x ) - F(X)‘l-b O they have a; = 0.



Using kernels in SVMs _reading |

« It turns out that the transformation function F is used

only in inner products in the new vector space.
F(X;)-F(X))

- For some functions F we can compute the inner
products without first computing the transformed
vectors F(x,), F(X,).

— In the initial example: F(X) = <x1 , X5, J2 x1x2>
F(X)-F(x)="=(%"X,)’
— No need to compute the transformed feature vectors (x, ° s

X, \/le i X 12 X s \/ZXJ X;,)- We only need the values of

the original vectors.

— The new vector space usually has many more (possibly

infinite) features (dimensions) than the original space.
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. Optional
Other kernel example | reading

. If we have Boolean initial features (0 or 1), in effect the
* Let: : transformation constructs all the ANDs of the initial features. :

< X; 1 X; 15X, 1 X, 2,...,xl 41X,

i,n?2

X; 2x1 1 xi,2xi,2 > xi,2xi,n > 'xi,nxi,n =
* Then: _  We need O(n2) time to construct each :
F((X)-F(xX,)= .......... transformed feature vector. ¢
< XX 1o X 1K a0 e s X 1 X s
XX 15X, 20X 550 e X, 5K, 5o X X, >0
< x] 1 X 19X 41X 00005 X; 1 X, 5
xjazxjal,xjazxjaz,. . .xjjzxj,n,. . .xj,nxj,n =

— — D e “
— ... = (x - X -)< ...... : We only need O(n) time to :
compute this! 20

s EEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEEEEEEEEEEEEEEEESE -



. :  Now we also use both the initial features
It : and thelr ANDs.

F(x) F(<‘xz Lree s X, >) _
< XX X1 X 2005 X 1 X
X; 5X; 15X, 5 X, X; 5 X,

ln9

“‘
ll, 129000 ln,oooxi,nxl',n,

N2c¢-x,,N2¢ X, ,,...,N2¢ ;cl s C >

 Then:
F(X)-F(X)=...=(c+X,-X,)’

.......
-----------------------------------------------------

We need only O(n) time to
compute this!
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. . . Optional |
Using kernels in SVMs | _reading |
* Kernel:

— A function K(X,,X;) that computes the inner product
F(X,)- F'(X,)in some new vector space, where a
transformation £ takes us. No need to actually know F'!

- E.g, K(x,,x,)=(c+X, X, ) (generalized polynomial kernel)

— Mercer’s theorem specifies when a function (in effect, a similarity measure)
K(x,,x,) is indeed a kernel (see references).

— There are also kernels that compute the similarity between two
texts by considering their parse trees, instead of BOW vectors.

* The equation of the separating hyperplane becomes:

. . X — () i Training examples that are not support :
Z a;¥; K(xj ? x) b= O vectors are ignored, because their ¢; = 0. :
J et :

...... Saving memory and time during

YY) — of “ ¥ ¥ . classification, unlike ~~NN. But SVMs
h(x) SIE n(z a;y, K(xf ’ x) + b) are much slower to train. :
J .



Recommended reading

J&M (2" ed.): Sections 6.6, 6.7, 20.2.2 (NB only).

o MaxEnt classifiers are a variant of multinomial logistic
regression with Boolean class-sensitive features.

o See also the free draft of the 31 edition:
http://web.stanford.edu/~jurafsky/slp3/ (chapters 4, 5, 6,
25 —we’ll discuss word2vec later 1n the course)

S&V-A: Chapters 3—4 (LR only, Perceptron covered later).

Goldberg: Chapter 2.

Consult also the notes “Linear regression, classification
and logistic regression, generalized linear models™ of
Andrew Ng at Stanford (pp. 1-7 and 16-21).

o http://see.stanford.edu/materials/aimlcs229/cs229-
notes1.pdf
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Recommended reading — continued

* There are many versions of Naive Bayes classifiers.

o The version we considered (optional slides) uses Boolean
features and 1s known as multivariate Bernoulli Naive Bayes.

o The multinomial Naive Bayes version can also consider the
term frequencies of the words in each text, and often performs
better in text classification.

o See: http://www.aueb.gr/users/ion/docs/ceas2006 paper.pdf

* For more information about Information Gain (also called
Mutual Information, not to be confused with PMI), Naive
Bayes, and SVMs consult “An introduction to Information
Retrieval” by C.D. Manning, P. Raghavan and H. Schiitze,
Cambridge University Press, 2008.

o Chapters 13 and 15.

o Book freely available from: http://nlp.stanford.edu/IR-
book/information-retrieval-book.html
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Recommended reading — continued

e For an introduction to Machine Learning, see also “A Course
in Machine Learning” by Hal Daumé III.

o Freely available at http://ciml.info/.

* For more information about PCA (and SVD) see section 12.2
of K.P. Murphy’s book “Machine Learning — A Probabilistic
Perspective”, MIT Press, 2012. c

o Available at AUEB’s library.

Machine Learning

o Free draft of 2021 edition: https://probml.github.io/pm]- M=

book/book]1.html
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